Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function
Abstract
:1. Introduction
2. The SARS-CoV-2 Infectious Process
- SARS-CoV-2 uses both soluble and membrane proteases of the host cell in its viral infection mechanism.
- Depending on which protease you use will influence the way it enters the cell (e.g., endocytosis or through the formation of a fusion pore).
2.1. The Physiological Importance of ACE beyond Blood Pressure Control
ACE in Immunity
- ACE cleaves a multitude of peptides acting subcellularly, anchored to the plasma membrane, or extracellularly.
- ACE is involved in cleaving peptides to be presented by antigen-presenting cells at MHCs. Its dysregulation may contribute to viral evasion mechanisms.
- ACE is overexpressed in myeloid cells as a mechanism of immune response and inflammation.
- ACE regulates the contact system and the KKS.
- ACE regulates immunity through the clearance of peptides, such as Ac-SDKP.
3. The Protease and Anti-Protease System in the Lung and SARS-CoV-2 Infection
- The respiratory mucosa controls its functions through a complex release system of proteases and anti-proteases.
- Respiratory viruses in their infective process unbalance the action of proteases and anti-proteases.
3.1. Host Proteases in SARS-CoV-2 Infection
3.1.1. ADAMs
3.1.2. Elastases and Other Neutrophil Serine Proteases
3.1.3. Trypsin and Human Airway Trypsin-like Proteases (HATs)
3.1.4. Cathepsins
- SARS-CoV-2 infection upregulates ADAM-17, causing the adhesion of inflammatory cells and the release of chemoattractants, such as sACE2 and proinflammatory cytokines (IL-6 and TNF-α).
- Elastases participate in viral entry into the host cell and the release of other proteases that amplify the infectious and inflammatory response, permeabilise cellular barriers, and alter lung functions. Neutrophil elastase participates in NETosis.
- Trypsin promotes infection when the virus is attached to the cell membrane by increasing the membrane fusion process.
- Coronaviruses prevent proteases from exercising their physiological functions of correct maturation of proteins, such as ENaC. This is involved in many of the symptoms caused by respiratory viruses.
- Cathepsins allow the entry of SARS-CoV-2 via the endocytic route into those cells where other proteases, such as TMPRSS2, are not so present.
- Cathepsins initiate and amplify the activation of pathways activated by proteases such as KKS, coagulation, or the formation of NETs.
- Cathepsins participate in entry, maturation of viral proteins, and release of new viral progeny from the host cell.
3.2. Host Anti-Proteases in SARS-CoV-2 Infection
3.2.1. α-1-Antitrypsin (Serpin A1)
3.2.2. CST3
3.2.3. Other Anti-Proteases
- Coronaviruses increase the degradation of anti-proteases, such as α-1-antitrypsin.
- Cystatin is one of the main anti-proteases that regulate the action of cathepsins.
4. Consequences of SARS-CoV-2 Anchoring to ACE2
- ACE2 is the most important entry target of SARS-CoV-2 since the dysfunction in its activity caused by the infection best explains the COVID-19 disease.
- Viral entry causes an overexpression of ADAM17, a decrease in ACE2 in the plasma membrane, and an increase in its soluble forms, which causes inflammation due to the release of TNF-α and IL-6.
- Dysregulation of ACE2 causes an increase in angiotensin II that contributes to the hyperinflammatory state, respiratory distress, and damage to the lung epithelium.
4.1. Dysregulation of ACE2 and Its Relation to Bradykinin
- Bradykinin, HMWK, and FXII of coagulation form the backbone of the contact system of innate immunity and participate in complement activation.
- The KKS is an extension of the RAAS. ACE has peptidylpeptidase and chymase II activity, so it not only metabolises angiotensin II but also kinases and kallikreins.
- The imbalance of the ACE/ACE2 ratio is associated with an increase in des-Arg9-bradykinin, which is related to neutrophilia, inflammation, and increased lung tissue damage.
