The Role of the Immune System in the Course of Hashimoto’s Thyroiditis: The Current State of Knowledge
Abstract
:1. Introduction
2. Epidemiology, Etiology, and Pathogenesis of Hashimoto’s Thyroiditis
2.1. Genetic Factors
2.2. Environmental Factors: Nutrition
2.3. Gut Dysbiosis
3. Diagnosis
4. Clinical Presentation and Treatment
5. Health Risks and Long-Term Effects
Other Autoimmune Comorbidities
6. Mechanism of Thyroid Cell Destruction
6.1. T Lymphocytes
6.1.1. The Mechanism of T-Lymphocyte Involvement in Hashimoto’s Thyroiditis
6.1.2. The Involvement of Th1 and Th17 in the Pathogenesis of Hashimoto’s Thyroiditis
6.1.3. The Involvement of Th22 and Treg in the Pathogenesis of Hashimoto’s Thyroiditis
6.1.4. The Involvement of Tfh in the Pathogenesis of Hashimoto’s Thyroiditis
6.1.5. The Involvement of Tc in the Pathogenesis of Hashimoto’s Thyroiditis
6.2. B Lymphocytes
6.3. Natural Killer Cells
7. Importance of Apoptosis in the Pathogenesis of Hashimoto’s Thyroiditis
The Regulation of Apoptosis
8. Inflammation in Hashimoto’s Thyroiditis
8.1. Antibodies
8.2. Highly Inflammatory Cell Death—Pyroptosis
9. Research Methods and Techniques
Author Contributions
Funding
Conflicts of Interest
References
- Kristensen, B. Regulatory B and T cell responses in patients with autoimmune thyroid disease and healthy controls. Dan. Med. J. 2016, 63, B5177. [Google Scholar] [PubMed]
- Ihnatowicz, P.; Drywień, M.; Wątor, P.; Wojsiat, J. The importance of nutritional factors and dietary management of Hashimoto’s thyroiditis. Ann. Agric. Environ. Med. 2020, 27, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Huang, L.; Zhang, L. Helper T Cell 17 and Regulatory T Cell Levels in Peripheral Blood of Newly Diagnosed Patients with Autoimmune Thyroid Disease: A Meta-Analysis. Horm. Metab. Res. 2023, 55, 40–50, Erratum in Horm. Metab. Res. 2023, 55, e2. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Viedma, M.; Vergaño-Salazar, J.G.; Pastenes, L.; D’Afonseca, V. Simulation Model for Hashimoto Autoimmune Thyroiditis Disease. Endocrinology 2021, 162, bqab190. [Google Scholar] [CrossRef] [PubMed]
- Klubo-Gwiezdzinska, J.; Wartofsky, L. Hashimoto thyroiditis: An evidence-based guide to etiology, diagnosis and treatment. Pol. Arch. Intern. Med. 2022, 132, 16222. [Google Scholar] [CrossRef] [PubMed]
- Ajjan, R.A.; Weetman, A.P. The Pathogenesis of Hashimoto’s Thyroiditis: Further Developments in our Understanding. Horm. Metab. Res. 2015, 47, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Wang, S.; Fan, Z. Pathogenesis Markers of Hashimoto’s Disease—A Mini Review. Front. Biosci. 2022, 27, 297. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, A.A.; Karaźniewicz-Łada, M.; Filipowicz, D.; Ruchała, M.; Główka, F.K. Metabolic Characteristics of Hashimoto’s Thyroiditis Patients and the Role of Microelements and Diet in the Disease Management—An Overview. Int. J. Mol. Sci. 2022, 23, 6580. [Google Scholar] [CrossRef] [PubMed]
- Gąbka, I.; Dalmata, W.; Gendek, K.; Dąbrowski, J.; Kozłowska, A.; Korzeniowska, A.; Załęska, N.; Ziółkiewicz, A. Hashimoto’s disease—The role of factors and diet in the course of the disease. J. Educ. Health Sport 2023, 17, 153–164. [Google Scholar] [CrossRef]
- Vargas-Uricoechea, H. Molecular Mechanisms in Autoimmune Thyroid Disease. Cells 2023, 12, 918. [Google Scholar] [CrossRef] [PubMed]
- Batóg, G.; Dołoto, A.; Bąk, E.; Piątkowska-Chmiel, I.; Krawiec, P.; Pac-Kożuchowska, E.; Herbet, M. The interplay of oxidative stress and immune dysfunction in Hashimoto’s thyroiditis and polycystic ovary syndrome: A comprehensive review. Front. Immunol. 2023, 14, 1211231. [Google Scholar] [CrossRef] [PubMed]
- Kosiak, W.; Piskunowicz, M.; Świętoń, D.; Batko, T.; Kaszubowski, M. An additional ultrasonographic sign of Hashimoto’s lymphocytic thyroiditis in children. J. Ultrason. 2015, 15, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Sreedharan, S.; Khadilkar, U.N.; Deviprasad, D.; Kamath, M.P.; Bhojwani, K.M.; Alva, A. Clinical, biochemical & cytomorphologic study on Hashimoto’s thyroiditis. Indian J. Med. Res. 2014, 140, 729–735. [Google Scholar] [PubMed]
- Yuan, J.; Qi, S.; Zhang, X.; Lai, H.; Li, X.; Xiaoheng, C.; Li, Z.; Yao, S.; Ding, Z. Local symptoms of Hashimoto’s thyroiditis: A systematic review. Front. Endocrinol. 2023, 13, 1076793. [Google Scholar] [CrossRef] [PubMed]
- Groenewegen, K.L.; Mooij, C.F.; van Trotsenburg, A.S.P. Persisting symptoms in patients with Hashimoto’s disease despite normal thyroid hormone levels: Does thyroid autoimmunity play a role? A systematic review. J. Transl. Autoimmun. 2021, 4, 100101. [Google Scholar] [CrossRef] [PubMed]
- Staruszkiewicz, M.; Pituch-Noworolska, A.; Skoczen, S. SARS-CoV-2 and thyroid diseases. J. Transl. Autoimmun. 2023, 7, 100214. [Google Scholar] [CrossRef] [PubMed]
- Szaryńska, M. Comment on: Molecular Functions of Thyroid Hormone Signaling in Regulation of Cancer Progression and Anti-Apoptosis. Int. J. Mol. Sci. 2020, 21, 2684. [Google Scholar] [CrossRef] [PubMed]
- Wawrzyniak, S.; Rakoca, M.; Kułakowska, A.; Bartosik-Psujek, H.; Koziarska, D.; Kapica-Topczewska, K.; Kubicka-Bączyk, K.; Adamczyk-Sowa, M. Multiple sclerosis and autoimmune diseases—A case control study. Neurol. Neurochir. Pol. 2023, 57, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Morawiec-Szymonik, E.; Foltyn, W.; Marek, B.; Kos-Kudła, B.; Kajdaniuk, D. Pernicious anaemia and endocrine glands antibodies. Endokrynol. Pol. 2019, 70, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Betterle, C.; Furmaniak, J.; Sabbadin, C.; Scaroni, C.; Presotto, F. Type 3 autoimmune polyglandular syndrome (APS-3) or type 3 multiple autoimmune syndrome (MAS-3): An expanding galaxy. J. Endocrinol. Investig. 2023, 46, 643–665. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, K.; Dudek, P.; Stasiek, M.; Suchta, K. Autoimmune polyendocrine syndromes associated with autoimmune rheumatic diseases. Reumatologia 2023, 61, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Ashok, T.; Patni, N.; Fatima, M.; Lamis, A.; Siddiqui, S.W. Celiac Disease and Autoimmune Thyroid Disease: The Two Peas in a Pod. Cureus 2022, 14, e26243. [Google Scholar] [CrossRef] [PubMed]
- Kayar, Y.; Dertli, R. Association of autoimmune diseases with celiac disease and its risk factors. Pak. J. Med. Sci. 2019, 35, 1548–1553. [Google Scholar] [CrossRef] [PubMed]
- Szeliga, A.; Calik-Ksepka, A.; Maciejewska-Jeske, M.; Grymowicz, M.; Smolarczyk, K.; Kostrzak, A.; Smolarczyk, R.; Rudnicka, E.; Meczekalski, B. Autoimmune Diseases in Patients with Premature Ovarian Insufficiency-Our Current State of Knowledge. Int. J. Mol. Sci. 2021, 22, 2594. [Google Scholar] [CrossRef] [PubMed]
- Szczuko, M.; Syrenicz, A.; Szymkowiak, K.; Przybylska, A.; Szczuko, U.; Pobłocki, J.; Kulpa, D. Doubtful Justification of the Gluten-Free Diet in the Course of Hashimoto’s Disease. Nutrients 2022, 14, 1727. [Google Scholar] [CrossRef] [PubMed]
