Associations of Circulating Biomarkers with Disease Risks: A Two-Sample Mendelian Randomization Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods and Materials
4.1. Datasets
4.2. MR Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruzickova, M.; Slaney, C.; Garnham, J.; Alda, M. Clinical Features of Bipolar Disorder with and Without Comorbid Diabetes Mellitus. Can. J. Psychiatry 2003, 48, 431–502. [Google Scholar] [CrossRef]
- Calkin, C.V.; Ruzickova, M.; Uher, R.; Hajek, T.; Slaney, C.M.; Garnham, J.S.; O’Donovan, M.C.; Alda, M. Insulin resistance and outcome in bipolar disorder. Br. J. Psychiatry 2015, 206, 52–57. [Google Scholar] [CrossRef]
- Lojko, D.; Owecki, M.; Suwalska, A. Impaired Glucose Metabolism in Bipolar Patients: The Role of Psychiatrists in Its Detection and Management. Int. J. Environ. Res. Public Health 2019, 16, 1132. [Google Scholar] [CrossRef]
- Beeghly-Fadiel, A.; Khankari, N.K.; Delahanty, R.J.; Shu, X.O.; Lu, Y.; Schmidt, M.K.; Bolla, M.K.; Michailidou, K.; Wang, Q.; Dennis, J.; et al. A Mendelian randomization analysis of circulating lipid traits and breast cancer risk. Int. J. Epidemiol. 2020, 49, 1117–1131. [Google Scholar] [CrossRef]
- Burgess, S.; Harshfield, E. Mendelian randomization to assess causal effects of blood lipids on coronary heart disease: Lessons from the past and applications to the future. Curr. Opin. Endocrinol. Diabetes Obes. 2016, 23, 124–130. [Google Scholar] [CrossRef]
- Holmes, M.V.; Asselbergs, F.W.; Palmer, T.M.; Drenos, F.; Lanktree, M.B.; Nelson, C.P.; Dale, C.E.; Padmanabhan, S.; Finan, C.; Swerdlow, D.I.; et al. Mendelian randomization of blood lipids for coronary heart disease. Eur. Heart J. 2015, 36, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.G.; Wei, Y.; Tall, A.R. Lipid and metabolic syndrome traits in coronary artery disease: A Mendelian randomization study. J. Lipid Res. 2021, 62, 100044. [Google Scholar] [CrossRef]
- Larsson, S.C.; Traylor, M.; Markus, H.S. Homocysteine and small vessel stroke: A mendelian randomization analysis. Ann. Neurol. 2019, 85, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; In, S.; Park, T. The Homocysteine and Metabolic Syndrome: A Mendelian Randomization Study. Nutrients 2021, 13, 2440. [Google Scholar] [CrossRef]
- Jager, S.; Cuadrat, R.; Wittenbecher, C.; Floegel, A.; Hoffmann, P.; Prehn, C.; Adamski, J.; Pischon, T.; Schulze, M.B. Mendelian Randomization Study on Amino Acid Metabolism Suggests Tyrosine as Causal Trait for Type 2 Diabetes. Nutrients 2020, 12, 3890. [Google Scholar] [CrossRef]
- Julkunen, H.; Cichonska, A.; Tiainen, M.; Koskela, H.; Nybo, K.; Makela, V.; Nokso-Koivisto, J.; Kristiansson, K.; Perola, M.; Salomaa, V.; et al. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat. Commun. 2023, 14, 604. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.Y.; Fauman, E.B.; Petersen, A.K.; Krumsiek, J.; Santos, R.; Huang, J.; Arnold, M.; Erte, I.; Forgetta, V.; Yang, T.P.; et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 2014, 46, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Roederer, M.; Quaye, L.; Mangino, M.; Beddall, M.H.; Mahnke, Y.; Chattopadhyay, P.; Tosi, I.; Napolitano, L.; Terranova Barberio, M.; Menni, C.; et al. The genetic architecture of the human immune system: A bioresource for autoimmunity and disease pathogenesis. Cell 2015, 161, 387–403. [Google Scholar] [CrossRef] [PubMed]
