Multimodal Imaging Using Raman Spectroscopy and FTIR in a Single Analytical Instrument with a Microscope (Infrared Raman Microscopy AIRsight, Shimadzu): Opportunities and Applications
Abstract
:1. Introduction
2. Literature Review
2.1. Opportunities
2.2. Applications
2.2.1. Microcontaminant Analysis
2.2.2. Analysis of Microplastics
2.2.3. Evaluation of UV-Degraded Plastics
2.2.4. Analysis of Pigment Degradation
2.2.5. Nondestructive Analysis of Diamond-Like Carbon (DLC) Film
- ZI(D)/I(G): Intensity ratio of the D band (around 1350 cm−1) and G band (around 1550 cm−1); disorder of the crystal structure (sp3/sp2 ratio) [57];
- FWHM (G): Half-width of the G band; crystallinity (sp2 bond), Young’s modulus, and density [54];
- log(N(G)/I(G)): Ratio of baseline and intensity at the position of the G band; hydrogen concentration [58].
2.2.6. Contaminant Analysis of Pharmaceuticals (Tablets)
2.2.7. Rust Analysis
2.2.8. Unstained Analysis and Evaluation of Bone Quality Characteristics of Rat Femur Cross Sections
2.3. Analysis of Protein
3. Discussion
4. Materials and Methods
4.1. Search for Publications
4.2. Keywords and Selection of Scientific Data
4.3. Presentation of the Results
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ATR | Attenuated Total Reflectance |
CCD | Charge-Coupled Device |
CVD | Chemical Vapor Deposition |
DLC | Diamond-Like Carbon |
EDX | Energy-Dispersive X-ray Spectroscopy |
FTIR | Fourier Transform Infrared Spectroscopy |
FWHM | Full Width at Half Maximum |
IR | Infrared spectroscopy |
NIR | Near-Infrared |
PTFE | Polytetrafluoroethylene |
SERS | Surface-Enhanced Raman Scattering |
T2SL | Type-II Super Lattice |
UV | Ultraviolet |
XPS | X-ray Photoelectron Spectroscopy |
References
- Guerrero-Pérez, M.O.; Patience, G.S. Experimental Methods in Chemical Engineering: Fourier Transform Infrared Spectroscopy—FTIR. Can. J. Chem. Eng. 2020, 98, 25–33. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; ur Rehman, D.I. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2008, 43, 134–179. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. FTIR Studies of the Changes in Wood Chemistry Following Decay by Brown-Rot and White-Rot Fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Chen, Y.; Zou, C.; Mastalerz, M.; Hu, S.; Gasaway, C.; Tao, X. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review. Int. J. Mol. Sci. 2015, 16, 30223–30250. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.; Mantsch, H.H. The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 95–120. [Google Scholar] [CrossRef]
- Ţucureanu, V.; Matei, A.; Avram, A.M. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef]
- Johnston, C.T.; Aochi, Y.O. Fourier Transform Infrared and Raman Spectroscopy. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; pp. 269–321. ISBN 978-0-89118-866-7. [Google Scholar]
- Ismail, A.A.; van de Voort, F.R.; Sedman, J. Chapter 4 Fourier Transform Infrared Spectroscopy: Principles and Applications. In Techniques and Instrumentation in Analytical Chemistry; Paré, J.R.J., Bélanger, J.M.R., Eds.; Instrumental Methods in Food Analysis; Elsevier: Amsterdam, The Netherlands, 1997; Volume 18, pp. 93–139. [Google Scholar]
- Reig, F.B.; Adelantado, J.V.G.; Moya Moreno, M.C.M. FTIR Quantitative Analysis of Calcium Carbonate (Calcite) and Silica (Quartz) Mixtures Using the Constant Ratio Method. Application to Geological Samples. Talanta 2002, 58, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Tranter, G.E. FTIR Spectroscopy of Aqueous Solutions. In Encyclopedia of Spectroscopy and Spectrometry (Third Edition); Lindon, J.C., Tranter, G.E., Koppenaal, D.W., Eds.; Academic Press: Oxford, UK, 2017; pp. 762–769. ISBN 978-0-12-803224-4. [Google Scholar]
- Magalhães, S.; Goodfellow, B.J.; Nunes, A. FTIR Spectroscopy in Biomedical Research: How to Get the Most out of Its Potential. Appl. Spectrosc. Rev. 2021, 56, 869–907. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley Online Books: Hoboken, NJ, USA, 2008; Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470405840 (accessed on 23 May 2024).
