ERK/CREB and p38 MAPK/MMP14 Signaling Pathway Influences Spermatogenesis through Regulating the Expression of Junctional Proteins in Eriocheir sinensis Testis
Abstract
:1. Introduction
2. Results
2.1. MAPK Deficiency or Inhibition Results in Abnormal Spermatogenesis in E. sinensis
2.2. The Integrity of HTB in E. sinensis Is Impaired When the MAPK Signaling Pathway Is Deleted or Inhibited
2.3. ERK and p38 MAPK Regulate the Expression Levels of Cell Junction Proteins
2.4. Identification and Characterization of es-MMP and es-CREB in E. sinensis Testes
2.5. ERK and p38 MAPK Change the Expression Levels of Pinin and ZO-1 through es-MMP14 but Not es-MMP21 in the Testis of E. sinensis
2.6. ERK Changes the Expression Level of ZO-1 through es-CREB in the Testis of E. sinensis
2.7. ERK and p38 MAPK Influence the Expression and Distribution of Intercellular Proteins When They Are Overexpressed In Vitro
2.8. Loss of es-MMP14 or es-CREB Disrupts HTB Integrity and Spermatogenesis in the Testis of E. sinensis
3. Discussion
3.1. MAPK Is Closely Associated with the Reproduction of Male E. sinensis
3.2. Abnormal MAPK Signaling Pathway Impairs the Integrity of HTB through Impacting Intercellular Junctions
3.3. ERK and p38 MAPK Affect the Expression Level of Junctional Proteins in HBT Relying on the Degradation of es-MMP14 in the E. sinensis Testis
3.4. Es-CREB Has an Impact on the Transcription Level of ZO-1 Downstream of ERK in the E. sinensis Testis
3.5. The Cytoskeleton Might Be Involved in the MAPK Signaling Pathway for HTB Integrity Maintenance
4. Materials and Methods
4.1. Experimental Animals
4.2. Cell Culture
4.3. Cloning of es-MMP21 and es-CREB in E. sinensis
4.4. Bioinformatics Analysis of es-CREB, es-MMP14 and es-MMP21
4.5. Semiquantitative Real-Time PCR (sqPCR)
4.6. Antibodies
4.7. Plasmid Construction
4.8. Cell Transfection
4.9. Western Blotting
4.10. Immunofluorescence of MMP and Membrane Costaining
4.11. Immunofluorescence
4.12. RNA Interference
4.13. Hematoxylin–Eosin (H&E) Staining
4.14. Biotin-Streptavidin Immunofluorescence
4.15. Treatment
4.16. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clermont, Y.; Oko, R.; Hermo, L. Immunocytochemical localization of proteins utilized in the formation of outer dense fibers and fibrous sheath in rat spermatids: An electron microscope study. Anat. Rec. 1990, 227, 447–457. [Google Scholar] [CrossRef]
- Abou-Haila, A.; Tulsiani, D.R.P. Mammalian sperm acrosome: Formation, contents, and function. Arch. Biochem. Biophys. 2000, 379, 173–182. [Google Scholar] [CrossRef]
- Kaur, G.; Thompson, L.A.; Dufour, J.M. Sertoli cells—Immunological sentinels of spermatogenesis. Semin. Cell Dev. Biol. 2014, 30, 36–44. [Google Scholar] [CrossRef]
- Wu, S.; Yan, M.; Ge, R.; Cheng, C.Y. Crosstalk between Sertoli and germ cells in male fertility. Trends Mol. Med. 2020, 26, 215–231. [Google Scholar] [CrossRef]