- Des-Arg9-bradykinin is related to many of the symptomatic processes of COVID-19 (fever, cough, or bronchoconstriction).
- By increasing chymase activity, bradykinin causes higher levels of angiotensin.
4.2. Involvement of the RAAS and the KKS in Thromboembolism
4.2.1. Immune Activation in Thromboembolism
- SARS-CoV-2 causes an alteration in the endothelium–pericyte relationship, which leads to the release of inflammatory factors and cell death.
- SARS-CoV-2, through structural proteins, activates the contact system and the complement pathway. This causes the endothelium to release factors that participate in thrombo-inflammation, such as tissue factor or PAI-1.
4.2.2. The RAAS in Thromboembolism
4.2.3. The KKS in Thromboembolism
- Angiotensin II is a factor of thrombo-inflammation in the pulmonary blood capillaries, by increasing the production of PAI-1.
- Binding of SARS-CoV-2 antigens to the contact system activates the intrinsic coagulation pathway and KKS.
- The increase in protease activity (e.g., kallikreins or PAR receptors) causes a state of hyperfibrinolysis through the release of tPA. This participates in septic phenomena, blood dyscrasias, fibroblast proliferation, and pulmonary fibrosis.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Padín, J.-F.; Pérez-Ortiz, J.M.; Redondo-Calvo, F.J. Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions. Int. J. Mol. Sci. 2024, 25, 7209. [Google Scholar] [CrossRef]
- Zou, X.; Chen, K.; Zou, J.; Han, P.; Hao, J.; Han, Z. Single-Cell RNA-Seq Data Analysis on the Receptor ACE2 Expression Reveals the Potential Risk of Different Human Organs Vulnerable to 2019-nCoV Infection. Front. Med. 2020, 14, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Y.; Li, L.; Zhang, Y.; Wang, X.S. Expression of the SARS-CoV-2 Cell Receptor Gene ACE2 in a Wide Variety of Human Tissues. Infect. Dis. Poverty 2020, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell Entry Mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol. 2020, 94, e00127-20. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural Basis for the Recognition of SARS-CoV-2 by Full-Length Human ACE2. Science 2020, 367, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Wrobel, A.G.; Benton, D.J.; Xu, P.; Roustan, C.; Martin, S.R.; Rosenthal, P.B.; Skehel, J.J.; Gamblin, S.J. SARS-CoV-2 and Bat RaTG13 Spike Glycoprotein Structures Inform on Virus Evolution and Furin-Cleavage Effects. Nat. Struct. Mol. Biol. 2020, 27, 763–767. [Google Scholar] [CrossRef]
- Izaguirre, G. The Proteolytic Regulation of Virus Cell Entry by Furin and Other Proprotein Convertases. Viruses 2019, 11, 837. [Google Scholar] [CrossRef] [PubMed]
- Nagai, Y. Protease-Dependent Virus Tropism and Pathogenicity. Trends. Microbiol. 1993, 1, 81–87. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol. Cell 2020, 78, 779–784.e5. [Google Scholar] [CrossRef]
- Coutard, B.; Valle, C.; de Lamballerie, X.; Canard, B.; Seidah, N.G.; Decroly, E. The Spike Glycoprotein of the New Coronavirus 2019-nCoV Contains a Furin-like Cleavage Site Absent in CoV of the Same Clade. Antivir. Res. 2020, 176, 104742. [Google Scholar] [CrossRef]