- Ghosh, A.; Raha, S.; Dey, S.; Chatterjee, K.; Chowdhury, A.R.; Barui, A. Chemometric Analysis of Integrated FTIR and Raman Spectra Obtained by Non-Invasive Exfoliative Cytology for the Screening of Oral Cancer. Analyst 2019, 144, 1309–1325. [Google Scholar] [CrossRef]
- Wartewig, S.; Neubert, R.H.H. Pharmaceutical Applications of Mid-IR and Raman Spectroscopy. Adv. Drug Deliv. Rev. 2005, 57, 1144–1170. [Google Scholar] [CrossRef]
- Chalmers, J.M.; Everall, N.J. Polymer Analysis and Characterization by FTIR, FTIR-Microscopy, Raman Spectroscopy and Chemometrics. Int. J. Polym. Anal. Charact. 1999, 5, 223–245. [Google Scholar] [CrossRef]
- Gordon, K.C.; McGoverin, C.M. Raman Mapping of Pharmaceuticals. Int. J. Pharm. 2011, 417, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Koenig, J.L. Raman Scattering of Synthetic Polymers—A Review. Appl. Spectrosc. Rev. 1971, 4, 233–305. [Google Scholar] [CrossRef]
- Huser, T.; Chan, J. Raman Spectroscopy for Physiological Investigations of Tissues and Cells. Adv. Drug Deliv. Rev. 2015, 89, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Kuzmany, H.; Matus, M.; Burger, B.; Winter, J. Raman Scattering in C60 Fullerenes and Fullerides. Adv. Mater. 1994, 6, 731–745. [Google Scholar] [CrossRef]
- Adar, F.; LeBourdon, G.; Reffner, J.; Whitley, A. Raman and FTIR Microscopy on a Single Microscope: Demonstration of the Synergism of Collecting Complementary Vibrational Spectra from the Same Spot. Microsc. Microanal. 2003, 9, 1112–1113. [Google Scholar] [CrossRef]
- Shimadzu AIRsight—Features. Available online: https://www.shimadzu.com/an/products/raman/infrared-raman-microscope/airsight/features.html (accessed on 12 April 2024).
- Rohman, A.; Windarsih, A.; Lukitaningsih, E.; Rafi, M.; Betania, K.; Fadzillah, N.A. The Use of FTIR and Raman Spectroscopy in Combination with Chemometrics for Analysis of Biomolecules in Biomedical Fluids: A Review. Biomed. Spectrosc. Imaging 2019, 8, 55–71. [Google Scholar] [CrossRef]
- Harris, D.C. Quantitative Chemical Analysis, 8th ed.; W.H. Freeman and Co.: New York, NY, USA, 2010; ISBN 978-1-4292-1815-3. [Google Scholar]
- Ellis, D.I.; Goodacre, R. Metabolic Fingerprinting in Disease Diagnosis: Biomedical Applications of Infrared and Raman Spectroscopy. Analyst 2006, 131, 875–885. [Google Scholar] [CrossRef]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications, 1st ed.; Analytical Techniques in the Sciences; Wiley: Hoboken, NJ, USA, 2004; ISBN 978-0-470-85427-3. [Google Scholar]
- Griffiths, P.R.; De Haseth, J.A. Fourier Transform Infrared Spectrometry, 1st ed.; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-471-19404-0. [Google Scholar]
- McCreery, R.L. Raman Spectroscopy for Chemical Analysis, 1st ed.; Wiley: Hoboken, NJ, USA, 2000; ISBN 978-0-471-25287-0. [Google Scholar]
- Smith, E.; Dent, G. Modern Raman Spectroscopy—A Practical Approach, 1st ed.; Wiley: Hoboken, NJ, USA, 2004; ISBN 978-0-471-49668-7. [Google Scholar]
- Shimadzu Raman and FTIR Microscopy in Perfect Harmony—Infrared and Raman Spectroscopy with a Single Instrument. Available online: https://www.shimadzu.com/an/products/raman/infrared-raman-microscope/airsight/index.html (accessed on 12 April 2024).
- Lazarević, J.J.; Uskoković-Marković, S.; Jelikić-Stankov, M.; Radonjić, M.; Tanasković, D.; Lazarević, N.; Popović, Z.V. Intermolecular and Low-Frequency Intramolecular Raman Scattering Study of Racemic Ibuprofen. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2014, 126, 301–305. [Google Scholar] [CrossRef]
- Wilser, W.T.; Fitchen, D.B. Raman Spectral Changes Induced by Side-Chain Interactions in Racemic Poly-γ-Benzyl Glutamate. Biopolymers 1974, 13, 1435–1445. [Google Scholar] [CrossRef]
- Graff, M.; Bukowska, J. Surface-Enhanced Raman Scattering (SERS) Spectroscopy of Enantiomeric and Racemic Methionine on a Silver Electrode-Evidence for Chiral Discrimination in Interactions between Adsorbed Molecules. Chem. Phys. Lett. 2011, 509, 58–61. [Google Scholar] [CrossRef]
- Rullich, C.C.; Kiefer, J. Enantioselective Raman Spectroscopy (esR) for Distinguishing between the Enantiomers of 2-Butanol. Analyst 2018, 143, 3040–3048. [Google Scholar] [CrossRef]
- Kumkar, P.; Pise, M.; Verma, C.R.; Khare, T.; Petrtýl, M.; Kalous, L. Micro-Contaminant, but Immense Impact: Source and Influence of Diethyl Phthalate Plasticizer on Bottom-Dwelling Fishes. Chemosphere 2022, 306, 135563. [Google Scholar] [CrossRef]
- Mpatani, F.M.; Han, R.; Aryee, A.A.; Kani, A.N.; Li, Z.; Qu, L. Adsorption Performance of Modified Agricultural Waste Materials for Removal of Emerging Micro-Contaminant Bisphenol A: A Comprehensive Review. Sci. Total Environ. 2021, 780, 146629. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, S.; Tange, Y. Micro-Contaminant Analysis Using AIMsight Infrared Microscope | SHIMADZU. 2023. Available online: https://www.shimadzu.com.sg/an/sites/shimadzu.com.sg.an/files/an_01-00456-en.pdf (accessed on 12 April 2024).
- Hermsen, E.; Mintenig, S.M.; Besseling, E.; Koelmans, A.A. Quality Criteria for the Analysis of Microplastic in Biota Samples: A Critical Review. Environ. Sci. Technol. 2018, 52, 10230–10240. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Redondo-Hasselerharm, P.E.; Nor, N.H.M.; de Ruijter, V.N.; Mintenig, S.M.; Kooi, M. Risk Assessment of Microplastic Particles. Nat. Rev. Mater. 2022, 7, 138–152. [Google Scholar] [CrossRef]
- An, L.; Liu, Q.; Deng, Y.; Wu, W.; Gao, Y.; Ling, W. Sources of Microplastic in the Environment. In Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges; He, D., Luo, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 143–159. ISBN 978-3-030-56271-7. [Google Scholar]
- Primpke, S.; Christiansen, S.H.; Cowger, W.; De Frond, H.; Deshpande, A.; Fischer, M.; Holland, E.B.; Meyns, M.; O’Donnell, B.A.; Ossmann, B.E.; et al. Critical Assessment of Analytical Methods for the Harmonized and Cost-Efficient Analysis of Microplastics. Appl. Spectrosc. 2020, 74, 1012–1047. [Google Scholar] [CrossRef]
- Jung, S.; Cho, S.-H.; Kim, K.-H.; Kwon, E.E. Progress in Quantitative Analysis of Microplastics in the Environment: A Review. Chem. Eng. J. 2021, 422, 130154. [Google Scholar] [CrossRef]
- Kawahara, K. Analysis of Microplastics Using AIRsight Infrared/Raman Microscope | SHIMADZU. 2022. Available online: https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/16935/an_01-00396-en.pdf (accessed on 12 April 2024).
- Miles, R.B.; Lempert, W.R.; Forkey, J.N. Laser Rayleigh Scattering. Meas. Sci. Technol. 2001, 12, R33. [Google Scholar] [CrossRef]
- Instrumentation for Fluorescence Spectroscopy. In Principles of Fluorescence Spectroscopy; Lakowicz, J.R. (Ed.) Springer US: Boston, MA, USA, 2006; pp. 27–61. ISBN 978-0-387-46312-4. [Google Scholar]
- Sobue, K. Excitation Laser Selection in the AIRsight Infrared Raman Microscope―An Evaluation of UV-Degraded Plastics― | SHIMADZU. 2023. Available online: https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/22031/an_01-00586-en.pdf (accessed on 12 April 2024).
- Baum, B.; Deanin, R.D. Controlled UV Degradation in Plastics. Polym.-Plast. Technol. Eng. 1973, 2, 1–28. [Google Scholar] [CrossRef]
- Coccato, A.; Moens, L.; Vandenabeele, P. On the Stability of Mediaeval Inorganic Pigments: A Literature Review of the Effect of Climate, Material Selection, Biological Activity, Analysis and Conservation Treatments. Herit. Sci. 2017, 5, 12. [Google Scholar] [CrossRef]
- Philippidis, A.; Mikallou, A.; Anglos, D. Determining Optimum Irradiation Conditions for the Analysis of Vermilion by Raman Spectroscopy. Eur. Phys. J. Plus 2021, 136, 1194. [Google Scholar] [CrossRef]
- Maruyama, K. Analysis of Pigment Degradation Using AIRsight Infrared/Raman Microscope | SHIMADZU. 2022. Available online: https://www.an.shimadzu.com/rs/119-VAD-470/images/chem_nl_07_analysis_of_pigment_degradation_using_airsight_infrared_raman_microscope.pdf?utm_source=WebsiteNL (accessed on 12 April 2024).
- Gliozzo, E. Pigments—Mercury-Based Red (Cinnabar-Vermilion) and White (Calomel) and Their Degradation Products. Archaeol. Anthropol. Sci. 2021, 13, 210. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Pan, A.; He, L.; Simon, S. Degradation of Red Lead Pigment in the Oil Painting during UV Aging. Color Res. Appl. 2019, 44, 790–797. [Google Scholar] [CrossRef]
- Robertson, J. Diamond-like Amorphous Carbon. Mater. Sci. Eng. R Rep. 2002, 37, 129–281. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Casiraghi, C.; Ferrari, A.C.; Robertson, J. Raman Spectroscopy of Hydrogenated Amorphous Carbons. Phys. Rev. B 2005, 72, 085401. [Google Scholar] [CrossRef]
- Soriaga, M.P.; Chen, X.; Li, D.; Stickney, J.L. High Resolution Electron Energy-Loss Spectroscopy. In Encyclopedia of Inorganic Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; ISBN 978-0-470-86210-0. [Google Scholar]
- Tange, Y. Nondestructive Analysis of Diamond-Like Carbon (DLC) Film Using AIRsight Infrared/Raman Microscope | SHIMADZU. 2022. Available online: https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/16936/an_01-00397-en.pdf (accessed on 12 April 2024).
- Adamopoulos, G.; Robertson, J.; Morrison, N.A.; Godet, C. Hydrogen Content Estimation of Hydrogenated Amorphous Carbon by Visible Raman Spectroscopy. J. Appl. Phys. 2004, 96, 6348–6352. [Google Scholar] [CrossRef]
- Miura, K.; Nakamura, M. Analysis of Hydrogen Concentration in DLC Films by Raman Spectroscopy. J. Surf. Finish. Soc. Jpn. 2008, 59, 203. [Google Scholar] [CrossRef]
- Blair, R. Organic Production and Food Quality: A Down to Earth Analysis, 1st ed.; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-8138-1217-5. [Google Scholar]
- Rather, I.A.; Koh, W.Y.; Paek, W.K.; Lim, J. The Sources of Chemical Contaminants in Food and Their Health Implications. Front. Pharmacol. 2017, 8, 830. [Google Scholar] [CrossRef]
- Iwasaki, S. Contaminant Analysis of Pharmaceuticals (Tablets) Using AIRsight Infrared/Raman Microscope | SHIMADZU. 2022. Available online: https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/16933/an_01-00394-en.pdf (accessed on 12 April 2024).
- Zhou, Y.; Zhang, X.; Jia, T.; Liu, Z. Corrosion Behavior of High Performance Offshore Platform Steel with Chromium and Nickel Addition in the Environment Containing Chloride Ions. J. Iron Steel Res. Int. 2015, 22, 496–505. [Google Scholar] [CrossRef]
- Tange, Y.; Sobue, K.; Moriya, H. Rust Analysis ―Using Infrared Raman Microscopes and Energy—Dispersive X-Ray Fluorescence Spectrometers—. 2024. Available online: https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/23767/an_01-00676-en.pdf (accessed on 12 April 2024).
- Taylor, E.A.; Donnelly, E. Raman and Fourier Transform Infrared Imaging for Characterization of Bone Material Properties. Bone 2020, 139, 115490. [Google Scholar] [CrossRef] [PubMed]
- Grunenwald, A.; Keyser, C.; Sautereau, A.M.; Crubézy, E.; Ludes, B.; Drouet, C. Revisiting Carbonate Quantification in Apatite (Bio)Minerals: A Validated FTIR Methodology. J. Archaeol. Sci. 2014, 49, 134–141. [Google Scholar] [CrossRef]
- Tange, Y. Unstained Analysis and Evaluation of Bone Quality Characteristics of Rat Femur cross Section by AIRsight Infrared/Raman Microscope. 2024. Available online: https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/22577/an_01-00632-en.pdf (accessed on 12 April 2024).
- Morris, R.; Black, K.A.; Stollar, E.J. Uncovering Protein Function: From Classification to Complexes. Essays Biochem. 2022, 66, 255–285. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J. Essential Bioinformatics; Cambridge University Press: Cambridge, UK, 2006; ISBN 978-0-521-60082-8. [Google Scholar]
- Lee, Z.H.; Kuek, J.S.; Lim, J.; Chua, A.M. Determination of Protein Secondary Structures Using FTIR Spectroscopy. Application News, No. AD-0178. 2018. Available online: https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/13324/apa218043.pdf (accessed on 12 April 2024).
- Shimadzu Analysis of Protein Secondary Structure Using FTIR. Application News—Spectrophotometric Analysis No.A388. Available online: https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/13320/a388.pdf (accessed on 12 April 2024).
- Shimadzu Protein Analysis Using FTIR—Secondary Structure Analysis of Bovine Serum Albumin Using Curve Fitting—Application News No. A585. Available online: https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/13329/jpa219002.pdf (accessed on 12 April 2024).
