Cinnamic Acid, Perillic Acid, and Tryptophan Metabolites Differentially Regulate Ion Transport and Serotonin Metabolism and Signaling in the Mouse Ileum In Vitro
Abstract
:1. Introduction
2. Results
2.1. Effects of Different Phytochemicals and Trp Metabolites on the Short-Circuit Current of the Mouse Ileum
2.2. Effects of Different Phytochemicals and Trp Metabolites on the Gene Expression and Protein Abundance of Key Enzymes Involved in 5-HT Metabolism in the Mouse Ileum
2.3. Effects of Different Phytochemicals and Trp Metabolites on the Gene Expression of Htr and Their Ratios in the Mouse Ileum
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Animals
4.3. Ussing Chamber Experiments
4.4. RNA Extraction and Quantitative Real-Time PCR Analysis
4.5. Western Blot Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koh, A.; Backhed, F. From association to causality: The role of the gut microbiota and its functional products on host metabolism. Mol. Cell 2020, 78, 584–596. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, G.R.; Chang, P.V. Deciphering the chemical lexicon of host-gut microbiota interactions. Trends Pharmacol. Sci. 2019, 40, 430–445. [Google Scholar] [CrossRef] [PubMed]
- Ruigrok, R.; Weersma, R.K.; Vich Vila, A. The emerging role of the small intestinal microbiota in human health and disease. Gut Microbes 2023, 15, 2201155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhu, S.; Ma, N.; Johnston, L.J.; Wu, C.; Ma, X. Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation. Med. Res. Rev. 2021, 41, 1061–1088. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, Z.; Xu, C.; Kan, S.; Chen, D. Disturbances of the gut microbiota and microbiota-derived metabolites in inflammatory bowel disease. Nutrients 2022, 14, 5140. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Ding, Y.; Saeidi, N.; Choi, M.; Sridharan, G.V.; Sherr, D.H.; Yarmush, M.L.; Alaniz, R.C.; Jayaraman, A.; Lee, K. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep. 2019, 28, 3285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shi, L.; Wang, N.; Li, Q.; Zhang, L.; Han, N.; Yan, T.; Ren, D.; Zhang, B.; Zhao, Y.; et al. Gut bacterial indole-3-acetic acid induced immune promotion mediates preventive effects of fu brick tea polyphenols on experimental colitis. J. Agric. Food Chem. 2023, 71, 1201–1213. [Google Scholar] [CrossRef] [PubMed]
- Zelante, T.; Iannitti, R.G.; Cunha, C.; De Luca, A.; Giovannini, G.; Pieraccini, G.; Zecchi, R.; D’Angelo, C.; Massi-Benedetti, C.; Fallarino, F.; et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013, 39, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.A.; Fu, J.; Chang, P.V. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA 2020, 117, 19376–19387. [Google Scholar] [CrossRef]
- Paudel, S.; Mishra, N.; Agarwal, R. Phytochemicals as immunomodulatory molecules in cancer therapeutics. Pharmaceuticals 2023, 16, 1652. [Google Scholar] [CrossRef]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86, E140–E148. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.R.; Davoodi, H. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet. Res. Commun. 2011, 35, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, C.; Badgujar, P.C.; Gundev, P.; Upadhyay, A. Review of toxicological assessment of d-limonene, a food and cosmetics additive. Food Chem. Toxicol. 2018, 120, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Raphael, T.J.; Kuttan, G. Immunomodulatory activity of naturally occurring monoterpenes carvone, limonene, and perillic acid. Immunopharmacol. Immunotoxicol. 2003, 25, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Pratheeshkumar, P.; Raphael, T.J.; Kuttan, G. Protective role of perillic acid against radiation-induced oxidative stress, cytokine profile, DNA damage, and intestinal toxicity in mice. J. Environ. Pathol. Toxicol. Oncol. 