- Kettunen, J.; Demirkan, A.; Wurtz, P.; Draisma, H.H.; Haller, T.; Rawal, R.; Vaarhorst, A.; Kangas, A.J.; Lyytikainen, L.P.; Pirinen, M.; et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 2016, 7, 11122. [Google Scholar] [CrossRef]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018, 7, e34408. [Google Scholar] [CrossRef] [PubMed]
- Elsworth, B.; Lyon, M.; Alexander, T.; Liu, Y.; Matthews, P.; Hallett, J.; Bates, P.; Palmer, T.; Haberland, V.; Smith, G.D.; et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv 2020. [Google Scholar] [CrossRef]
- Adams, C.D.; Boutwell, B.B. Using multiple Mendelian randomization approaches and genetic correlations to understand obesity, urate, and gout. Sci. Rep. 2021, 11, 17799. [Google Scholar] [CrossRef] [PubMed]
- Ference, B.A. Mendelian randomization studies: Using naturally randomized genetic data to fill evidence gaps. Curr. Opin. Lipidol. 2015, 26, 566–571. [Google Scholar] [CrossRef]
- Wang, S.; Zha, L.; Chen, J.; Du, D.; Liu, D.; Zhong, M.; Shang, R.; Sun, D.; Sun, C.; Jin, E. The relationship between lipoprotein(a) and risk of cardiovascular disease: A Mendelian randomization analysis. Eur. J. Med. Res. 2022, 27, 211. [Google Scholar] [CrossRef] [PubMed]
- Richardson, T.G.; Sanderson, E.; Palmer, T.M.; Ala-Korpela, M.; Ference, B.A.; Davey Smith, G.; Holmes, M.V. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis. PLoS Med. 2020, 17, e1003062. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, B.G.; Langsted, A. Lipoprotein (a) as a cause of cardiovascular disease: Insights from epidemiology, genetics, and biology. J. Lipid Res. 2016, 57, 1953–1975. [Google Scholar] [CrossRef]
- Pham, K.; Mulugeta, A.; Lumsden, A.; Hyppönen, E. Genetically instrumented LDL-cholesterol lowering and multiple disease outcomes: A Mendelian randomization phenome-wide association study in the UK Biobank. Br. J. Clin. Pharmacol. 2023, 89, 2992–3004. [Google Scholar] [CrossRef]
- Peters, S.A.; Singhateh, Y.; Mackay, D.; Huxley, R.R.; Woodward, M. Total cholesterol as a risk factor for coronary heart disease and stroke in women compared with men: A systematic review and meta-analysis. Atherosclerosis 2016, 248, 123–131. [Google Scholar] [CrossRef]
- Kim, M.K.; Han, K.; Kim, H.S.; Park, Y.M.; Kwon, H.S.; Yoon, K.H.; Lee, S.H. Cholesterol variability and the risk of mortality, myocardial infarction, and stroke: A nationwide population-based study. Eur. Heart J. 2017, 38, 3560–3566. [Google Scholar] [CrossRef]
- Walldius, G.; Jungner, I.; Holme, I.; Aastveit, A.H.; Kolar, W.; Steiner, E. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): A prospective study. Lancet 2001, 358, 2026–2033. [Google Scholar] [CrossRef]
- Park, S.; Lee, S.; Kim, Y.; Cho, S.; Huh, H.; Kim, K.; Kim, Y.C.; Han, S.S.; Lee, H.; Lee, J.P.; et al. Mendelian randomization reveals causal effects of kidney function on various biochemical parameters. Commun. Biol. 2022, 5, 713. [Google Scholar] [CrossRef]
- Levey, A.S.; de Jong, P.E.; Coresh, J.; El Nahas, M.; Astor, B.C.; Matsushita, K.; Gansevoort, R.T.; Kasiske, B.L.; Eckardt, K.U. The definition, classification, and prognosis of chronic kidney disease: A KDIGO Controversies Conference report. Kidney Int. 2011, 80, 17–28. [Google Scholar] [CrossRef]
