Next Article in Journal
The Expression of Genes Related to Reverse Cholesterol Transport and Leptin Receptor Pathways in Peripheral Blood Mononuclear Cells Are Decreased in Morbid Obesity and Related to Liver Function
Previous Article in Journal
Neuroprotection of Transcranial Cortical and Peripheral Somatosensory Electrical Stimulation by Modulating a Common Neuronal Death Pathway in Mice with Ischemic Stroke
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Article

Efficient In Vitro Regeneration System and Comparative Transcriptome Analysis Offer Insight into the Early Development Characteristics of Explants from Cotyledon with Partial Petiole in Small-Fruited Pepper (Capsicum annuum)

1
Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
2
Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2024, 25(14), 7547; https://doi.org/10.3390/ijms25147547
Submission received: 24 April 2024 / Revised: 1 July 2024 / Accepted: 6 July 2024 / Published: 9 July 2024
(This article belongs to the Section Molecular Plant Sciences)

Abstract

In our research, we utilized six small-fruited pepper germplasms as materials, selected cotyledons with the petiole and hypocotyls as explants, and conducted in vitro regeneration studies. Our outcomes specify that the most suitable explant is cotyledon with the petiole, and the suitable genotype is HNUCA341. The optimal medium for inducing and elongating adventitious buds for this genotype is Murashige and Skoog medium (MS) + 9.12 μM Zeatin (ZT) + 0.57 μM 3-Indoleacetic acid (IAA), with a bud induction rate of 44.4%. The best rooting induction medium is MS + 1.14 μM IAA, with a rooting rate of 86.7%. Research on the addition of exogenous hormones has revealed that the induction speed of buds in small-fruited pepper (HNUCA341) in the combination of ZT and IAA hormones (abbreviated as ZI) is quicker, and the induction effect is better. The histological observations indicate that ZI treatment accelerates the initiation of explant division and differentiation, causing a shorter duration of vascular-bundle tissue production. The plant hormone signaling pathway was significantly enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, including ARR9 (LOC107843874, LOC107843885), ARR4 (LOC107848380, LOC107862455), AHK4 (LOC107870540), AHP1 (LOC107839518), LAX2 (LOC107846008), SAUR36 (LOC107852624), IAA8 (LOC107841020), IAA16 (LOC107839415), PYL4 (LOC107843441), and PYL6 (LOC107871127); these significantly enriched genes may be associated with in vitro regeneration. In addition, the carbon metabolism pathway and plant mitogen-activated protein kinase (MAPK) signaling pathway are also significantly enriched in KEGG. The results of the Gene Ontology (GO) analysis revealed that differentially expressed genes related to carbon metabolism and fixation, photosynthesis and MAPK signaling pathways were upregulated under ZI treatment. It was found that they might be associated with enhanced regeneration in vitro. Furthermore, we also screened out differentially expressed transcription factors, primarily from the MYB, bHLH, AP2/ERF, and NAC families. Overall, our work accumulated important data for the in-depth analysis of the molecular mechanism of in vitro regeneration of pepper, and provides valuable germplasm for establishing an efficient stable pepper genetic-transformation system based on tissue culture.
Keywords: small-fruited pepper (Capsicum annuum); in vitro regeneration; hormones; histological observation; transcriptome small-fruited pepper (Capsicum annuum); in vitro regeneration; hormones; histological observation; transcriptome

Share and Cite

MDPI and ACS Style

Li, X.; Mushtaq, N.; Xing, N.; Wu, S.; Liu, J.; Wang, Z. Efficient In Vitro Regeneration System and Comparative Transcriptome Analysis Offer Insight into the Early Development Characteristics of Explants from Cotyledon with Partial Petiole in Small-Fruited Pepper (Capsicum annuum). Int. J. Mol. Sci. 2024, 25, 7547. https://doi.org/10.3390/ijms25147547

AMA Style

Li X, Mushtaq N, Xing N, Wu S, Liu J, Wang Z. Efficient In Vitro Regeneration System and Comparative Transcriptome Analysis Offer Insight into the Early Development Characteristics of Explants from Cotyledon with Partial Petiole in Small-Fruited Pepper (Capsicum annuum). International Journal of Molecular Sciences. 2024; 25(14):7547. https://doi.org/10.3390/ijms25147547

Chicago/Turabian Style

Li, Xiaoqi, Naveed Mushtaq, Na Xing, Shuhua Wu, Jiancheng Liu, and Zhiwei Wang. 2024. "Efficient In Vitro Regeneration System and Comparative Transcriptome Analysis Offer Insight into the Early Development Characteristics of Explants from Cotyledon with Partial Petiole in Small-Fruited Pepper (Capsicum annuum)" International Journal of Molecular Sciences 25, no. 14: 7547. https://doi.org/10.3390/ijms25147547

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop