Exploring the Relationship between MicroRNAs, Intratumoral Microbiota, and Breast Cancer Progression in Patients with and without Metastasis
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics of the Study Patients
2.2. Differential microRNA Expression in Breast Tumor Tissue of Breast Cancer Patients with and without Metastasis
2.3. Differences in Taxonomic Composition of Intratumoral Bacteria in Breast Cancer Patients between Metastatic and Non-metastatic Clinical State
2.4. Differences in Intratumoral Microbiota Functions and the Associations between Key Pathways and Bacterial Species in Metastatic and Non-Metastatic Breast Cancer Patients
2.5. Relationship between Tumor Breast Tissue Microbiota and microRNA Expression Levels in Metastatic and Non-metastatic Breast Cancer Patients
2.6. Baseline Intratumoral Microbiota and microRNAs Could Predict Metastasis Development in Breast Cancer Patients and Are Associate with Overall Survival
3. Discussion
4. Materials and Methods
4.1. Study Patients
4.2. Immunohistochemistry
4.3. Intratumoral Breast Cancer Microbiota Sequencing
4.4. Bioinformatics Analysis
4.5. MiRNAs Identification and Selection
4.6. RT-qPCR Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jemal, A.; Center, M.M.; DeSantis, C.; Ward, E.M. Global Patterns of Cancer Incidence and Mortality Rates and Trends. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1893–1907. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Graveel, C.; Calderone, H.; Westerhuis, J.; Winn, M.; Sempere, L. Critical Analysis of the Potential for MicroRNA Biomarkers in Breast Cancer Management. BCTT 2015, 7, 59. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2018. CA A Cancer J Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, C.; Thomopoulou, K.; Monastirioti, A.; Koronakis, G.; Papadaki, M.A.; Rounis, K.; Vamvakas, L.; Nikolaou, C.; Mavroudis, D.; Agelaki, S. MicroRNAs Regulating Tumor and Immune Cell Interactions in the Prediction of Relapse in Early Stage Breast Cancer. Biomedicines 2021, 9, 421. [Google Scholar] [CrossRef] [PubMed]
- Rupaimoole, R.; Slack, F.J. MicroRNA Therapeutics: Towards a New Era for the Management of Cancer and Other Diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef] [PubMed]
- Nersisyan, S.; Galatenko, A.; Galatenko, V.; Shkurnikov, M.; Tonevitsky, A. MiRGTF-Net: Integrative MiRNA-Gene-TF Network Analysis Reveals Key Drivers of Breast Cancer Recurrence. PLoS ONE 2021, 16, e0249424. [Google Scholar] [CrossRef]
- Svoronos, A.A.; Engelman, D.M.; Slack, F.J. OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. Cancer Res. 2016, 76, 3666–3670. [Google Scholar] [CrossRef]
- Yuan, C.; Steer, C.J.; Subramanian, S. Host–MicroRNA–Microbiota Interactions in Colorectal Cancer. Genes 2019, 10, 270. [Google Scholar] [CrossRef]
