Modeling the Binding of Anticancer Peptides and Mcl-1
Abstract
:1. Introduction
2. Results
2.1. Binding of E2gI, E2gY, and XXA1 F3dI with Mcl-1
2.2. Molecular Dynamics Simulations of the Docked Poses
3. Discussion
4. Materials and Methods
4.1. Preparation of the Protein
4.2. Preparation of Peptides
4.3. Protein–Protein Docking
4.4. Molecular Dynamics Simulation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tantawy, S.I.; Timofeeva, N.; Sarkar, A.; Gandhi, V. Targeting MCL-1 Protein to Treat Cancer: Opportunities and Challenges. Front. Oncol. 2023, 13, 1226289. [Google Scholar] [CrossRef]
- Munkhbaatar, E.; Dietzen, M.; Agrawal, D.; Anton, M.; Jesinghaus, M.; Boxberg, M.; Pfarr, N.; Bidola, P.; Uhrig, S.; Höckendorf, U.; et al. MCL-1 Gains Occur with High Frequency in Lung Adenocarcinoma and Can Be Targeted Therapeutically. Nat. Commun. 2020, 11, 4527. [Google Scholar] [CrossRef] [PubMed]
- Beroukhim, R.; Mermel, C.H.; Porter, D.; Wei, G.; Raychaudhuri, S.; Donovan, J.; Barretina, J.; Boehm, J.S.; Dobson, J.; Urashima, M.; et al. The Landscape of Somatic Copy-Number Alteration across Human Cancers. Nature 2010, 463, 899–905. [Google Scholar] [CrossRef]
- Vallet, S.; Fan, F.; Malvestiti, S.; Pecherstorfer, M.; Sattler, M.; Schneeweiss, A.; Schulze-Bergkamen, H.; Opferman, J.T.; Cardone, M.H.; Jäger, D.; et al. Rationally Derived Drug Combinations with the Novel Mcl-1 Inhibitor EU-5346 in Breast Cancer. Breast Cancer Res. Treat 2019, 173, 585–596. [Google Scholar] [CrossRef]
- Williams, M.M.; Elion, D.L.; Rahman, B.; Hicks, D.J.; Sanchez, V.; Cook, R.S. Therapeutic Inhibition of Mcl-1 Blocks Cell Survival in Estrogen Receptor-Positive Breast Cancers. Oncotarget 2019, 10, 5389–5402. [Google Scholar] [CrossRef]
- Henderson-Jackson, E.B.; Helm, J.; Ghayouri, M.; Hakam, A.; Nasir, A.; Leon, M.; Bui, M.; Yeatman, T.; Coppola, D. Correlation between Mcl-1 and pAKT Protein Expression in Colorectal Cancer. Int. J. Clin. Exp. Pathol. 2010, 3, 768–774. [Google Scholar]
- Pennarun, B.; Kleibeuker, J.H.; Van Ek, W.B.; Kruyt, F.A.; Hollema, H.; De Vries, E.G.; De Jong, S. Targeting FLIP and Mcl-1 Using a Combination of Aspirin and Sorafenib Sensitizes Colon Cancer Cells to TRAIL. J. Pathol. 2013, 229, 410–421. [Google Scholar] [CrossRef]
- Shigemasa, K.; Katoh, O.; Shiroyama, Y.; Mihara, S.; Mukai, K.; Nagai, N.; Ohama, K. Increased MCL–1 Expression Is Associated with Poor Prognosis in Ovarian Carcinomas. Jpn. J. Cancer Res. 2002, 93, 542–550. [Google Scholar] [CrossRef]
- Likui, W.; Qun, L.; Wanqing, Z.; Haifeng, S.; Fangqiu, L.; Xiaojun, L. Prognostic Role of Myeloid Cell Leukemia-1 Protein (Mcl-1) Expression in Human Gastric Cancer. J. Surg. Oncol. 2009, 100, 396–400. [Google Scholar] [CrossRef]
- Maeta, Y.; Tsujitani, S.; Matsumoto, S.; Yamaguchi, K.; Tatebe, S.; Kondo, A.; Ikeguchi, M.; Kaibara, N. Expression of Mcl-1 and P53 Proteins Predicts the Survival of Patients with T3 Gastric Carcinoma. Gastric Cancer 2004, 7, 78–84. [Google Scholar] [CrossRef]
- Wuillème-Toumi, S.; Robillard, N.; Gomez, P.; Moreau, P.; Le Gouill, S.; Avet-Loiseau, H.; Harousseau, J.-L.; Amiot, M.; Bataille, R. Mcl-1 Is Overexpressed in Multiple Myeloma and Associated with Relapse and Shorter Survival. Leukemia 2005, 19, 1248–1252. [Google Scholar] [CrossRef]
- Nakano, T.; Go, T.; Nakashima, N.; Liu, D.; Yokomise, H. Overexpression of Antiapoptotic MCL-1 Predicts Worse Overall Survival of Patients With Non-Small Cell Lung Cancer. Anticancer Res. 2020, 40, 1007–1014. [Google Scholar] [CrossRef]
- Wen, Q.; Zhan, Y.; Zheng, H.; Zang, H.; Luo, J.; Zhang, Y.; Wang, W.; Feng, J.; Lu, J.; Chen, L.; et al. Elevated Expression of Mcl-1 Inhibits Apoptosis and Predicts Poor Prognosis in Patients with Surgically Resected Non-Small Cell Lung Cancer. Diagn. Pathol. 2019, 14, 108. [Google Scholar] [CrossRef]
- Wong, R.P.C.; Khosravi, S.; Martinka, M.; Li, G. Myeloid Leukemia-1 Expression in Benign and Malignant Melanocytic Lesions. Oncol. Rep. 2008, 19, 933–937. [Google Scholar] [CrossRef]
- Liu, X.; Dai, S.; Zhu, Y.; Marrack, P.; Kappler, J.W. The Structure of a Bcl-xL/Bim Fragment Complex. Immunity 2003, 19, 341–352. [Google Scholar] [CrossRef]
- Michels, J.; Johnson, P.W.M.; Packham, G. Mcl-1. Int. J. Biochem. Cell Biol. 2005, 37, 267–271. [Google Scholar] [CrossRef]
- Strasser, A. The Role of BH3-Only Proteins in the Immune System. Nat. Rev. Immunol. 2005, 5, 189–200. [Google Scholar] [CrossRef]
- Lutz, R.J. Role of the BH3 (Bcl-2 Homology 3) Domain in the Regulation of Apoptosis and Bcl-2-Related Proteins. Biochem. Soc. Trans. 2000, 28, 51–56. [Google Scholar] [CrossRef]
- Akgul, C.; Moulding, D.A.; White, M.R.H.; Edwards, S.W. In Vivo Localisation and Stability of Human Mcl-1 Using Green Fluorescent Protein (GFP) Fusion Proteins. FEBS Lett. 2000, 478, 72–76. [Google Scholar] [CrossRef]
- Campbell, K.J.; Dhayade, S.; Ferrari, N.; Sims, A.H.; Johnson, E.; Mason, S.M.; Dickson, A.; Ryan, K.M.; Kalna, G.; Edwards, J.; et al. MCL-1 Is a Prognostic Indicator and Drug Target in Breast Cancer. Cell Death Dis. 2018, 9, 19. [Google Scholar] [CrossRef]
- Wu, D.; Gao, Y.; Qi, Y.; Chen, L.; Ma, Y.; Li, Y. Peptide-Based Cancer Therapy: Opportunity and Challenge. Cancer Lett. 2014, 351, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Bakare, O.O.; Gokul, A.; Wu, R.; Niekerk, L.-A.; Klein, A.; Keyster, M. Biomedical Relevance of Novel Anticancer Peptides in the Sensitive Treatment of Cancer. Biomolecules 2021, 11, 1120. [Google Scholar] [CrossRef] [PubMed]
- Petrenko, V.A.; Jayanna, P.K. Phage Protein-targeted Cancer Nanomedicines. FEBS Lett. 2014, 588, 341–349. [Google Scholar] [CrossRef]