- Kam, Y.W.; Okumura, Y.; Kido, H.; Ng, L.F.; Bruzzone, R.; Altmeyer, R. Cleavage of the SARS Coronavirus Spike Glycoprotein by Airway Proteases Enhances Virus Entry into Human Bronchial Epithelial Cells in Vitro. PLoS ONE 2009, 4, e7870. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Jang, G.; Lee, D.; Kim, N.; Seon, J.W.; Kim, Y.H.; Lee, C. Trypsin Enhances SARS-CoV-2 Infection by Facilitating Viral Entry. Arch. Virol. 2022, 167, 441–458. [Google Scholar] [CrossRef] [PubMed]
- Fenouillet, E.; Barbouche, R.; Jones, I.M. Cell Entry by Enveloped Viruses: Redox Considerations for HIV and SARS-Coronavirus. Antioxid. Redox Signal. 2007, 9, 1009–1034. [Google Scholar] [CrossRef] [PubMed]
- Shulla, A.; Heald-Sargent, T.; Subramanya, G.; Zhao, J.; Perlman, S.; Gallagher, T. A Transmembrane Serine Protease Is Linked to the Severe Acute Respiratory Syndrome Coronavirus Receptor and Activates Virus Entry. J. Virol. 2011, 85, 873–882. [Google Scholar] [CrossRef]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef]
- Bhattacharyya, C.; Das, C.; Ghosh, A.; Singh, A.K.; Mukherjee, S.; Majumder, P.P.; Basu, A.; Biswas, N.K. SARS-CoV-2 Mutation 614G Creates an Elastase Cleavage Site Enhancing Its Spread in High AAT-Deficient Regions. Infect Genet. Evol. 2021, 90, 104760. [Google Scholar] [CrossRef]
- Bollavaram, K.; Leeman, T.H.; Lee, M.W.; Kulkarni, A.; Upshaw, S.G.; Yang, J.; Song, H.; Platt, M.O. Multiple Sites on SARS-CoV-2 Spike Protein Are Susceptible to Proteolysis by Cathepsins B, K, L, S, and V. Protein. Sci. 2021, 30, 1131–1143. [Google Scholar] [CrossRef]
- Ji, H.-L.; Zhao, R.; Matalon, S.; Matthay, M.A. Elevated Plasmin(Ogen) as a Common Risk Factor for COVID-19 Susceptibility. Physiol. Rev. 2020, 100, 1065–1075. [Google Scholar] [CrossRef]
- Oubahmane, M.; Hdoufane, I.; Bjij, I.; Lahcen, N.A.; Villemin, D.; Daoud, R.; Allali, A.E.; Cherqaoui, D. Host Cell Proteases Mediating SARS-CoV-2 Entry: An Overview. Curr. Top. Med. Chem. 2022, 22, 1776–1792. [Google Scholar] [CrossRef]
- Zabiegala, A.; Kim, Y.; Chang, K.-O. Roles of Host Proteases in the Entry of SARS-CoV-2. Anim. Dis. 2023, 3, 12. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Takeda, M. Proteolytic Activation of SARS-CoV-2 Spike Protein. Microbiol. Immunol. 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Gorący, A.; Rosik, J.; Szostak, B.; Ustianowski, Ł.; Ustianowska, K.; Gorący, J. Human Cell Organelles in SARS-CoV-2 Infection: An Up-to-Date Overview. Viruses 2022, 14, 1092. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 Entry into Cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Bayati, A.; Kumar, R.; Francis, V.; McPherson, P.S. SARS-CoV-2 Infects Cells after Viral Entry via Clathrin-Mediated Endocytosis. J. Biol. Chem. 2021, 296, 100306. [Google Scholar] [CrossRef] [PubMed]
- Willett, B.J.; Grove, J.; MacLean, O.A.; Wilkie, C.; De Lorenzo, G.; Furnon, W.; Cantoni, D.; Scott, S.; Logan, N.; Ashraf, S.; et al. SARS-CoV-2 Omicron Is an Immune Escape Variant with an Altered Cell Entry Pathway. Nat. Microbiol. 2022, 7, 1161–1179. [Google Scholar] [CrossRef]
- Pia, L.; Rowland-Jones, S. Omicron Entry Route. Nat. Rev. Immunol. 2022, 22, 144. [Google Scholar] [CrossRef]
- Skeggs, L.T. Discovery of the Two Angiotensin Peptides and the Angiotensin Converting Enzyme. Hypertension 1993, 21, 259–260. [Google Scholar] [CrossRef]
- Almeida, L.F.; Tofteng, S.S.; Madsen, K.; Jensen, B.L. Role of the Renin-Angiotensin System in Kidney Development and Programming of Adult Blood Pressure. Clin. Sci. 2020, 134, 641–656. [Google Scholar] [CrossRef]
- Speth, R.C.; Daubert, D.L.; Grove, K.L. Angiotensin II: A Reproductive Hormone Too? Regul. Pept. 1999, 79, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Li, L.J.; Zhang, F.B.; Liu, S.Y.; Tian, Y.H.; Le, F.; Wang, L.Y.; Lou, H.Y.; Xu, X.R.; Huang, H.F.; Jin, F. Human Sperm Devoid of Germinal Angiotensin-Converting Enzyme Is Responsible for Total Fertilization Failure and Lower Fertilization Rates by Conventional in Vitro Fertilization. Biol. Reprod. 2014, 90, 125. [Google Scholar] [CrossRef] [PubMed]
- Aghsaeifard, Z.; Alizadeh, R. The Role of Angiotensin-Converting Enzyme in Immunity: Shedding Light on Experimental Findings. Endocr. Metab. Immune Disord. Drug Targets 2022, 22, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, K.E.; Khan, Z.; Giani, J.F.; Cao, D.Y.; Bernstein, E.A.; Shen, X.Z. Angiotensin-Converting Enzyme in Innate and Adaptive Immunity. Nat. Rev. Nephrol. 2018, 14, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Passos-Silva, D.G.; Verano-Braga, T.; Santos, R.A. Angiotensin-(1-7): Beyond the Cardio-Renal Actions. Clin. Sci. 2013, 124, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, K.E.; Shen, X.Z.; Gonzalez-Villalobos, R.A.; Billet, S.; Okwan-Duodu, D.; Ong, F.S.; Fuchs, S. Different in Vivo Functions of the Two Catalytic Domains of Angiotensin-Converting Enzyme (ACE). Curr. Opin. Pharmacol. 2011, 11, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Abadir, P.M.; Walston, J.D.; Carey, R.M. Subcellular Characteristics of Functional Intracellular Renin-Angiotensin Systems. Peptides 2012, 38, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.Z.; Billet, S.; Lin, C.; Okwan-Duodu, D.; Chen, X.; Lukacher, A.E.; Bernstein, K.E. The Carboxypeptidase ACE Shapes the MHC Class I Peptide Repertoire. Nat. Immunol. 2011, 12, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.Z.; Lukacher, A.E.; Billet, S.; Williams, I.R.; Bernstein, K.E. Expression of Angiotensin-Converting Enzyme Changes Major Histocompatibility Complex Class I Peptide Presentation by Modifying C Termini of Peptide Precursors. J. Biol. Chem. 2008, 283, 9957–9965. [Google Scholar] [CrossRef]
- Zhao, T.; Bernstein, K.E.; Fang, J.; Shen, X.Z. Angiotensin-Converting Enzyme Affects the Presentation of MHC Class II Antigens. Lab. Investig. 2017, 97, 764–771. [Google Scholar] [CrossRef]
- Cao, D.Y.; Saito, S.; Veiras, L.C.; Okwan-Duodu, D.; Bernstein, E.A.; Giani, J.F.; Bernstein, K.E.; Khan, Z. Role of Angiotensin-Converting Enzyme in Myeloid Cell Immune Responses. Cell Mol. Biol. Lett. 2020, 25, 31. [Google Scholar] [CrossRef] [PubMed]