- Torii, H.; Tasumi, M. Model Calculations on the amide-I Infrared Bands of Globular Proteins. J. Chem. Phys. 1992, 96, 3379–3387. [Google Scholar] [CrossRef]
- Dong, A.; Huang, P.; Caughey, W.S. Protein Secondary Structures in Water from Second-Derivative Amide I Infrared Spectra. Biochemistry 1990, 29, 3303–3308. [Google Scholar] [CrossRef]
- Shimadzu Protein Analysis Using FTIR—Analysis on Changes of Secondary Structures in Egg White Proteins Caused by Thermal Denaturation—Application News No. A592. Available online: https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/13330/jpa219009.pdf (accessed on 12 April 2024).
- Acharya, V.V.; Chaudhuri, P. Modalities of Protein Denaturation and Nature of Denaturants. Int. J. Pharm. Sci. Rev. Res. 2021, 69, 19–24. [Google Scholar] [CrossRef]
- Jankovská, R.; Šustová, K. Analysis of Cow Milk by Near-Infrared Spectroscopy. Czech J. Food Sci. 2003, 21, 123–128. [Google Scholar] [CrossRef]
Feature | IR Spectroscopy | Raman Spectroscopy |
---|---|---|
Principle of Operation | Absorption of infrared radiation by bonds | Scattering of laser light (Raman scattering) |
Spectral Range | 4000–400 cm−1 | 4000–50 cm−1 (depending on the system) |
Sample Requirements | Must be transparent in IR or thin | Can be transparent, opaque, liquid, or solid |
Sample Preparation | May require special preparation, such as KBr pellets, depending on the used accessory, such as Seagull | Minimal preparation, often none required |
Sensitivity to Water | Highly sensitive to water and moisture | Less sensitive to water and can analyse aqueous samples |
Spectral Resolution | Limited by IR wavelength | High; can analyse small energy differences |
Interferences | Problems with interferences from water and CO2 | Fewer interference issues |
Analysis Time | Short | Short |
Qualitative Analysis Applications | Very effective in identifying functional groups | Excellent in identifying chemical compounds |
Quantitative Analysis Applications | Possible, especially with FTIR techniques | Possible but less common |
Applications | Polymers, pharmaceuticals, air pollutants, and mineral identification | Polymers, semiconductors, biochemistry, and pigment identification in art |
Cost of Equipment | Relatively lower | Relatively higher |
Advantages | Direct identification of functional groups and lower equipment cost | Minimal sample preparation and can analyse aqueous samples with high spectral resolution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurowski, K.; Noga, M.; Kobylarz, D.; Niżnik, Ł.; Krośniak, A. Multimodal Imaging Using Raman Spectroscopy and FTIR in a Single Analytical Instrument with a Microscope (Infrared Raman Microscopy AIRsight, Shimadzu): Opportunities and Applications. Int. J. Mol. Sci. 2024, 25, 6884. https://doi.org/10.3390/ijms25136884
Jurowski K, Noga M, Kobylarz D, Niżnik Ł, Krośniak A. Multimodal Imaging Using Raman Spectroscopy and FTIR in a Single Analytical Instrument with a Microscope (Infrared Raman Microscopy AIRsight, Shimadzu): Opportunities and Applications. International Journal of Molecular Sciences. 2024; 25(13):6884. https://doi.org/10.3390/ijms25136884
Chicago/Turabian StyleJurowski, Kamil, Maciej Noga, Damian Kobylarz, Łukasz Niżnik, and Alicja Krośniak. 2024. "Multimodal Imaging Using Raman Spectroscopy and FTIR in a Single Analytical Instrument with a Microscope (Infrared Raman Microscopy AIRsight, Shimadzu): Opportunities and Applications" International Journal of Molecular Sciences 25, no. 13: 6884. https://doi.org/10.3390/ijms25136884
APA StyleJurowski, K., Noga, M., Kobylarz, D., Niżnik, Ł., & Krośniak, A. (2024). Multimodal Imaging Using Raman Spectroscopy and FTIR in a Single Analytical Instrument with a Microscope (Infrared Raman Microscopy AIRsight, Shimadzu): Opportunities and Applications. International Journal of Molecular Sciences, 25(13), 6884. https://doi.org/10.3390/ijms25136884