- Toyama, Y.; Ohkawa, M.; Oku, R.; Maekawa, M.; Yuasa, H. Neonatally administered diethylstilbestrol retards the development of the blood-testis barrier in the rat. J. Androl. 2001, 22, 413–423. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Mruk, D.D. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol. Rev. 2002, 82, 825–874. [Google Scholar] [CrossRef]
- Mruk, D.D.; Cheng, C.Y. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr. Rev. 2004, 25, 747–806. [Google Scholar] [CrossRef]
- Stanton, P.G. Regulation of the blood-testis barrier. Semin. Cell Dev. Biol. 2016, 59, 166–173. [Google Scholar] [CrossRef]
- Lie, P.P.Y.; Cheng, C.Y.; Mruk, D.D. Signalling pathways regulating the blood-testis barrier. Int. J. Biochem. Cell Biol. 2013, 45, 621–625. [Google Scholar] [CrossRef]
- Mazaud-Guittot, S.; Meugnier, E.; Pesenti, S.; Wu, X.; Vidal, H.; Gow, A.; Le Magueresse-Battistoni, B. Claudin 11 deficiency in mice results in loss of the Sertoli cell epithelial phenotype in the testis. Biol. Reprod. 2010, 82, 202–213. [Google Scholar] [CrossRef]
- Bulldan, A.; Dietze, R.; Shihan, M.; Scheiner-Bobis, G. Non-classical testosterone signaling mediated through ZIP9 stimulates claudin expression and tight junction formation in Sertoli cells. Cell. Signal 2016, 28, 1075–1085. [Google Scholar] [CrossRef]
- Moller, M.-L.; Bulldan, A.; Scheiner-Bobis, G. Tetrapeptides modelled to the androgen binding site of ZIP9 stimulate expression of tight junction proteins and tight junction formation in Sertoli cells. Biology 2021, 11, 55. [Google Scholar] [CrossRef]
- Yan, H.H.N.; Mruk, D.D.; Wong, E.W.P.; Lee, W.M.; Cheng, C.Y. An autocrine axis in the testis that coordinates spermiation and blood–testis barrier restructuring during spermatogenesis. Proc. Natl. Acad. Sci. USA 2008, 105, 8950–8955. [Google Scholar] [CrossRef]
- Mok, K.-W.; Mruk, D.D.; Cheng, C.Y. rpS6 regulates blood-testis barrier dynamics through Akt-mediated effects on MMP-9. J. Cell. Sci. 2014, 127 Pt 22, 4870–4882. [Google Scholar] [CrossRef]
- Cai, H.; Cai, W.; Xue, Y.; Shang, X.; Liu, J.; Li, Z.; Wang, P.; Liu, L.; Hu, Y.; Liu, Y. Roundabout 4 regulates blood-tumor barrier permeability through the modulation of ZO-1, Occludin, and Claudin-5 expression. J. Neuropathol. Exp. Neurol. 2015, 74, 25–37. [Google Scholar] [CrossRef]
- Yao, P.-L.; Lin, Y.-C.; Richburg, J.H. Mono-(2-ethylhexyl) phthalate-induced disruption of junctional complexes in the seminiferous epithelium of the rodent testis is mediated by MMP2. Biol. Reprod. 2010, 82, 516–527. [Google Scholar] [CrossRef]
- Chen, K.-Q.; Wei, B.-H.; Hao, S.-L.; Yang, W.-X. The PI3K/AKT signaling pathway: How does it regulate development of Sertoli cells and spermatogenic cells? Histol. Histopathol. 2022, 37, 621–636. [Google Scholar] [CrossRef]
- Deng, C.-Y.; Lv, M.; Luo, B.-H.; Zhao, S.-Z.; Mo, Z.-C.; Xie, Y.-J. The role of the PI3K/AKT/mTOR signalling pathway in male reproduction. Curr. Mol. Med. 2021, 21, 539–548. [Google Scholar] [CrossRef]