2010, 29, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, H.; You, Y.; Zhong, G.; Ruan, Z.; Liao, J.; Zhang, H.; Pan, J.; Tang, Z.; Hu, L. Multi-omics reveals the protective effects of curcumin against afb1-induced oxidative stress and inflammatory damage in duckling intestines. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2024, 276, 109815. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; He, J.; Ahmad, H.; Shen, M.; Zhao, Y.; Gan, Z.; Zhang, L.; Zhong, X.; Wang, C.; Wang, T. Dietary curcumin supplementation increases antioxidant capacity, upregulates nrf2 and hmox1 levels in the liver of piglet model with intrauterine growth retardation. Nutrients 2019, 11, 2978. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z.; Wei, W.; Wu, J.; Zhao, Y.; Zhang, L.; Wang, T.; Zhong, X. Resveratrol and curcumin improve intestinal mucosal integrity and decrease m(6)a rna methylation in the intestine of weaning piglets. ACS Omega 2019, 4, 17438–17446. [Google Scholar] [CrossRef]
- Alam, M.A.; Subhan, N.; Hossain, H.; Hossain, M.; Reza, H.M.; Rahman, M.M.; Ullah, M.O. Hydroxycinnamic acid derivatives: A potential class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab. 2016, 13, 27. [Google Scholar] [CrossRef]
- Yazdi, M.; Nafari, A.; Azadpour, M.; Alaee, M.; Hadipour Moradi, F.; Choghakhori, R.; Hormozi, M.; Ahmadvand, H. Protective effects of cinnamic acid against hyperglycemia induced oxidative stress and inflammation in hepg2 cells. Rep. Biochem. Mol. Biol. 2023, 12, 1–12. [Google Scholar] [CrossRef]
- Lee, A.G.; Kang, S.; Im, S.; Pak, Y.K. Cinnamic acid attenuates peripheral and hypothalamic inflammation in high-fat diet-induced obese mice. Pharmaceutics 2022, 14, 1675. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, T.; Koci, M.; Wang, Y.; Fu, Y.; Ma, M.; Ma, Q.; Zhao, L. Chlorogenic acid alleviated afb1-induced hepatotoxicity by regulating mitochondrial function, activating nrf2/ho-1, and inhibiting noncanonical nf-kappab signaling pathway. Antioxidants 2023, 12, 2027. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Chen, P.; Wang, Y.; Xu, L.; Zhang, K.; Zhao, J.; Liu, H. Chlorogenic acid protects against intestinal inflammation and injury by inactivating the mtdna-cgas-sting signaling pathway in broilers under necrotic enteritis challenge. Poult. Sci. 2023, 103, 103274. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xiao, G.; Cheng, P.; Zeng, J.; Liu, Y. Protective application of chinese herbal compounds and formulae in intestinal inflammation in humans and animals. Molecules 2023, 28, 6811. [Google Scholar] [CrossRef] [PubMed]
- Kendig, D.M.; Grider, J.R. Serotonin and colonic motility. Neurogastroenterol. Motil. 2015, 27, 899–905. [Google Scholar] [CrossRef]
- Gill, R.K.; Saksena, S.; Tyagi, S.; Alrefai, W.A.; Malakooti, J.; Sarwar, Z.; Turner, J.R.; Ramaswamy, K.; Dudeja, P.K. Serotonin inhibits na+/h+ exchange activity via 5-ht4 receptors and activation of pkc alpha in human intestinal epithelial cells. Gastroenterology 2005, 128, 962–974. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, O. 5-hydroxytryptamine, enterotoxins, and intestinal fluid secretion. Gastroenterology 1998, 115, 1009–1012. [Google Scholar] [CrossRef] [PubMed]
- Keszthelyi, D.; Troost, F.J.; Masclee, A.A. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol. Motil. 2009, 21, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.H.; Wang, H.; Denou, E.; Ghia, J.E.; Rossi, L.; Fontes, M.E.; Bernier, S.P.; Shajib, M.S.; Banskota, S.; Collins, S.M.; et al. Modulation of gut microbiota composition by serotonin signaling influences intestinal immune response and susceptibility to colitis. Cell Mol. Gastroenterol. Hepatol. 2019, 7, 709–728. [Google Scholar] [CrossRef]