- Wang, M.; Yu, F.; Li, P. Intratumor Microbiota in Cancer Pathogenesis and Immunity: From Mechanisms of Action to Therapeutic Opportunities. Front. Immunol. 2023, 14, 1269054. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, P.; Mei, W.; Zeng, C. Intratumoral Microbiota: Implications for Cancer Onset, Progression, and Therapy. Front. Immunol. 2024, 14, 1301506. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-M.; Pekkle Lam, H.Y. Intratumoral Microbiota: Unraveling Their Oncogenic Impact on Cancer Progression with Focus on Breast Cancer Therapeutic Outcomes. Anticancer Res. 2024, 44, 2271–2285. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-Q.; Qiao, H.; Tan, X.-R.; Liu, N. Broadening Oncological Boundaries: The Intratumoral Microbiota. Trends Microbiol. 2024, S0966842X24000076. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.; Yao, B.; Dong, T.; Chen, Y.; Yao, J.; Liu, Y.; Li, H.; Bai, H.; Liu, X.; Zhang, Y.; et al. Tumor-Resident Intracellular Microbiota Promotes Metastatic Colonization in Breast Cancer. Cell 2022, 185, 1356–1372.e26. [Google Scholar] [CrossRef] [PubMed]
- Longmore, G.D. Bacteria in Tumors “Hit the Road” Together. Cell 2022, 185, 1292–1294. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ding, H.; Dong, G.; Xu, L.; Jiang, F.; Mao, Q. Bi-Direction Effects between Microbiome and MiRNAs in Carcinogenesis. J. Cancer Res. Clin. Oncol. 2021, 147, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Cougnoux, A.; Dalmasso, G.; Martinez, R.; Buc, E.; Delmas, J.; Gibold, L.; Sauvanet, P.; Darcha, C.; Déchelotte, P.; Bonnet, M.; et al. Bacterial Genotoxin Colibactin Promotes Colon Tumour Growth by Inducing a Senescence-Associated Secretory Phenotype. Gut 2014, 63, 1932–1942. [Google Scholar] [CrossRef]
- Yang, Y.; Weng, W.; Peng, J.; Hong, L.; Yang, L.; Toiyama, Y.; Gao, R.; Liu, M.; Yin, M.; Pan, C.; et al. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor−κB, and Up-Regulating Expression of MicroRNA-21. Gastroenterology 2017, 152, 851–866.e24. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rivas, L.G.; Jerez, J.M.; Carmona, R.; De Luque, V.; Vicioso, L.; Claros, M.G.; Viguera, E.; Pajares, B.; Sánchez, A.; Ribelles, N.; et al. A MicroRNA Signature Associated with Early Recurrence in Breast Cancer. PLoS ONE 2014, 9, e91884. [Google Scholar] [CrossRef]
- Lau, H.-C.; Yuan, X.; Huang, H.; Zhang, M.; Hsueh, C.-Y.; Gong, H. Fusobacterium nucleatum Facilitates Proliferation and Autophagy by Activating MiR-361-3p/NUDT1 Axis through Oxidative Stress in Hypopharyngeal Squamous Cell Carcinoma. BMC Cancer 2023, 23, 990. [Google Scholar] [CrossRef]
- Li, N.; Zhou, H.; Holden, V.K.; Deepak, J.; Dhilipkannah, P.; Todd, N.W.; Stass, S.A.; Jiang, F. Streptococcus Pneumoniae Promotes Lung Cancer Development and Progression. iScience 2023, 26, 105923. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, P.; Nuccio, F.; Piattelli, A.; Curia, M.C. The Role of Fusobacterium nucleatum in Oral and Colorectal Carcinogenesis. Microorganisms 2023, 11, 2358. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Maishi, N.; Akahori, E.; Hasebe, A.; Takeda, R.; Matsuda, A.Y.; Hida, Y.; Nam, J.; Onodera, Y.; Kitagawa, Y.; et al. The Oral Bacterium Streptococcus mutans Promotes Tumor Metastasis by Inducing Vascular Inflammation. Cancer Sci. 2022, 113, 3980–3994. [Google Scholar] [CrossRef] [PubMed]
- Saraiya, N.; Corpuz, M. Corynebacterium kroppenstedtii: A Challenging Culprit in Breast Abscesses and Granulomatous Mastitis. Curr. Opin. Obstet. Gynecol. 2019, 31, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Tariq, H.; Menon, P.D.; Fan, H.; Vadlamudi, K.V.; Pandeswara, S.L.; Nazarullah, A.N.; Mais, D.D. Detection of Corynebacterium kroppenstedtii in Granulomatous Lobular Mastitis Using Real-Time Polymerase Chain Reaction and Sanger Sequencing on Formalin-Fixed, Paraffin-Embedded Tissues. Arch. Pathol. Lab. Med. 2022, 146, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut Microbiome Influences Efficacy of PD-1–Based Immunotherapy against Epithelial Tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, G.; Le Noci, V.; Ottaviano, E.; De Cecco, L.; Camisaschi, C.; Guglielmetti, S.; Di Modica, M.; Gargari, G.; Bianchi, F.; Indino, S.; et al. Reduction of Staphylococcus epidermidis in the Mammary Tumor Microbiota Induces Antitumor Immunity and Decreases Breast Cancer Aggressiveness. Cancer Lett. 2023, 555, 216041. [Google Scholar] [CrossRef] [PubMed]
- Eun, Y.-G.; Lee, J.-W.; Kim, S.W.; Hyun, D.-W.; Bae, J.-W.; Lee, Y.C. Oral Microbiome Associated with Lymph Node Metastasis in Oral Squamous Cell Carcinoma. Sci. Rep. 2021, 11, 23176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xie, Q.; Huo, X.; Liu, Z.; Da, M.; Yuan, M.; Zhao, Y.; Shen, G. Impact of Intestinal Dysbiosis on Breast Cancer Metastasis and Progression. Front. Oncol. 2022, 12, 1037831. [Google Scholar] [CrossRef]
- Thompson, K.J.; Ingle, J.N.; Tang, X.; Chia, N.; Jeraldo, P.R.; Walther-Antonio, M.R.; Kandimalla, K.K.; Johnson, S.; Yao, J.Z.; Harrington, S.C.; et al. A Comprehensive Analysis of Breast Cancer Microbiota and Host Gene Expression. PLoS ONE 2017, 12, e0188873. [Google Scholar] [CrossRef]
- Singh, J. Bifidobacterium longum, a Lactic Acid-Producing Intestinal Bacterium Inhibits Colon Cancer and Modulates the Intermediate Biomarkers of Colon Carcinogenesis. Carcinogenesis 1997, 18, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Fan, L.; Qi, Y.; Xu, C.; Jia, D.; Jiang, Y.; Chen, S.; Wang, L. Bifidobacterium adolescentis Induces Decorin+ Macrophages via TLR2 to Suppress Colorectal Carcinogenesis. J. Exp. Clin. Cancer Res. 2023, 42, 172. [Google Scholar] [CrossRef] [PubMed]
- Schettini, F.; Fontana, A.; Gattazzo, F.; Strina, C.; Milani, M.; Cappelletti, M.R.; Cervoni, V.; Morelli, L.; Curigliano, G.; Iebba, V.; et al. Faecal Microbiota Composition Is Related to Response to CDK4/6-Inhibitors in Metastatic Breast Cancer: A Prospective Cross-Sectional Exploratory Study. Eur. J. Cancer 2023, 191, 112948. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Wu, Y.; Li, M.; An, F.; Yao, L.; Wang, M.; Wang, X.; Yuan, J.; Jiang, K.; Li, W.; et al. Lactobacillus spp. Create a Protective Micro-Ecological Environment through Regulating the Core Fucosylation of Vaginal Epithelial Cells against Cervical Cancer. Cell Death Dis. 2021, 12, 1094. [Google Scholar] [CrossRef] [PubMed]
- Koh, G.Y.; Kane, A.V.; Wu, X.; Crott, J.W. Parabacteroides Distasonis Attenuates Tumorigenesis, Modulates Inflammatory Markers and Promotes Intestinal Barrier Integrity in Azoxymethane-Treated A/J Mice. Carcinogenesis 2020, 41, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Ma, F.; Sun, X.; Li, C.; Li, L.; Liang, F.; Li, S.; Yi, Z.; Liu, B.; Xu, B. Gut Microbiota Profiling in Patients with HER2-Negative Metastatic Breast Cancer Receiving Metronomic Chemotherapy of Capecitabine Compared to Those under Conventional Dosage. Front. Oncol. 2020, 10, 902. [Google Scholar] [CrossRef] [PubMed]
- Shrode, R.L.; Knobbe, J.E.; Cady, N.; Yadav, M.; Hoang, J.; Cherwin, C.; Curry, M.; Garje, R.; Vikas, P.; Sugg, S.; et al. Breast Cancer Patients from the Midwest Region of the United States Have Reduced Levels of Short-Chain Fatty Acid-Producing Gut Bacteria. Sci. Rep. 2023, 13, 526. [Google Scholar] [CrossRef] [PubMed]
- De Freitas Junior, J.C.M.; Morgado-Díaz, J.A. The Role of N-Glycans in Colorectal Cancer Progression: Potential Biomarkers and Therapeutic Applications. Oncotarget 2016, 7, 19395–19413. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Yang, Z.; Wang, D.; Yang, X.; Wang, J.; Li, L.; Wen, Q.; Gao, L.; Bian, X.; Yu, S. The Role of Lysosomes in Cancer Development and Progression. Cell Biosci. 2020, 10, 131. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, M.; Xu, F.; Jiang, S. Wnt Signaling in Breast Cancer: Biological Mechanisms, Challenges and Opportunities. Mol. Cancer 2020, 19, 165. [Google Scholar] [CrossRef]
- Machado, E.R.; Annunziata, I.; Van De Vlekkert, D.; Grosveld, G.C.; d’Azzo, A. Lysosomes and Cancer Progression: A Malignant Liaison. Front. Cell Dev. Biol. 2021, 9, 642494. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, H.; Bahramy, A.; Zafari, N.; Delavar, M.R.; Nguyen, K.; Haghi, A.; Kandelouei, T.; Vittori, C.; Jazireian, P.; Maleki, S.; et al. Notch Signaling Pathway: A Comprehensive Prognostic and Gene Expression Profile Analysis in Breast Cancer. BMC Cancer 2022, 22, 1282. [Google Scholar] [CrossRef] [PubMed]
- Josse, J.; Laurent, F.; Diot, A. Staphylococcal Adhesion and Host Cell Invasion: Fibronectin-Binding and Other Mechanisms. Front. Microbiol. 2017, 8, 2433. [Google Scholar] [CrossRef]
- Zhou, W.; Shi, G.; Zhang, Q.; Wu, Q.; Li, B.; Zhang, Z. MicroRNA-20b Promotes Cell Growth of Breast Cancer Cells Partly via Targeting Phosphatase and Tensin Homologue (PTEN). Cell Biosci. 2014, 4, 62. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Li, F.; Qiu, J.; Feng, Z.; Xu, Z.; Chen, Z.; Sun, J. Oncogenic MiR-20b-5p Contributes to Malignant Behaviors of Breast Cancer Stem Cells by Bidirectionally Regulating CCND1 and E2F1. BMC Cancer 2020, 20, 949. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, T.; Xian, L.; Liu, W.; Liu, J.; Zhou, H. B3GNT3, a Direct Target of MiR-149-5p, Promotes Lung Cancer Development and Indicates Poor Prognosis of Lung Cancer. CMAR 2020, 12, 2381–2391. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Xu, B.; Dai, C.; Wang, Y.; Xie, G.; Yang, W.; Zhang, B.; Li, X.; Wang, J. Macrophage-Derived Exosomal MiR-342-3p Promotes the Progression of Renal Cell Carcinoma through the NEDD4L/CEP55 Axis. Oncol. Res. 2021, 29, 331–349. [Google Scholar] [CrossRef] [PubMed]
- Herbst, F.; Lang, T.J.L.; Eckert, E.S.P.; Wünsche, P.; Wurm, A.A.; Kindinger, T.; Laaber, K.; Hemmati, S.; Hotz-Wagenblatt, A.; Zavidij, O.; et al. The Balance between the Intronic MiR-342 and Its Host Gene Evl Determines Hematopoietic Cell Fate Decision. Leukemia 2021, 35, 2948–2963. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhao, N.; Zhao, N.; Hu, X.; He, X.; Xu, Y.; Chen, J.; Chen, W.; Liu, X.; Zhou, Z.; et al. Tumor-Suppressive and Oncogenic Roles of MicroRNA-149-5p in Human Cancers. IJMS 2022, 23, 10823. [Google Scholar] [CrossRef]
- Sánchez-González, I.; Bobien, A.; Molnar, C.; Schmid, S.; Strotbek, M.; Boerries, M.; Busch, H.; Olayioye, M.A. MiR-149 Suppresses Breast Cancer Metastasis by Blocking Paracrine Interactions with Macrophages. Cancer Res. 2020, 80, 1330–1341. [Google Scholar] [CrossRef]
- Xu, M.; Xiao, J.; Chen, M.; Yuan, L.; Li, J.; Shen, H.; Yao, S. MiR-149-5p Promotes Chemotherapeutic Resistance in Ovarian Cancer via the Inactivation of the Hippo Signaling Pathway. Int. J. Oncol. 2018, 52, 815–827. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-J.; Wu, J.-Z.; Ji, M.-H.; Ma, T.; Qiao, E.-Q.; Ma, R.; Tang, J.-H. MiR-342 Is Associated with Estrogen Receptor-α Expression and Response to Tamoxifen in Breast Cancer. Exp. Ther. Med. 2013, 5, 813–818. [Google Scholar] [CrossRef]
- Yang, Y.; Du, L.; Shi, D.; Kong, C.; Liu, J.; Liu, G.; Li, X.; Ma, Y. Dysbiosis of Human Gut Microbiome in Young-Onset Colorectal Cancer. Nat. Commun. 2021, 12, 6757. [Google Scholar] [CrossRef]
- Eisenhofer, R.; Minich, J.J.; Marotz, C.; Cooper, A.; Knight, R.; Weyrich, L.S. Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations. Trends Microbiol. 2019, 27, 105–117. [Google Scholar] [CrossRef]
- Paulson, J.; Olson, N.; Braccia, D.; Wagner, J.; Talukder, H.; Pop, M.; Bravo, H. MetagenomeSeq: Statistical Analysis for Sparse High-Throughput Sequncing. Bioconductor Package 2013, 1, 191. [Google Scholar]
- Rinnerthaler, G.; Hackl, H.; Gampenrieder, S.; Hamacher, F.; Hufnagl, C.; Hauser-Kronberger, C.; Zehentmayr, F.; Fastner, G.; Sedlmayer, F.; Mlineritsch, B.; et al. MiR-16-5p Is a Stably-Expressed Housekeeping MicroRNA in Breast Cancer Tissues from Primary Tumors and from Metastatic Sites. IJMS 2016, 17, 156. [Google Scholar] [CrossRef]
- Lou, G.; Ma, N.; Xu, Y.; Jiang, L.; Yang, J.; Wang, C.; Jiao, Y.; Gao, X. Differential Distribution of U6 (RNU6-1) Expression in Human Carcinoma Tissues Demonstrates the Requirement for Caution in the Internal Control Gene Selection for MicroRNA Quantification. Int. J. Mol. Med. 2015, 36, 1400–1408. [Google Scholar] [CrossRef] [PubMed]
- Davoren, P.A.; McNeill, R.E.; Lowery, A.J.; Kerin, M.J.; Miller, N. Identification of Suitable Endogenous Control Genes for MicroRNA Gene Expression Analysis in Human Breast Cancer. BMC Mol. Biol. 2008, 9, 76. [Google Scholar] [CrossRef]
- Mattie, M.D.; Benz, C.C.; Bowers, J.; Sensinger, K.; Wong, L.; Scott, G.K.; Fedele, V.; Ginzinger, D.; Getts, R.; Haqq, C. Optimized High-Throughput MicroRNA Expression Profiling Provides Novel Biomarker Assessment of Clinical Prostate and Breast Cancer Biopsies. Mol. Cancer 2006, 5, 24. [Google Scholar] [CrossRef]
Non-Metastatic BC Patients | Metastatic BC Patients | p-Value | ||||
---|---|---|---|---|---|---|
n | (%) | n | (%) | |||
Number of patients (Total = 116) | 42 | 39.7 | 74 | 60.3 | ||
Age at diagnosis | ≤50 | 11 | 26.2 | 20 | 27.0 | 0.922 |
>50 | 31 | 73.8 | 54 | 73.0 | ||
Hormonal status | Preperim. | 12 | 28.6 | 19 | 25.7 | 0.735 |
Postmen. | 30 | 71.4 | 55 | 74.3 | ||
Tumor size (cm) | <2 | 25 | 59.5 | 23 | 31.1 | 0.009 |
2–5 | 15 | 35.7 | 41 | 55.4 | ||
>5 | 2 | 4.8 | 10 | 13.5 | ||
Tumor stage | I | 17 | 40.5 | 13 | 17.6 | 0.007 |
II | 14 | 33.3 | 22 | 29.7 | ||
III | 11 | 26.2 | 39 | 52.7 | ||
Hystological grade | 1 | 4 | 9.5 | 4 | 5.4 | 0.237 |
2 | 20 | 47.6 | 27 | 36.5 | ||
3 | 17 | 40.5 | 42 | 56.8 | ||
Unknown | 1 | 2.4 | 1 | 1.4 | ||
Histologic subtype | Lobulillar | 2 | 4.8 | 9 | 12.2 | 0.053 |
Ductal | 34 | 81.0 | 61 | 82.4 | ||
Medullar | 3 | 7.1 | 0 | 0 | ||
Mixed | 1 | 2.4 | 4 | 5.4 | ||
Papillar | 1 | 2.4 | 0 | 0 | ||
Mucinous | 1 | 2.4 | 0 | 0 | ||
Tubular | 1 | 2.4 | 0 | 0 | ||
Intrinsic subtype | Luminal A | 7 | 16.7 | 16 | 21.6 | 0.166 |
Luminal B | 20 | 47.6 | 26 | 35.1 | ||
Luminal B-HER2 | 6 | 14.3 | 4 | 5.4 | ||
Triple negative | 6 | 14.3 | 15 | 20.3 | ||
HER2-enriched | 3 | 7.1 | 13 | 17.6 | ||
Type of surgery | Conservative | 34 | 81 | 46 | 62.2 | 0.036 |
Radical | 8 | 19 | 28 | 37.8 | ||
Affected lymph node | Negative or unknown | 24 | 57.1 | 20 | 27.0 | 0.001 |
1–3 | 11 | 26.2 | 17 | 23.0 | ||
≥4 | 7 | 16.7 | 37 | 50.0 | ||
First-location metastasis | Bone | 20 | 28.4 | |||
Liver | 18 | 24.3 | ||||
Lymph nodes | 5 | 6.8 | ||||
Skin | 4 | 5.4 | ||||
Pleura | 4 | 5.4 | ||||
Lung | 10 | 13.5 | ||||
Central Nervous System | 4 | 5.4 | ||||
Uterus | 1 | 1.4 | ||||
Ovary | 1 | 1.4 | ||||
Breast | 6 | 8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laborda-Illanes, A.; Aranega-Martín, L.; Sánchez-Alcoholado, L.; Boutriq, S.; Plaza-Andrades, I.; Peralta-Linero, J.; Garrido Ruiz, G.; Pajares-Hachero, B.; Álvarez, M.; Alba, E.; et al. Exploring the Relationship between MicroRNAs, Intratumoral Microbiota, and Breast Cancer Progression in Patients with and without Metastasis. Int. J. Mol. Sci. 2024, 25, 7091. https://doi.org/10.3390/ijms25137091
Laborda-Illanes A, Aranega-Martín L, Sánchez-Alcoholado L, Boutriq S, Plaza-Andrades I, Peralta-Linero J, Garrido Ruiz G, Pajares-Hachero B, Álvarez M, Alba E, et al. Exploring the Relationship between MicroRNAs, Intratumoral Microbiota, and Breast Cancer Progression in Patients with and without Metastasis. International Journal of Molecular Sciences. 2024; 25(13):7091. https://doi.org/10.3390/ijms25137091
Chicago/Turabian StyleLaborda-Illanes, Aurora, Lucía Aranega-Martín, Lidia Sánchez-Alcoholado, Soukaina Boutriq, Isaac Plaza-Andrades, Jesús Peralta-Linero, Guadalupe Garrido Ruiz, Bella Pajares-Hachero, Martina Álvarez, Emilio Alba, and et al. 2024. "Exploring the Relationship between MicroRNAs, Intratumoral Microbiota, and Breast Cancer Progression in Patients with and without Metastasis" International Journal of Molecular Sciences 25, no. 13: 7091. https://doi.org/10.3390/ijms25137091
APA StyleLaborda-Illanes, A., Aranega-Martín, L., Sánchez-Alcoholado, L., Boutriq, S., Plaza-Andrades, I., Peralta-Linero, J., Garrido Ruiz, G., Pajares-Hachero, B., Álvarez, M., Alba, E., González-González, A., & Queipo-Ortuño, M. I. (2024). Exploring the Relationship between MicroRNAs, Intratumoral Microbiota, and Breast Cancer Progression in Patients with and without Metastasis. International Journal of Molecular Sciences, 25(13), 7091. https://doi.org/10.3390/ijms25137091