- Mansur, R.B.; Rizzo, L.B.; Santos, C.M.; Asevedo, E.; Cunha, G.R.; Noto, M.N.; Pedrini, M.; Zeni, M.; Cordeiro, Q.; McIntyre, R.S.; et al. Impaired glucose metabolism moderates the course of illness in bipolar disorder. J. Affect. Disord. 2016, 195, 57–62. [Google Scholar] [CrossRef]
- Vancampfort, D.; Mitchell, A.J.; De Hert, M.; Sienaert, P.; Probst, M.; Buys, R.; Stubbs, B. Prevalence and predictors of type 2 diabetes mellitus in people with bipolar disorder: A systematic review and meta-analysis. J. Clin. Psychiatry 2015, 76, 1490–1499. [Google Scholar] [CrossRef]
- Liao, L.Z.; Li, W.D.; Liu, Y.; Li, J.P.; Zhuang, X.D.; Liao, X.X. Exploring the causal pathway from omega-6 levels to coronary heart disease: A network Mendelian randomization study. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 233–240. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, S.; He, M.; Fan, S.; Tao, X.; Lu, W. Lipid Metabolism Traits Mediate the Effect of Psoriasis on Myocardial Infarction Risk: A Two-Step Mendelian Randomization Study. Metabolites 2023, 13, 976. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Chen, Q.; Li, Y. Associations of serum cystatin C with depressive symptoms and suicidal ideation in major depressive disorder. BMC Psychiatry 2021, 21, 576. [Google Scholar] [CrossRef]
- Dastych, M.; Synek, O.; Gottwaldova, J. Impact of Long-Term Lithium Treatment on Renal Function in Patients With Bipolar Disorder Based on Novel Biomarkers. J. Clin. Psychopharmacol. 2019, 39, 238–242. [Google Scholar] [CrossRef]
- Campbell, I.H.; Campbell, H.; Smith, D.J. Insulin signaling as a therapeutic mechanism of lithium in bipolar disorder. Transl. Psychiatry 2022, 12, 350. [Google Scholar] [CrossRef] [PubMed]
- Gabbouj, S.; Ryhänen, S.; Marttinen, M.; Wittrahm, R.; Takalo, M.; Kemppainen, S.; Martiskainen, H.; Tanila, H.; Haapasalo, A.; Hiltunen, M.; et al. Altered Insulin Signaling in Alzheimer’s Disease Brain–Special Emphasis on PI3K-Akt Pathway. Front. Neurosci. 2019, 13, 629. [Google Scholar] [CrossRef]
- Moorhead, T.W.J.; McKirdy, J.; Sussmann, J.E.D.; Hall, J.; Lawrie, S.M.; Johnstone, E.C.; McIntosh, A.M. Progressive Gray Matter Loss in Patients with Bipolar Disorder. Biol. Psychiatry 2007, 62, 894–900. [Google Scholar] [CrossRef]
- Huang, J.; Tao, Q.; Ang, T.F.A.; Farrell, J.; Zhu, C.; Wang, Y.; Stein, T.D.; Lunetta, K.L.; Massaro, J.; Mez, J.; et al. The impact of increasing levels of blood C-reactive protein on the inflammatory loci SPI1 and CD33 in Alzheimer’s disease. Transl. Psychiatry 2022, 12, 523. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, P.; Jani, B.D.; Nicholl, B.; Lewsey, J.; McAllister, D.A.; Mair, F.S. Associations between multimorbidity and adverse health outcomes in UK Biobank and the SAIL Databank: A comparison of longitudinal cohort studies. PLoS Med. 2022, 19, e1003931. [Google Scholar] [CrossRef]
- Brayne, C.; Moffitt, T.E. The limitations of large-scale volunteer databases to address inequalities and global challenges in health and aging. Nat. Aging 2022, 2, 775–783. [Google Scholar] [CrossRef]
- Glynn, R.J. Promises and limitations of mendelian randomization for evaluation of biomarkers. Clin. Chem. 2010, 56, 388–390. [Google Scholar] [CrossRef]
- Haycock, P.C.; Burgess, S.; Wade, K.H.; Bowden, J.; Relton, C.; Davey Smith, G. Best (but oft-forgotten) practices: The design, analysis, and interpretation of Mendelian randomization studies. Am. J. Clin. Nutr. 2016, 103, 965–978. [Google Scholar] [CrossRef]
- Smith, G.D.; Ebrahim, S. Mendelian randomization: Prospects, potentials, and limitations. Int. J. Epidemiol. 2004, 33, 30–42. [Google Scholar] [CrossRef]
- Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 2013, 37, 658–665. [Google Scholar] [CrossRef]
- Hartwig, F.P.; Davey Smith, G.; Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 2017, 46, 1985–1998. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef]
- Smith, C.J.; Sinnott-Armstrong, N.; Cichonska, A.; Julkunen, H.; Fauman, E.B.; Wurtz, P.; Pritchard, J.K. Integrative analysis of metabolite GWAS illuminates the molecular basis of pleiotropy and genetic correlation. eLife 2022, 11, e79348. [Google Scholar] [CrossRef]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Yarmolinsky, J.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Higgins, J.P.; Timpson, N.J.; Dimou, N.; et al. Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization (STROBE-MR) Statement. JAMA 2021. under review. [Google Scholar]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Yarmolinsky, J.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Higgins, J.P.; Timpson, N.J.; Dimou, N.; et al. Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomisation (STROBE-MR): Explanation and Elaboration. BMJ 2021, 375, n2233. [Google Scholar]
Exposure | Outcome | Previous Evidence | Evidence Type |
---|---|---|---|
LDL | Coronary Heart Disease | [18] | MR |
Triglycerides | Coronary Heart Disease | [6] | MR |
Lipoprotein A | Coronary Heart Disease | [19] | MR |
Apolipoprotein B | Coronary Heart Disease | [20] | MR |
Cholesterol | Coronary Heart Disease | [23,30] | Meta-Analysis, Systematic Review, MR |
Urate | Gout | [17] | MR |
Lipoprotein A | Myocardial Infarction | [21] | MR |
LDL | Myocardial Infarction | [22] | MR |
Cholesterol | Myocardial Infarction | [24] | Retrospective |
Apolipoprotein B | Myocardial Infarction | [25,31] | Prospective, MR |
Serum Creatinine | Chronic Kidney Disease | [26,27] | MR, Meta-Analysis |
Glucose | Bipolar Disorder | [28,29] | Cross Sectional, Meta-Analysis, Systematic Review |
Cystatin C | Bipolar Disorder | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmas, A.; Spehar, K.; Do, R.; Castellano, J.M.; Huang, K.-L. Associations of Circulating Biomarkers with Disease Risks: A Two-Sample Mendelian Randomization Study. Int. J. Mol. Sci. 2024, 25, 7376. https://doi.org/10.3390/ijms25137376
Elmas A, Spehar K, Do R, Castellano JM, Huang K-L. Associations of Circulating Biomarkers with Disease Risks: A Two-Sample Mendelian Randomization Study. International Journal of Molecular Sciences. 2024; 25(13):7376. https://doi.org/10.3390/ijms25137376
Chicago/Turabian StyleElmas, Abdulkadir, Kevin Spehar, Ron Do, Joseph M. Castellano, and Kuan-Lin Huang. 2024. "Associations of Circulating Biomarkers with Disease Risks: A Two-Sample Mendelian Randomization Study" International Journal of Molecular Sciences 25, no. 13: 7376. https://doi.org/10.3390/ijms25137376
APA StyleElmas, A., Spehar, K., Do, R., Castellano, J. M., & Huang, K. -L. (2024). Associations of Circulating Biomarkers with Disease Risks: A Two-Sample Mendelian Randomization Study. International Journal of Molecular Sciences, 25(13), 7376. https://doi.org/10.3390/ijms25137376