- Wang, B.; Sun, S.; Liu, M.; Chen, H.; Liu, N.; Wu, Z.; Wu, G.; Dai, Z. Dietary l-tryptophan regulates colonic serotonin homeostasis in mice with dextran sodium sulfate-induced colitis. J. Nutr. 2020, 150, 1966–1976. [Google Scholar] [CrossRef]
- Hao, Y.; Jiang, L.; Han, D.; Si, D.; Sun, Z.; Wu, Z.; Dai, Z. Limosilactobacillus mucosae and lactobacillus amylovorus protect against experimental colitis via upregulation of colonic 5-hydroxytryptamine receptor 4 and transforming growth factor-beta2. J. Nutr. 2023, 153, 2512–2522. [Google Scholar] [CrossRef] [PubMed]
- Fabà, L.; de Groot, N.; Ramis, G.; Cabrera-Gómez, C.G.; Doelman, J. Serotonin receptors and their association with the immune system in the gastrointestinal tract of weaning piglets. Porc. Health Manag. 2022, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.M.; Young, R.L.; Leong, L.; Rogers, G.B.; Spencer, N.J.; Jessup, C.F.; Keating, D.J. The diverse metabolic roles of peripheral serotonin. Endocrinology 2017, 158, 1049–1063. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, Y.; Williams, B.B.; Battaglioli, E.J.; Whitaker, W.R.; Till, L.; Grover, M.; Linden, D.R.; Akiba, Y.; Kandimalla, K.K.; Zachos, N.C.; et al. Gut microbiota-produced tryptamine activates an epithelial g-protein-coupled receptor to increase colonic secretion. Cell Host Microbe 2018, 23, 775–785 e775. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Han, D.; Hao, Y.; Song, Z.; Sun, Z.; Dai, Z. Linking serotonin homeostasis to gut function: Nutrition, gut microbiota and beyond. Crit. Rev. Food Sci. Nutr. 2023, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.L.; Wu, G.; Zhu, W.Y. Amino acid metabolism in intestinal bacteria: Links between gut ecology and host health. Front. Biosci. 2011, 16, 1768–1786. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Jiang, L.; Wu, Z.; Dai, Z. L-tryptophan differentially regulated glucose and amino acid transporters in the small intestine of rat challenged with lipopolysaccharide. Animals 2022, 12, 3045. [Google Scholar] [CrossRef]
- Reigstad, C.S.; Salmonson, C.E.; Rainey, J.F., 3rd; Szurszewski, J.H.; Linden, D.R.; Sonnenburg, J.L.; Farrugia, G.; Kashyap, P.C. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015, 29, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Z.H.; Zabed, H.M.; Yun, J.; Zhang, G.; Qi, X. An insight into the roles of dietary tryptophan and its metabolites in intestinal inflammation and inflammatory bowel disease. Mol. Nutr. Food Res. 2021, 65, e2000461. [Google Scholar] [CrossRef]
- Yu, K.; Li, Q.; Sun, X.; Peng, X.; Tang, Q.; Chu, H.; Zhou, L.; Wang, B.; Zhou, Z.; Deng, X.; et al. Bacterial indole-3-lactic acid affects epithelium-macrophage crosstalk to regulate intestinal homeostasis. Proc. Natl. Acad. Sci. USA 2023, 120, e2309032120. [Google Scholar] [CrossRef]
- Ben Shahar, Y.; Sukhotnik, I.; Bitterman, N.; Pollak, Y.; Bejar, J.; Chepurov, D.; Coran, A.; Bitterman, A. Effect of n-acetylserotonin on intestinal recovery following intestinal ischemia-reperfusion injury in a rat. Eur. J. Pediatr. Surg. 2016, 26, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Proietti, E.; Pauwels, R.W.M.; de Vries, A.C.; Orecchini, E.; Volpi, C.; Orabona, C.; Peppelenbosch, M.P.; Fuhler, G.M.; Mondanelli, G. Modulation of indoleamine 2,3-dioxygenase 1 during inflammatory bowel disease activity in humans and mice. Int. J. Tryptophan Res. 2023, 16, 11786469231153109. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Jeong, S.; Kim, J.; Ju, S.; Im, E.; Heo, G.; Park, S.; Yoo, J.W.; Lee, J.; Yoon, I.S.; et al. N-acetylserotonin is an oxidation-responsive activator of nrf2 ameliorating colitis in rats. J. Pineal Res. 2023, 74, e12835. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, A.M.; Pacheco, A.R.; Henrick, B.M.; Taft, D.; Xu, G.; Huda, M.N.; Mishchuk, D.; Goodson, M.L.; Slupsky, C.; Barile, D.; et al. Indole-3-lactic acid associated with bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells. BMC Microbiol. 2020, 20, 357. [Google Scholar] [CrossRef] [PubMed]