- Shin, T.-H.; Sung, E.-S.; Kim, Y.-J.; Kim, K.-S.; Kim, S.-H.; Kim, S.-K.; Lee, Y.-D.; Kim, Y.-S. Enhancement of the Tumor Penetration of Monoclonal Antibody by Fusion of a Neuropilin-Targeting Peptide Improves the Antitumor Efficacy. Mol. Cancer Ther. 2014, 13, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Kotschy, A.; Szlavik, Z.; Murray, J.; Davidson, J.; Maragno, A.L.; Le Toumelin-Braizat, G.; Chanrion, M.; Kelly, G.L.; Gong, J.-N.; Moujalled, D.M.; et al. The MCL1 Inhibitor S63845 Is Tolerable and Effective in Diverse Cancer Models. Nature 2016, 538, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Yap, J.L.; Chen, L.; Lanning, M.E.; Fletcher, S. Expanding the Cancer Arsenal with Targeted Therapies: Disarmament of the Antiapoptotic Bcl-2 Proteins by Small Molecules: Miniperspective. J. Med. Chem. 2017, 60, 821–838. [Google Scholar] [CrossRef] [PubMed]
- Belmar, J.; Fesik, S.W. Small Molecule Mcl-1 Inhibitors for the Treatment of Cancer. Pharmacol. Ther. 2015, 145, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guo, M.; Wei, H.; Chen, Y. Targeting MCL-1 in Cancer: Current Status and Perspectives. J. Hematol. Oncol. 2021, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.L.; Fire, E.; Keating, A.E.; Walensky, L.D. The MCL-1 BH3 Helix Is an Exclusive MCL-1 Inhibitor and Apoptosis Sensitizer. Nat. Chem. Biol. 2010, 6, 595–601. [Google Scholar] [CrossRef]
- Czabotar, P.E.; Lee, E.F.; Van Delft, M.F.; Day, C.L.; Smith, B.J.; Huang, D.C.S.; Fairlie, W.D.; Hinds, M.G.; Colman, P.M. Structural Insights into the Degradation of Mcl-1 Induced by BH3 Domains. Proc. Natl. Acad. Sci. USA 2007, 104, 6217–6222. [Google Scholar] [CrossRef]
- Tron, A.E.; Belmonte, M.A.; Adam, A.; Aquila, B.M.; Boise, L.H.; Chiarparin, E.; Cidado, J.; Embrey, K.J.; Gangl, E.; Gibbons, F.D.; et al. Discovery of Mcl-1-Specific Inhibitor AZD5991 and Preclinical Activity in Multiple Myeloma and Acute Myeloid Leukemia. Nat. Commun. 2018, 9, 5341. [Google Scholar] [CrossRef] [PubMed]
- Caenepeel, S.; Brown, S.P.; Belmontes, B.; Moody, G.; Keegan, K.S.; Chui, D.; Whittington, D.A.; Huang, X.; Poppe, L.; Cheng, A.C.; et al. AMG 176, a Selective MCL1 Inhibitor, Is Effective in Hematologic Cancer Models Alone and in Combination with Established Therapies. Cancer Discov. 2018, 8, 1582–1597. [Google Scholar] [CrossRef] [PubMed]
- Li, K. Interdiction at a Protein-Protein Interface: MCL-1 Inhibitors for Oncology. Bioorg. Med. Chem. Lett. 2021, 32, 127717. [Google Scholar] [CrossRef] [PubMed]
- Bruncko, M.; Wang, L.; Sheppard, G.S.; Phillips, D.C.; Tahir, S.K.; Xue, J.; Erickson, S.; Fidanze, S.; Fry, E.; Hasvold, L.; et al. Structure-Guided Design of a Series of MCL-1 Inhibitors with High Affinity and Selectivity. J. Med. Chem. 2015, 58, 2180–2194. [Google Scholar] [CrossRef] [PubMed]