- Mikosch, P.; Aistleitner, A.; Oehrlein, M.; Trifina-Mikosch, E. Hashimoto’s thyroiditis and coexisting disorders in correlation with HLA status-an overview. Wien. Med. Wochenschr. 2023, 173, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Luty, J.; Ruckemann-Dziurdzińska, K.; Witkowski, J.M.; Bryl, E. Immunological aspects of autoimmune thyroid disease—Complex interplay between cells and cytokines. Cytokine 2019, 116, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Popko, K.; Górska, E. The role of natural killer cells in pathogenesis of autoimmune diseases. Cent. Eur. J. Immunol. 2015, 40, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Su, Y.; Jiao, A.; Wang, X.; Zhang, B. T cells in health and disease. Signal Transduct. Target. Ther. 2023, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Rydzewska, M.; Jaromin, M.; Pasierowska, I.E.; Stożek, K.; Bossowski, A. Role of the T and B lymphocytes in pathogenesis of autoimmune thyroid diseases. Thyroid Res. 2018, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Y.; Zhao, N.; Cui, X.; Huang, M.; Li, Y.; Shan, Z.; Teng, W. IL-34 Expression Is Reduced in Hashimoto’s Thyroiditis and Associated With Thyrocyte Apoptosis. Front. Endocrinol. 2018, 9, 629. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Yang, Y.; Zhang, Y.; Song, S.; Zhang, L.; Ma, L.; Yang, T.; Liu, H. Macrophage migration inhibitory factor interacting with Th17 cells may be involved in the pathogenesis of autoimmune damage in Hashimoto’s thyroiditis. Mediat. Inflamm. 2015, 2015, 621072. [Google Scholar] [CrossRef] [PubMed]
- Janyga, S.; Kajdaniuk, D.; Czuba, Z.; Ogrodowczyk-Bobik, M.; Urbanek, A.; Kos-Kudła, B.; Marek, B. Interleukin (IL)-23, IL-31, and IL-33 Play a Role in the Course of Autoimmune Endocrine Diseases. Endocr. Metab. Immune Disord. Drug Targets 2023, 24, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Vitales-Noyola, M.; Ramos-Levi, A.M.; Martínez-Hernández, R.; Serrano-Somavilla, A.; Sampedro-Nuñez, M.; González-Amaro, R.; Marazuela, M. Pathogenic Th17 and Th22 cells are increased in patients with autoimmune thyroid disorders. Endocrine 2017, 57, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Pyzik, A.; Grywalska, E.; Matyjaszek-Matuszek, B.; Roliński, J. Immune disorders in Hashimoto’s thyroiditis: What do we know so far? J. Immunol. Res. 2015, 2015, 979167. [Google Scholar] [CrossRef] [PubMed]
- Mazzieri, A.; Montanucci, P.; Basta, G.; Calafiore, R. The role behind the scenes of Tregs and Th17s in Hashimoto’s thyroiditis: Toward a pivotal role of FOXP3 and BACH2. Front. Immunol. 2022, 13, 1098243. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wang, Z.; Liu, X.; Wei, L.; Li, S.; Zheng, X.; Yang, T.; Xu, X. The Frequency of Intrathyroidal Follicular Helper T Cells Varies with the Progression of Graves’ Disease and Hashimoto’s Thyroiditis. J. Immunol. Res. 2022, 2022, 4075522. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, L.B. The immune system. Essays Biochem. 2016, 60, 275–301. [Google Scholar] [CrossRef] [PubMed]