- Knopp, F.M.; da Rocha Olivieri de Barros, R.; Drummond, B.S.; Siani, A.C.; Ferrara, M.A.; Bon, E.P.S. Production of perillic acid from orange essential oil by yarrowia lipolytica using a top-aerated bioreactor. Braz. J. Microbiol. 2023, 54, 2663–2670. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi de Alvarenga, J.F.; Lei Preti, C.; Santos Martins, L.; Noronha Hernandez, G.; Genaro, B.; Lamesa Costa, B.; Gieseler Dias, C.; Purgatto, E.; Fiamoncini, J. Identification of d-limonene metabolites by lc-hrms: An exploratory metabolic switching approach in a mouse model of diet-induced obesity. Metabolites 2022, 12, 1246. [Google Scholar] [CrossRef] [PubMed]
- Grzelczyk, J.; Budryn, G.; Peña-García, J.; Szwajgier, D.; Gałązka-Czarnecka, I.; Oracz, J.; Pérez-Sánchez, H. Evaluation of the inhibition of monoamine oxidase a by bioactive coffee compounds protecting serotonin degradation. Food Chem. 2021, 348, 129108. [Google Scholar] [CrossRef] [PubMed]
- Salah, A.S.; Ahmed-Farid, O.A.; Nassan, M.A.; El-Tarabany, M.S. Dietary curcumin improves energy metabolism, brain monoamines, carcass traits, muscle oxidative stability and fatty acid profile in heat-stressed broiler chickens. Antioxidants 2021, 10, 1265. [Google Scholar] [CrossRef]
- Kabra, A.; Garg, R.; Brimson, J.; Živković, J.; Almawash, S.; Ayaz, M.; Nawaz, A.; Hassan, S.S.U.; Bungau, S. Mechanistic insights into the role of plant polyphenols and their nano-formulations in the management of depression. Front. Pharmacol. 2022, 13, 1046599. [Google Scholar] [CrossRef]
- Arbabi Jahan, A.; Rad, A.; Ghanbarabadi, M.; Amin, B.; Mohammad-Zadeh, M. The role of serotonin and its receptors on the anticonvulsant effect of curcumin in pentylenetetrazol-induced seizures. Life Sci. 2018, 211, 252–260. [Google Scholar] [CrossRef]
- Liu, Y.; Song, M.; Bai, H.; Wang, C.; Wang, F.; Yuan, Q. Curcumin improves the egg quality, antioxidant activity, and intestinal microbiota of quails during the late laying period. Poult. Sci. 2024, 103, 103233. [Google Scholar] [CrossRef] [PubMed]
- Robinson, G.I.; Li, D.; Wang, B.; Zahoruiko, Y.; Gerasymchuk, M.; Hudson, D.; Kovalchuk, O.; Kovalchuk, I. Anti-inflammatory effects of serotonin receptor and transient receptor potential channel ligands in human small intestinal epithelial cells. Curr. Issues Mol. Biol. 2023, 45, 6743–6774. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wu, S.; Li, J.; Wang, R.; Xie, X.; Yu, X.; Pan, J.; Xu, Y.; Zheng, L. The effect of curcumin on the brain-gut axis in rat model of irritable bowel syndrome: Involvement of 5-ht-dependent signaling. Metab. Brain Dis. 2015, 30, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Renner, U.; Zeug, A.; Woehler, A.; Niebert, M.; Dityatev, A.; Dityateva, G.; Gorinski, N.; Guseva, D.; Abdel-Galil, D.; Frohlich, M.; et al. Heterodimerization of serotonin receptors 5-ht1a and 5-ht7 differentially regulates receptor signalling and trafficking. J. Cell Sci. 2012, 125, 2486–2499. [Google Scholar] [CrossRef] [PubMed]
- Rodnyy, A.Y.; Kondaurova, E.M.; Bazovkina, D.V.; Kulikova, E.A.; Ilchibaeva, T.V.; Kovetskaya, A.I.; Baraboshkina, I.A.; Bazhenova, E.Y.; Popova, N.K.; Naumenko, V.S. Serotonin 5-ht(7) receptor overexpression in the raphe nuclei area produces antidepressive effect and affects brain serotonin system in male mice. J. Neurosci. Res. 2022, 100, 1506–1523. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Yin, Y.; Li, T.; Huang, R.; Xie, M.; Wu, Z.; Wu, G. Use of the ussing chamber technique to study nutrient transport by epithelial tissues. Front. Biosci. 2013, 18, 1266–1274. [Google Scholar] [CrossRef]
- Clarke, L.L. A guide to ussing chamber studies of mouse intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G1151–G1166. [Google Scholar] [CrossRef] [PubMed]