- Smith, L.B.; Walker, W.H. The regulation of spermatogenesis by androgens. Semin. Cell Dev. Biol. 2014, 30, 2–13. [Google Scholar] [CrossRef]
- Luo, D.; He, Z.; Yu, C.; Guan, Q. Role of p38 MAPK signalling in testis development and male fertility. Oxid. Med. Cell. Longev. 2022, 2022, 6891897. [Google Scholar] [CrossRef]
- Almog, T.; Naor, Z. Mitogen activated protein kinases (MAPKs) as regulators of spermatogenesis and spermatozoa functions. Mol. Cell. Endocrinol. 2008, 282, 39–44. [Google Scholar] [CrossRef]
- Ni, F.D.; Hao, S.L.; Yang, W.X. Multiple signaling pathways in Sertoli cells: Recent findings in spermatogenesis. Cell Death. Dis. 2019, 10, 541–555. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Bu, T.; Wu, X.; Li, L.; Gao, S.; Yun, D.; Zhang, Y.; Chen, H.; Sun, F.; et al. Cadmium-induced Sertoli cell injury through p38-MAPK and related signaling proteins—A study by RNA sequencing. Endocrinology 2023, 164, bqad045. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, Q.; Ouyang, Y.; Lou, Y.; Cui, H.; Deng, H.; Zhu, Y.; Geng, Y.; Ouyang, P.; Chen, L.; et al. Nickel induces blood-testis barrier damage through ROS-mediated p38 MAPK pathways in mice. Redox Biol. 2023, 67, 102886. [Google Scholar] [CrossRef]
- Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced testicular injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef]
- Lu, T.; Ling, C.; Hu, M.; Meng, X.; Deng, Y.; An, Y.; Li, L.; Hu, Y.; Wang, H.; Song, G.; et al. Effect of nano-titanium dioxide on blood-testis barrier and MAPK signaling pathway in male mice. Biol. Trace Elem. Res. 2021, 199, 2961–2971. [Google Scholar] [CrossRef]
- Lu, Y.; Luo, B.; Li, J.; Dai, J. Perfluorooctanoic acid disrupts the blood-testis barrier and activates the TNFalpha/p38 MAPK signaling pathway in vivo and in vitro. Arch. Toxicol. 2016, 90, 971–983. [Google Scholar] [CrossRef]
- Liu, J.; Ren, L.; Wei, J.; Zhang, J.; Zhu, Y.; Li, X.; Jing, L.; Duan, J.; Zhou, X.; Sun, Z. Fine particle matter disrupts the blood-testis barrier by activating TGF-beta3/p38 MAPK pathway and decreasing testosterone secretion in rat. Environ. Toxicol. 2018, 33, 711–719. [Google Scholar] [CrossRef]
- Shupe, J.; Cheng, J.; Puri, P.; Kostereva, N.; Walker, W.H. Regulation of Sertoli-germ cell adhesion and sperm release by FSH and nonclassical testosterone signaling. Mol. Endocrinol. 2011, 25, 238–252. [Google Scholar] [CrossRef]
- Chapin, R.E.; Wine, R.N.; Harris, M.W.; Borchers, C.H.; Haseman, J.K. Structure and control of a cell-cell adhesion complex associated with spermiation in rat seminiferous epithelium. J. Androl. 2001, 22, 1030–1052. [Google Scholar] [CrossRef]
- Crépieux, P.; Marion, S.; Martinat, N.; Fafeur, V.; Le Vern, Y.; Kerboeuf, D.; Guillou, F.; Reiter, E. The ERK-dependent signalling is stage-specifically modulated by FSH, during primary Sertoli cell maturation. Oncogene 2001, 20, 4696–4709. [Google Scholar] [CrossRef]
- Crepieux, P.; Martinat, N.; Marion, S.; Guillou, F.; Reiter, E. Cellular adhesion of primary Sertoli cells affects responsiveness of the extracellular signal-regulated kinases 1 and 2 to follicle-stimulating hormone but not to epidermal growth factor. Arch. Biochem. Biophys. 2002, 399, 245–250. [Google Scholar] [CrossRef]
- Siu, M.K.Y.; Lee, W.M.; Cheng, C.Y. The interplay of collagen IV, tumor necrosis factor-alpha, gelatinase B (matrix metalloprotease-9), and tissue inhibitor of metalloproteases-1 in the basal lamina regulates Sertoli cell-tight junction dynamics in the rat testis. Endocrinology 2003, 144, 371–387. [Google Scholar] [CrossRef]
- Wong, C.H.; Mruk, D.D.; Siu, M.K.Y.; Cheng, C.Y. Blood-testis barrier dynamics are regulated by alpha2-macroglobulin via the c-Jun N-terminal protein kinase pathway. Endocrinology 2005, 146, 1893–1908. [Google Scholar] [CrossRef]
- Peng, B.X.; Li, F.; Mortimer, M.; Xiao, X.; Ni, Y.; Lei, Y.; Li, M.; Guo, L.H. Perfluorooctanoic acid alternatives hexafluoropropylene oxides exert male reproductive toxicity by disrupting blood-testis barrier. Sci. Total Environ. 2022, 846, 157313. [Google Scholar] [CrossRef]
- Miao, C.; Wang, Z.; Wang, X.; Huang, W.; Gao, X.; Cao, Z. Deoxynivalenol induces blood—Testis barrier dysfunction through disrupting p38 signaling pathway-mediated tight junction protein expression and distribution in mice. J. Agric. Food Chem. 2023, 71, 12829–12838. [Google Scholar] [CrossRef]
- Huang, Y.; Nie, X.-M.; Zhu, Z.-J.; Zhang, X.; Li, B.-Z.; Ge, J.-C.; Ren, Q. A novel JNK induces innate immune response by activating the expression of antimicrobial peptides in Chinese mitten crab Eriocheir sinensis. Mol. Immunol. 2021, 138, 76–86. [Google Scholar] [CrossRef]
- Zhu, Y.-T.; Zhang, X.; Wang, S.-C.; Li, W.-W.; Wang, Q. Antimicrobial functions of EsLecH, a C-type lectin, via JNK pathway in the Chinese mitten crab, Eriocheir sinensis. Dev. Comp. Immunol. 2016, 61, 225–235. [Google Scholar] [CrossRef]
- Sun, W.-J.; Zhu, M.; Wang, Y.-L.; Li, Q.; Yang, H.-D.; Duan, Z.-L.; He, L.; Wang, Q. ERK is involved in the process of acrosome reaction in vitro of the Chinese mitten crab, Eriocheir sinensis. Mar. Biotechnol. 2015, 17, 305–316. [Google Scholar] [CrossRef]
- Zhu, M.; Sun, W.-J.; Wang, Y.-L.; Li, Q.; Yang, H.-D.; Duan, Z.-L.; He, L.; Wang, Q. P38 participates in spermatogenesis and acrosome reaction prior to fertilization in Chinese mitten crab Eriocheir sinensis. Gene 2015, 559, 103–111. [Google Scholar] [CrossRef]
- Li, Z.F.; Hao, S.L.; Wang, L.M.; Qi, H.Y.; Wang, J.M.; Tan, F.Q.; Yang, W.X. mTORC1/C2 regulate spermatogenesis in Eriocheir sinensis via alterations in the actin filament network and cell junctions. Cell Tissue. Res. 2022, 390, 293–313. [Google Scholar] [CrossRef]
- Qi, H.-Y.; Li, Z.-F.; Wang, L.-M.; Zhao, Z.; Wang, J.-M.; Tan, F.-Q.; Yang, W.-X. Myosin VI stabilizes intercellular junctions in the testis through the LHR and MAPK signalling pathway during spermatogenesis in Eriocheir sinensis. Int. J. Biol. Macromol. 2023, 248, 125842. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, X.; Zhang, X.; Zhang, Y.; Gu, J.; Chen, M.; Zhang, Z.; Wang, X.; Wang, S.L. Sertoli cell is a potential target for perfluorooctane sulfonate—Induced reproductive dysfunction in male mice. Toxicol. Sci. 2013, 135, 229–240. [Google Scholar] [CrossRef]