- Rezaei Araghi, R.; Bird, G.H.; Ryan, J.A.; Jenson, J.M.; Godes, M.; Pritz, J.R.; Grant, R.A.; Letai, A.; Walensky, L.D.; Keating, A.E. Iterative Optimization Yields Mcl-1–Targeting Stapled Peptides with Selective Cytotoxicity to Mcl-1–Dependent Cancer Cells. Proc. Natl. Acad. Sci. USA 2018, 115, E886–E895. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Chen, T.S.; Keating, A.E. Peptide Ligands for Pro-Survival Protein Bfl-1 from Computationally Guided Library Screening. ACS Chem. Biol. 2013, 8, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Gullá, S.; Chen, T.S.; Fire, E.; Grant, R.A.; Keating, A.E. Determinants of BH3 Binding Specificity for Mcl-1 versus Bcl-xL. J. Mol. Biol. 2010, 398, 747–762. [Google Scholar] [CrossRef] [PubMed]
- Foight, G.W.; Ryan, J.A.; Gullá, S.V.; Letai, A.; Keating, A.E. Designed BH3 Peptides with High Affinity and Specificity for Targeting Mcl-1 in Cells. ACS Chem. Biol. 2014, 9, 1962–1968. [Google Scholar] [CrossRef]
- Fire, E.; Gullá, S.V.; Grant, R.A.; Keating, A.E. Mcl-1–Bim Complexes Accommodate Surprising Point Mutations via Minor Structural Changes. Protein Sci. 2010, 19, 507–519. [Google Scholar] [CrossRef]
- Boersma, M.D.; Sadowsky, J.D.; Tomita, Y.A.; Gellman, S.H. Hydrophile Scanning as a Complement to Alanine Scanning for Exploring and Manipulating Protein–Protein Recognition: Application to the Bim BH3 Domain. Protein Sci. 2008, 17, 1232–1240. [Google Scholar] [CrossRef]
- Dutta, S.; Ryan, J.; Chen, T.S.; Kougentakis, C.; Letai, A.; Keating, A.E. Potent and Specific Peptide Inhibitors of Human Pro-Survival Protein Bcl-xL. J. Mol. Biol. 2015, 427, 1241–1253. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.F.; Czabotar, P.E.; Van Delft, M.F.; Michalak, E.M.; Boyle, M.J.; Willis, S.N.; Puthalakath, H.; Bouillet, P.; Colman, P.M.; Huang, D.C.S.; et al. A Novel BH3 Ligand That Selectively Targets Mcl-1 Reveals That Apoptosis Can Proceed without Mcl-1 Degradation. J. Cell Biol. 2008, 180, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Kozakov, D.; Brenke, R.; Comeau, S.R.; Vajda, S. PIPER: An FFT-based Protein Docking Program with Pairwise Potentials. Proteins 2006, 65, 392–406. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.-N.; Fan, S.; Han, J.-G.; Liu, G. Molecular Dynamics Study of Segment Peptides of Bax, Bim, and Mcl-1 BH3 Domain of the Apoptosis-Regulating Proteins Bound to the Anti-Apoptotic Mcl-1 Protein. J. Biomol. Struct. Dyn. 2015, 33, 1067–1081. [Google Scholar] [CrossRef] [PubMed]
- Lobanov, M.I.; Bogatyreva, N.S.; Galzitskaia, O.V. Radius of gyration is indicator of compactness of protein structure. Mol. Biol. 2008, 42, 701–706. [Google Scholar] [CrossRef]
- Nguyen, P.H. Conformational States and Folding Pathways of Peptides Revealed by Principal-independent Component Analyses. Proteins 2007, 67, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Sancho, M.; Leiva, D.; Lucendo, E.; Orzáez, M. Understanding MCL1: From Cellular Function and Regulation to Pharmacological Inhibition. FEBS J. 2022, 289, 6209–6234. [Google Scholar] [CrossRef] [PubMed]
- Banjara, S.; Sa, J.D.; Hinds, M.G.; Kvansakul, M. The Structural Basis of Bcl-2 Mediated Cell Death Regulation in Hydra. Biochem. J. 2020, 477, 3287–3297. [Google Scholar] [CrossRef] [PubMed]