- Cooke, H.J.; Wang, Y.Z.; Frieling, T.; Wood, J.D. Neural 5-hydroxytryptamine receptors regulate chloride secretion in guinea pig distal colon. Am. J. Physiol. 1991, 261, G833–G840. [Google Scholar] [CrossRef]
- Sikander, A.; Rana, S.V.; Prasad, K.K. Role of serotonin in gastrointestinal motility and irritable bowel syndrome. Clin. Chim. Acta 2009, 403, 47–55. [Google Scholar] [CrossRef]
- Wang, Y.; Sims, C.E.; Allbritton, N.L. Enterochromaffin cell-enriched monolayer platform for assaying serotonin release from human primary intestinal cells. Anal. Chem. 2020, 92, 12330–12337. [Google Scholar] [CrossRef]
- Brighton, C.A.; Rievaj, J.; Kuhre, R.E.; Glass, L.L.; Schoonjans, K.; Holst, J.J.; Gribble, F.M.; Reimann, F. Bile acids trigger glp-1 release predominantly by accessing basolaterally located g protein-coupled bile acid receptors. Endocrinology 2015, 156, 3961–3970. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Feng, D.; Zhang, Y.; Dahanayaka, S.; Li, X.; Yao, K.; Wang, J.; Wu, Z.; Dai, Z.; Wu, G. Regulation of leucine catabolism by metabolic fuels in mammary epithelial cells. Amino Acids 2012, 43, 2179–2189. [Google Scholar] [CrossRef] [PubMed]
Components | Concentration (μM) | p Value | ||
---|---|---|---|---|
0 | 10 | 100 | ||
Forskolin | 1.00 ± 0.11 | 1.68 ± 0.20 | ND | <0.05 |
Phytochemicals | ||||
CA | 1.00 ± 0.14 | ND | 0.81 ± 0.08 | 0.52 |
CGA | 1.00 ± 0.01 | 0.99 ± 0.02 | 0.87 ± 0.01 | 0.12 |
Curcumin | 1.00± 0.03 | 1.05 ± 0.36 | 0.76 ± 0.08 | 0.19 |
MurA | 1.00 ± 0.18 | 0.85 ± 0.14 | 1.07 ± 0.36 | 0.51 |
PA | 1.00 ± 0.13 | 0.76 ± 0.17 | 0.63 ± 0.12 | 0.14 |
VMA | 1.00 ± 0.15 a | 0.57 ± 0.10 ab | 0.41 ± 0.01 b | 0.05 |
Trp metabolites | ||||
IAld | 1.00 ± 0.10 | 0.97 ± 0.08 | ND | 0.85 |
ILA | 1.00 ± 0.05 | ND | 0.93 ± 0.24 | 0.79 |
NAS | 1.00 ± 0.24 | 0.97 ± 0.23 | 1.06 ± 0.25 | 0.80 |
2-Oxindole | 1.00 ± 0.09 | 0.99 ± 0.14 | 1.02 ± 0.04 | 0.90 |
Components | Molecular Structure | Molecular Formula | Molecular Weight (g/mol) | LogP | Melting Point (°C) |
---|---|---|---|---|---|
Forskolin | C22H34O7 | 410.5 | 1 | 230~232 | |
Phytochemicals | |||||
CA | C9H8O2 | 148.16 | 2.13 | 133 | |
CGA | C16H18O9 | 354.31 | − 0.4 | 205~209 | |
Curcumin | C21H20O6 | 368.4 | 3.2 | 183 | |
MurA | C9H17NO7 | 251.23 | − 4.6 | 153 | |
PA | C10H14O2 | 166.22 | 1.4 | 60 | |
VMA | C9H10O5 | 198.17 | − 0.2 | 132~134 | |
Trp metabolites | |||||
IAld | C10H9NO | 159.18 | 1.3 | N/A | |
ILA | C11H11NO3 | 205.21 | 1.5 | 145~146 | |
NAS | C12H14N2O2 | 218.25 | 0.5 | 120~122 | |
2-Oxindole | C8H7NO | 133.15 | 1.2 | 123~128 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Hao, Y.; Li, Q.; Dai, Z. Cinnamic Acid, Perillic Acid, and Tryptophan Metabolites Differentially Regulate Ion Transport and Serotonin Metabolism and Signaling in the Mouse Ileum In Vitro. Int. J. Mol. Sci. 2024, 25, 6694. https://doi.org/10.3390/ijms25126694
Jiang L, Hao Y, Li Q, Dai Z. Cinnamic Acid, Perillic Acid, and Tryptophan Metabolites Differentially Regulate Ion Transport and Serotonin Metabolism and Signaling in the Mouse Ileum In Vitro. International Journal of Molecular Sciences. 2024; 25(12):6694. https://doi.org/10.3390/ijms25126694
Chicago/Turabian StyleJiang, Lili, Youling Hao, Qianjun Li, and Zhaolai Dai. 2024. "Cinnamic Acid, Perillic Acid, and Tryptophan Metabolites Differentially Regulate Ion Transport and Serotonin Metabolism and Signaling in the Mouse Ileum In Vitro" International Journal of Molecular Sciences 25, no. 12: 6694. https://doi.org/10.3390/ijms25126694
APA StyleJiang, L., Hao, Y., Li, Q., & Dai, Z. (2024). Cinnamic Acid, Perillic Acid, and Tryptophan Metabolites Differentially Regulate Ion Transport and Serotonin Metabolism and Signaling in the Mouse Ileum In Vitro. International Journal of Molecular Sciences, 25(12), 6694. https://doi.org/10.3390/ijms25126694