- Li, R.; Meng, Q.; Huang, J.; Wang, S.; Sun, J. MMP-14 regulates innate immune responses to Eriocheir sinensis via tissue degradation. Fish. Shellfish. Immunol. 2020, 99, 301–309. [Google Scholar] [CrossRef]
- Kalachev, A.V. An ultrastructural study of testes permeability in sea urchins, Strongylocentrotus intermedius. Micron 2015, 68, 66–69. [Google Scholar] [CrossRef]
- de Jong-Brink, M.; de With, N.D.; Hurkmans, P.J.M.; Bergamin Sassen, M.J.M. A morphological, enzyme-cytochemical, and physiological study of the blood-gonad barrier in the hermaphroditic snail Lymnaea stagnalis. Cell Tissue. Res. 1984, 235, 593–600. [Google Scholar] [CrossRef]
- Marcaillou, C.; Szollosi, A. The “blood-testis” barrier in a nematode and a fish a generalizable concept. J. Ultrastruct. Res. 1980, 70, 128–136. [Google Scholar] [CrossRef]
- Harvey, M.C.; Hinsch, G.W.; Cameron, D.F. Sites of lanthanum occlusion in the testis of the crayfish Procambarus paeninsulanus (Crustacea:Cambaridae). Tissue Cell 2001, 33, 562–569. [Google Scholar] [CrossRef]
- Carlson, S.D.; Juang, J.-L.; Hilgers, S.L.; Garment, M.B. Blood barriers of the insect. Annu. Rev. Entomol. 2000, 45, 151–174. [Google Scholar] [CrossRef]
- Johnson, G.L.; Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002, 298, 1911–1912. [Google Scholar] [CrossRef]
- Nagao, Y. Definitive expression of c-mos in late meiotic prophase leads to phosphorylation of a 34 kda protein in cultured rat spermatocytes. Cell Biol. Int. 2002, 26, 193–201. [Google Scholar] [CrossRef]
- Xia, W.; Cheng, C.Y. TGF-β3 regulates anchoring junction dynamics in the seminiferous epithelium of the rat testis via the Ras/ERK signaling pathway: An in vivo study. Dev. Biol. 2005, 280, 321–343. [Google Scholar] [CrossRef]
- Tomsig, J.L.; Usanovic, S.; Turner, T.T. Growth factor-stimulated mitogen-activated kinase (MAPK) phosphorylation in the rat epididymis is limited by segmental boundaries. Biol. Reprod. 2006, 75, 598–604. [Google Scholar] [CrossRef]
- Wan, C.; Chen, W.; Cui, Y.; He, Z. MAP4K4/JNK signaling pathway stimulates proliferation and suppresses apoptosis of human spermatogonial stem cells and lower level of MAP4K4 is associated with male infertility. Cell 2022, 11, 3807. [Google Scholar] [CrossRef]
- Oatley, J.M.; Brinster, R.L. The germline stem cell niche unit in mammalian testes. Physiol. Rev. 2012, 92, 577–595. [Google Scholar] [CrossRef]
- Xia, W.; Mruk, D.D.; Lee, W.M.; Cheng, C.Y. Differential interactions between transforming growth factor-β3/TβR1, TAB1, and CD2AP disrupt blood-testis barrier and Sertoli-germ cell adhesion. J. Biol. Chem. 2006, 281, 16799–16813. [Google Scholar] [CrossRef]