- D’Aguanno, S.; Del Bufalo, D. Inhibition of Anti-Apoptotic Bcl-2 Proteins in Preclinical and Clinical Studies: Current Overview in Cancer. Cells 2020, 9, 1287. [Google Scholar] [CrossRef]
- Lomonosova, E.; Chinnadurai, G. BH3-Only Proteins in Apoptosis and beyond: An Overview. Oncogene 2008, 27, S2–S19. [Google Scholar] [CrossRef]
- Qian, S.; Wei, Z.; Yang, W.; Huang, J.; Yang, Y.; Wang, J. The Role of BCL-2 Family Proteins in Regulating Apoptosis and Cancer Therapy. Front. Oncol. 2022, 12, 985363. [Google Scholar] [CrossRef] [PubMed]
- Sionov, R.V.; Vlahopoulos, S.A.; Granot, Z. Regulation of Bim in Health and Disease. Oncotarget 2015, 6, 23058–23134. [Google Scholar] [CrossRef] [PubMed]
- Fogha, J.; Marekha, B.; De Giorgi, M.; Voisin-Chiret, A.S.; Rault, S.; Bureau, R.; Sopkova-de Oliveira Santos, J. Toward Understanding Mcl-1 Promiscuous and Specific Binding Mode. J. Chem. Inf. Model. 2017, 57, 2885–2895. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, P.; Singaravelu, K. Prediction of Hot Spots at Myeloid Cell Leukemia-1–Inhibitor Interface Using Energy Estimation and Alanine Scanning Mutagenesis. Biochemistry 2018, 57, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
- Petros, A.M.; Olejniczak, E.T.; Fesik, S.W. Structural Biology of the Bcl-2 Family of Proteins. Biochim. Et Biophys. Acta (BBA)—Mol. Cell Res. 2004, 1644, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Parikh, N.; Koshy, C.; Dhayabaran, V.; Perumalsamy, L.R.; Sowdhamini, R.; Sarin, A. The N-Terminus and Alpha-5, Alpha-6 Helices of the pro-Apoptotic Protein Bax, Modulate Functional Interactions with the Anti-Apoptotic Protein Bcl-xL. BMC Cell Biol. 2007, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Beekman, A.M.; Howell, L.A. Small-Molecule and Peptide Inhibitors of the Pro-Survival Protein Mcl-1. ChemMedChem 2016, 11, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Joseph, T.L.; Lane, D.P.; Verma, C.S. Stapled BH3 Peptides against MCL-1: Mechanism and Design Using Atomistic Simulations. PLoS ONE 2012, 7, e43985. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger Release 2022-4: Protein Preparation Wizard; Epik, Schrödinger, LLC: New York, NY, USA, 2022.
- Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and Ligand Preparation: Parameters, Protocols, and Influence on Virtual Screening Enrichments. J. Comput. Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Faraji, N.; Arab, S.S.; Doustmohammadi, A.; Daly, N.L.; Khosroushahi, A.Y. ApInAPDB: A Database of Apoptosis-Inducing Anticancer Peptides. Sci. Rep. 2022, 12, 21341. [Google Scholar] [CrossRef]
- Schrödinger Release 2022-4: BioLuminate; Schrödinger, LLC: New York, NY, USA, 2022.
- Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In Proceedings of the ACM/IEEE SC 2006 Conference (SC’06), Tampa, FL, USA, 11–17 November 2006; p. 43. [Google Scholar]
- Schrödinger Release 2020-4: Desmond Molecular Dynamics System; D.E. Shaw Research: New York, NY, USA, 2020.