- Egwuagu, C.E.; Yu, C.R. Interleukin 35-Producing B Cells (i35-Breg): A New Mediator of Regulatory B-Cell Functions in CNS Autoimmune Diseases. Crit. Rev. Immunol. 2015, 35, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.J.; Rihanek, M.; Coleman, B.M.; Gottlieb, P.A.; Sarapura, V.D.; Cambier, J.C. Activation of thyroid antigen-reactive B cells in recent onset autoimmune thyroid disease patients. J. Autoimmun. 2018, 89, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Ralchev, N.R.; Markovski, A.M.; Yankova, I.A.; Manoylov, I.K.; Doytchinova, I.A.; Mihaylova, N.M.; Shinkov, A.D.; Tchorbanov, A.I. Selective Silencing of Disease-Associated B Lymphocytes from Hashimoto’s Thyroiditis Patients by Chimeric Protein Molecules. Int. J. Mol. Sci. 2022, 23, 15083. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.C.; Ilieva, K.M.; Visconti, A.; Beaumont, M.; Kiddle, S.J.; Dobson, R.J.B.; Mangino, M.; Lim, E.M.; Pezer, M.; Steves, C.J.; et al. Dysregulated Antibody, Natural Killer Cell and Immune Mediator Profiles in Autoimmune Thyroid Diseases. Cells 2020, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, A.; Miśkiewicz, J.; Strzelec, K.; Wcisło-Dziadecka, D.; Strzalka-Mrozik, B. Apoptosis in Autoimmunological Diseases, with Particular Consideration of Molecular Aspects of Psoriasis. Med. Sci. Monit. 2020, 26, e922035. [Google Scholar] [CrossRef] [PubMed]
- Weetman, A.P. An update on the pathogenesis of Hashimoto’s thyroiditis. J. Endocrinol. Investig. 2021, 44, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xu, L.; Wang, Q.; Li, C.; Zhang, T.; Xing, S.; Yu, X. LINC01061 triggers inflammation and inflammasome activation in autoimmune thyroiditis via microRNA-612/BRD4 axis. Int. Immunopharmacol. 2022, 111, 109050. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Bai, X.; Zhao, J.; Gao, C.; Du, P.; Zhang, J.A.; Li, S. Associations between NLRC4 Gene Polymorphisms and Autoimmune Thyroid Disease. Biomed. Res. Int. 2020, 2020, 1378427. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wu, Y.; Hou, Y.; Liu, Y.; Liu, T.; Zhang, H.; Fan, C.; Guan, H.; Li, Y.; Shan, Z.; et al. Cytokine Secretion and Pyroptosis of Thyroid Follicular Cells Mediated by Enhanced NLRP3, NLRP1, NLRC4, and AIM2 Inflammasomes Are Associated With Autoimmune Thyroiditis. Front. Immunol. 2018, 9, 1197. [Google Scholar] [CrossRef] [PubMed]
- Heidari, Z.; Salimi, S.; Rokni, M.; Rezaei, M.; Khalafi, N.; Shahroudi, M.J.; Dehghan, A.; Saravani, M. Association of IL-1β, NLRP3, and COX-2 Gene Polymorphisms with Autoimmune Thyroid Disease Risk and Clinical Features in the Iranian Population. Biomed. Res. Int. 2021, 2021, 7729238. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wrońska, K.; Hałasa, M.; Szczuko, M. The Role of the Immune System in the Course of Hashimoto’s Thyroiditis: The Current State of Knowledge. Int. J. Mol. Sci. 2024, 25, 6883. https://doi.org/10.3390/ijms25136883
Wrońska K, Hałasa M, Szczuko M. The Role of the Immune System in the Course of Hashimoto’s Thyroiditis: The Current State of Knowledge. International Journal of Molecular Sciences. 2024; 25(13):6883. https://doi.org/10.3390/ijms25136883
Chicago/Turabian StyleWrońska, Karolina, Maciej Hałasa, and Małgorzata Szczuko. 2024. "The Role of the Immune System in the Course of Hashimoto’s Thyroiditis: The Current State of Knowledge" International Journal of Molecular Sciences 25, no. 13: 6883. https://doi.org/10.3390/ijms25136883
APA StyleWrońska, K., Hałasa, M., & Szczuko, M. (2024). The Role of the Immune System in the Course of Hashimoto’s Thyroiditis: The Current State of Knowledge. International Journal of Molecular Sciences, 25(13), 6883. https://doi.org/10.3390/ijms25136883