- Meroni, M.N.; Riera, M.F.; Regueira, M.; Pellizzari, E.H.; Cigorraga, S.B.; Meroni, S.B. Different signal transduction pathways elicited by basic fibroblast growth factor and interleukin 1β regulate CREB phosphorylation in Sertoli cells. J. Endocrinol. Investig. 2013, 36, 331–338. [Google Scholar] [CrossRef]
- Liu, B.; Wu, S.-D.; Shen, L.-J.; Zhao, T.-X.; Wei, Y.; Tang, X.-L.; Long, C.-l.; Zhou, Y.; He, D.-W.; Lin, T.; et al. Spermatogenesis dysfunction induced by PM2.5 from automobile exhaust via the ROS-mediated MAPK signaling pathway. Ecotoxicol. Environ. Saf. 2019, 167, 161–168. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Chen, R.; Jiang, X.; He, J.; Li, C. TAK1 confers antibacterial protection through mediating the activation of MAPK and NF-κB pathways in shrimp. Fish Shellfish Immunol. 2022, 123, 248–256. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Jiao, Y.; Chen, Q.; Wu, D.; Yu, P.; Li, Y.; Cai, M.; Zhao, Y. Polystyrene nanoplastic induces ROS production and affects the MAPK-HIF-1/NFkB-mediated antioxidant system in Daphnia pulex. Aquat. Toxicol. 2020, 220, 105420. [Google Scholar] [CrossRef]
- Siu, M.K.Y.; Cheng, C.Y. Extracellular matrix and its role in spermatogenesis. In Molecular Mechanisms in Spermatogenesis; Yan, C.C., Ed.; Adbances in Experinmental Meidcine and Biology; Springer: New York, NY, USA, 2008; Volume 636, pp. 74–91. [Google Scholar]
- Li, Y.; Chen, Y.; Wu, W.; Li, N.; Hua, J. MMPs, ADAMs and ADAMTSs are associated with mammalian sperm fate. Theriogenology 2023, 200, 147–154. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, Y.; Xia, Y.; Meng, X.; Jin, H.; Wang, B.; Chen, Y.; Qiu, J.; Wu, J.; Ding, J.; et al. Maternal exposure to Di-n-butyl phthalate promotes the formation of testicular tight junctions through downregulation of NF-κB/COX-2/PGE2/MMP-2 in mouse offspring. Environ. Sci. Technol. 2020, 54, 8245–8258. [Google Scholar] [CrossRef]
- Lone, Y.; Koiri, R.K.; Bhide, M. An overview of the toxic effect of potential human carcinogen Microcystin-LR on testis. Toxicol. Rep. 2015, 2, 289–296. [Google Scholar] [CrossRef]
- Nakada, M.; Nakamura, H.; Ikeda, E.; Fujimoto, N.; Yamashita, J.; Sato, H.; Seiki, M.; Okada, Y. Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors. Am. J. Pathol. 1999, 154, 417–428. [Google Scholar] [CrossRef]
- Salo, M.; Kainulainenl, T.; Hurskainen, T.; Vesterlund, E.; Alexander, J.; Overall, C.; Sorsa, T.; Salo, T. Expression of matrix metalloproteinases (MMP-1 and -2) and their inhibitors (TIMP-1, -2 and -3) in oral lichen planus, dysplasia, squamous cell carcinoma and lymph node metastasis. Br. J. Cancer 1998, 77, 2239–2245. [Google Scholar] [CrossRef]
- Ulasov, I.; Yi, R.; Guo, D.; Sarvaiya, P.; Cobbs, C. The emerging role of MMP14 in brain tumorigenesis and future therapeutics. Biochim. Biophys. Acta 2014, 1846, 113–120. [Google Scholar] [CrossRef]
- Munshi, H.G.; Wu, Y.L.; Mukhopadhyay, S.; Ottaviano, A.J.; Sassano, A.; Koblinski, J.E.; Platanias, L.C.; Stack, M.S. Differential regulation of membrane type 1-matrix metalloproteinase activity by ERK 1/2- and p38 MAPK-modulated tissue inhibitor of metalloproteinases 2 expression controls transforming growth factor-beta1-induced pericellular collagenolysis. J. Biol. Chem. 2004, 279, 39042–39050. [Google Scholar] [CrossRef]
- Yu, G.; Tang, Z.; Chen, H.; Chen, Z.; Wang, L.; Cao, H.; Wang, G.; Xing, J.; Shen, H.; Cheng, Q.; et al. Long-term exposure to 4G smartphone radiofrequency electromagnetic radiation diminished male reproductive potential by directly disrupting Spock3–MMP2-BTB axis in the testes of adult rats. Sci. Total Environ. 2020, 698, 133860. [Google Scholar] [CrossRef]
- Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 2001, 17, 463–516. [Google Scholar] [CrossRef]
- Joe Scobey, M.; Bertera, S.; Somers, J.P.; Watkins, S.C.; Zeleznik, A.J.; Walker, W.H. Delivery of a cyclic adenosine 3′,5′-monophosphate response element-binding protein (creb) mutant to seminiferous tubules results in impaired spermatogenesis. Endocrinology 2001, 142, 948–954. [Google Scholar] [CrossRef]
- Walker, W.H. Non-classical actions of testosterone and spermatogenesis. Philos. Trans. R. Soc. Lond. 2010, 365, 1557–1569. [Google Scholar] [CrossRef]
- Konno, T.; Kohno, T.; Kikuchi, S.; Shimada, H.; Satohisa, S.; Saito, T.; Kondoh, M.; Kojima, T. Epithelial barrier dysfunction and cell migration induction via JNK/cofilin/actin by angubindin-1. Tissue Barriers 2020, 8, 1695475. [Google Scholar] [CrossRef]
- Ulu, A.; Oh, W.; Zuo, Y.; Frost, J.A. Stress-activated MAPKs and CRM1 regulate the subcellular localization of Net1A to control cell motility and invasion. J. Cell Sci. 2018, 131, jcs204644. [Google Scholar] [CrossRef]
- Benoit, B.; Baillet, A.; Pous, C. Cytoskeleton and associated proteins: Pleiotropic JNK substrates and regulators. Int. J. Mol. Sci. 2021, 22, 8375. [Google Scholar] [CrossRef]
Primers | Primer Sequence (5′-3′) | Purpose | |
---|---|---|---|
Forward | Reverse | ||
MMP21-1 | GAAAGTCCTTCCAAAGCC | TTATCCTCAGTAGGTGCCC | Clone |
MMP21-2 | GTGAGGTGCCAGGAAACGA | CGTCATACCCGTAGACCTTC | Clone |
MMP21-3 | ATGGCTACTTGGACTGTGTG | TCCTGATGTGAATCTGGCT | Clone |
MMP21-nested-outer | GTTTGAGTGGGGTGGTCTGCCTG | 3′ RACE | |
MMP21-nested-inner1 | ACGCACGCAAGACATTCACCTGG | 3′ RACE | |
MMP21-nested-inner2 | AATGGACGCATCATCCCCAACAAC | 3′ RACE | |
CREB-1 | CATCTTCCAGTAGGAGTTCG | TGCTGCTTCCCTGTTTTT | Clone |
CREB-2 | TCTCAGCCCTCAAACTCA | CAGTGGATGTGTATAAGGGTT | Clone |
ERK-RT | TGAAGCCATCAAACCTCCTC | ATGCAGCCCACAGACCAA | sqPCR |
JNK-RT | AAAACCGTCCCCGCTACC | CCTCCGCTTCATCATACCAAA | sqPCR |
p38 MAPK-RT | TGTCTCCTGTGGGCTCCG | CCGATGATATTCTCGTGGTCC | sqPCR |
MMP14-RT | AGGCACCAACCTCTTCCA | TCGTCTTCGTCCAGACTGAA | sqPCR |
MMP21-RT | AGGGCACCTACTGAGGATAA | GCGACGCTTAGAGTCAATGTA | sqPCR |
CREB-RT | TATCAGACAAGGGCGACG | GCAGCAACTGGGACAATG | sqPCR |
α-catenin-RT | TTGTTGGCGTGCTCAGTG | CATCCTCCAAAATGTGACTCTC | sqPCR |
zo-1-RT | TGTCAGAAACTAAGCCCGT | TAGGCACAATAGGTGGTTTC | sqPCR |