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover Chains: The Canonical Ensemble via Continuous Dynamics. J. Chem. Phys. 1992, 97, 2635–2643. [Google Scholar] [CrossRef]
- Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant Pressure Molecular Dynamics Algorithms. J. Chem. Phys. 1994, 101, 4177–4189. [Google Scholar] [CrossRef]
- Tuckerman, M.; Berne, B.J.; Martyna, G.J. Reversible Multiple Time Scale Molecular Dynamics. J. Chem. Phys. 1992, 97, 1990–2001. [Google Scholar] [CrossRef]
- Kräutler, V.; Van Gunsteren, W.F.; Kräutler, P.H. A Fast SHAKE Algorithm to Solve Distance Constraint Equations for Small Molecules in Molecular Dynamics Simulations. J. Comput. Chem. 2001, 22, 501–508. [Google Scholar] [CrossRef]
- David, C.C.; Jacobs, D.J. Principal Component Analysis: A Method for Determining the Essential Dynamics of Proteins. In Protein Dynamics; Livesay, D.R., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2014; Volume 1084, pp. 193–226. ISBN 978-1-62703-657-3. [Google Scholar]
Peptide | PIPE Cluster Size | PIPER Pose Energy (kcal/mol) | Hydrogen Bonds 1 | Hydrophobic Interaction 1 | π-π 1 | π-Cation 1 |
---|---|---|---|---|---|---|
E2gY | 455 | −978.97 | A:LYS234–B:TRP6 A:LEU235–B:TRP6 A:VAL249–B:TRP6 A:VAL249–B:ILE7 A:HIS252–B:ILE7 A:MET231–B:TYR10 A:PHE270–B:TYR10 A:VAL249–B:TYR10 A:VAL253–B:LEU11 A:VAL249–B:LEU11 A:HIS252–B:LEU11 A:LEU267–B:LEU11 A:THR266–B:ILE14 A:LEU267–B:ILE14 A:PHE228–B:ILE14 A:MET231–B:ILE14 A:PHE270–B:ILE14 A:THR266–B:PHE18 A:VAL265–B:PHE18 A:VAL220–B:PHE18 A:VAL216–B:PHE18 A:PHE319–B:PHE18 A:PHE319–B:TYR22 A:PHE318–B:TYR22 | |||
E2gI | 306 | −886.21 | A:MET231–B:MET1 A:ALA227–B:MET1 A:MET231–B:TRP6 A:VAL249–B:TRP6 A:MET231–B:MET1 A:ALA227–B:MET1 A:MET231–B:ILE10 A:THR266–B:ILE10 A:LEU267–B:ILE10 A:PHE228–B:ILE10 A:MET231–B:ILE10 A:Val253–B:LEU11 A:THR266–B:ILE14 A:THR266–B:ILE14 A:LEU267–B:ILE14 A:PHE318–B:PHE18 A:TRP261–B:PHE18 A:PHE318–B:TYR21 A:PHE319–B:TYR21 A:PHE318–B:TYR22 A:MET231–B:TRP6 A:VAL249–B:TRP6 A:PHE270–B:TRP6 | A:PHE318–B:TYR21 | A:HIS224–B:ARG13 | |
XXA F3dI | 304 | −840.14 | A:ARG263–B:TYR6 A:THR266–B:GLU16 | A:PHE318–B:PHE17 A:HIS252–B:PRO2 A:PHE319–B:TYR20 A:VAL216–B:TYR20 A:LYS234–B:ILE4 A:VAL249–B:TRP5 A:VAL253–B:TRP5 A:MET250–B:TRP5 A:LEU267–B:TRP5 A:PHE270–B:TRP5 A:VAL253–B:TYR6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhammadi, S.H.A.; Baby, B.; Antony, P.; Jobe, A.; Humaid, R.S.M.; Alhammadi, F.J.A.; Vijayan, R. Modeling the Binding of Anticancer Peptides and Mcl-1. Int. J. Mol. Sci. 2024, 25, 6529. https://doi.org/10.3390/ijms25126529
Alhammadi SHA, Baby B, Antony P, Jobe A, Humaid RSM, Alhammadi FJA, Vijayan R. Modeling the Binding of Anticancer Peptides and Mcl-1. International Journal of Molecular Sciences. 2024; 25(12):6529. https://doi.org/10.3390/ijms25126529
Chicago/Turabian StyleAlhammadi, Shamsa Husain Ahmed, Bincy Baby, Priya Antony, Amie Jobe, Raghad Salman Mohammed Humaid, Fatema Jumaa Ahmed Alhammadi, and Ranjit Vijayan. 2024. "Modeling the Binding of Anticancer Peptides and Mcl-1" International Journal of Molecular Sciences 25, no. 12: 6529. https://doi.org/10.3390/ijms25126529
APA StyleAlhammadi, S. H. A., Baby, B., Antony, P., Jobe, A., Humaid, R. S. M., Alhammadi, F. J. A., & Vijayan, R. (2024). Modeling the Binding of Anticancer Peptides and Mcl-1. International Journal of Molecular Sciences, 25(12), 6529. https://doi.org/10.3390/ijms25126529