β-actin-RT | CGAGGCTACACCTTCACGAC | ACGCGGCAGTGGTCATTT | sqPCR |
JNK-AB | cagcaaatgggtcgcggatccTATGTTGAAAACCGTCCCCG | ttgtcgacggagctcgaattcGCAGCAGCATTAGTGGCAGTT | Prokaryotic expression |
p38 MAPK-AB | cagcaaatgggtcgcggatccATTTTGGACTTTGGGCTGGC | ttgtcgacggagctcgaattcGCAATAACTGTAGGCTTGGGTTG | Prokaryotic expression |
MMP14-AB | cagcaaatgggtcgcggatccAACCTCTTCCAAGTAGCCGCC | ttgtcgacggagctcgaattcAAGTAGATTTTCCCGTTTCCGG | Prokaryotic expression |
MMP21-AB | cagcaaatgggtcgcggatccCCCACCGTTGGGTTACTGTCG | ttgtcgacggagctcgaattcCCGATGCTGATGTCAACCGTG | Prokaryotic expression |
CREB-AB | cagcaaatgggtcgcggatccCAGCCAAGTGTCATCCAGAGC | ttgtcgacggagctcgaattcGCAGCAACTGGGACAATGAAC | Prokaryotic expression |
ERK-ds-1 | gtgacgcgtggatcccccgggATCCCCATTTGAGCACCAGA | ctatagggcgaattgggtaccTTGGACAACATCTCAGCAAGGA | dsRNA |
JNK-ds-1 | gtgacgcgtggatcccccgggGCCACGCCCAGCAACTCT | ctatagggcgaattgggtaccAATGAAGATGCTTGATGCCACA | dsRNA |
JNK-ds-2 | gtgacgcgtggatcccccgggTGTGGCATCAAGCATCTTCATT | ctatagggcgaattgggtaccCCTCCGCTTCATCATACCAAA | dsRNA |
p38 MAPK-ds-1 | gtgacgcgtggatcccccgggAAGATTTTGGACTTTGGGCTGG | ctatagggcgaattgggtaccTAGGTAGGGATGGGCAAGGG | dsRNA |
MMP14-ds-1 | gtgacgcgtggatcccccgggAGGCACCAACCTCTTCCAAGT | ctatagggcgaattgggtaccCCACGCCGTCATCTGTAAGC | dsRNA |
MMP14-ds-2 | gtgacgcgtggatcccccgggACCAAGCCCAATGCGATAAC | ctatagggcgaattgggtaccAGTGAGCGTCTCCTCCGTAGATT | dsRNA |
MMP21-ds-1 | gtgacgcgtggatcccccgggAGGGCACCTACTGAGGATAAATCA | ctatagggcgaattgggtaccCTCCTGATGTGAATCTGGCTTGG | dsRNA |
MMP21-ds-2 | gtgacgcgtggatcccccgggGGGGTGGAATGACCGAAAGC | ctatagggcgaattgggtaccCGATGTTGTTGGGGATGATGC | dsRNA |
CREB-ds-1 | gtgacgcgtggatcccccgggAACAGCCTTCTCAGCCCTCAA | ctatagggcgaattgggtaccGCAGCAACTGGGACAATGAAC | dsRNA |
CREB-ds-2 | gtgacgcgtggatcccccgggAAAACAGCCTTCTCAGCCCTC | ctatagggcgaattgggtaccAGCCACTCAAGTCCCCAGCA | dsRNA |
GFP-ds-1 | gtgacgcgtggatcccccgggCGACGTAAACGGCCACAAGTT | ctatagggcgaattgggtaccGATGGGGGTGTTCTGCTGGTAG | dsRNA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, H.-Y.; Zhao, Z.; Wei, B.-H.; Li, Z.-F.; Tan, F.-Q.; Yang, W.-X. ERK/CREB and p38 MAPK/MMP14 Signaling Pathway Influences Spermatogenesis through Regulating the Expression of Junctional Proteins in Eriocheir sinensis Testis. Int. J. Mol. Sci. 2024, 25, 7361. https://doi.org/10.3390/ijms25137361
Qi H-Y, Zhao Z, Wei B-H, Li Z-F, Tan F-Q, Yang W-X. ERK/CREB and p38 MAPK/MMP14 Signaling Pathway Influences Spermatogenesis through Regulating the Expression of Junctional Proteins in Eriocheir sinensis Testis. International Journal of Molecular Sciences. 2024; 25(13):7361. https://doi.org/10.3390/ijms25137361
Chicago/Turabian StyleQi, Hong-Yu, Zhan Zhao, Bang-Hong Wei, Zhen-Fang Li, Fu-Qing Tan, and Wan-Xi Yang. 2024. "ERK/CREB and p38 MAPK/MMP14 Signaling Pathway Influences Spermatogenesis through Regulating the Expression of Junctional Proteins in Eriocheir sinensis Testis" International Journal of Molecular Sciences 25, no. 13: 7361. https://doi.org/10.3390/ijms25137361