- Jaspard, E.; Wei, L.; Alhenc-Gelas, F. Differences in the Properties and Enzymatic Specificities of the Two Active Sites of Angiotensin I-Converting Enzyme (Kininase II). Studies with Bradykinin and Other Natural Peptides. J. Biol. Chem. 1993, 268, 9496–9503. [Google Scholar] [CrossRef] [PubMed]
- Maas, C. Plasminflammation-An Emerging Pathway to Bradykinin Production. Front. Immunol. 2019, 10, 2046. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Shen, X.Z.; Bernstein, E.A.; Giani, J.F.; Eriguchi, M.; Zhao, T.V.; Gonzalez-Villalobos, R.A.; Fuchs, S.; Liu, G.Y.; Bernstein, K.E. Angiotensin-Converting Enzyme Enhances the Oxidative Response and Bactericidal Activity of Neutrophils. Blood 2017, 130, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Trojanowicz, B.; Ulrich, C.; Seibert, E.; Fiedler, R.; Girndt, M. Uremic Conditions Drive Human Monocytes to Pro-Atherogenic Differentiation via an Angiotensin-Dependent Mechanism. PLoS ONE 2014, 9, e102137. [Google Scholar] [CrossRef] [PubMed]
- Okwan-Duodu, D.; Datta, V.; Shen, X.Z.; Goodridge, H.S.; Bernstein, E.A.; Fuchs, S.; Liu, G.Y.; Bernstein, K.E. Angiotensin-Converting Enzyme Overexpression in Mouse Myelomonocytic Cells Augments Resistance to Listeria and Methicillin-Resistant Staphylococcus Aureus. J. Biol. Chem. 2010, 285, 39051–39060. [Google Scholar] [CrossRef] [PubMed]
- Rieger, K.J.; Saez-Servent, N.; Papet, M.P.; Wdzieczak-Bakala, J.; Morgat, J.L.; Thierry, J.; Voelter, W.; Lenfant, M. Involvement of Human Plasma Angiotensin I-Converting Enzyme in the Degradation of the Haemoregulatory Peptide N-Acetyl-Seryl-Aspartyl-Lysyl-Proline. Biochem. J. 1993, 296 Pt 2, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Lombard, M.N.; Sotty, D.; Wdzieczak-Bakala, J.; Lenfant, M. In Vivo Effect of the Tetrapeptide, N-Acetyl-Ser-Asp-Lys-Pro, on the G1-S Transition of Rat Hepatocytes. Cell Tissue Kinet. 1990, 23, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Carretero, O.A.; Liao, T.D.; Peterson, E.L.; Rhaleb, N.E. Role of N-Acetyl-Seryl-Aspartyl-Lysyl-Proline in the Antifibrotic and Anti-Inflammatory Effects of the Angiotensin-Converting Enzyme Inhibitor Captopril in Hypertension. Hypertension 2007, 49, 695–703. [Google Scholar] [CrossRef]
- Rasoul, S.; Carretero, O.A.; Peng, H.; Cavasin, M.A.; Zhuo, J.; Sanchez-Mendoza, A.; Brigstock, D.R.; Rhaleb, N.E. Antifibrotic Effect of Ac-SDKP and Angiotensin-Converting Enzyme Inhibition in Hypertension. J. Hypertens. 2004, 22, 593–603. [Google Scholar] [CrossRef]
- Douglas, R.G.; Ehlers, M.R.; Sturrock, E.D. Antifibrotic Peptide N-Acetyl-Ser-Asp-Lys-Pro (Ac-SDKP): Opportunities for Angiotensin-Converting Enzyme Inhibitor Design. Clin. Exp. Pharmacol. Physiol. 2013, 40, 535–541. [Google Scholar] [CrossRef]
- Masuyer, G.; Douglas, R.G.; Sturrock, E.D.; Acharya, K.R. Structural Basis of Ac-SDKP Hydrolysis by Angiotensin-I Converting Enzyme. Sci. Rep. 2015, 5, 13742. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Jaspers, I. Epithelial Cells, the “Switchboard” of Respiratory Immune Defense Responses: Effects of Air Pollutants. Swiss. Med. Wkly. 2012, 142, w13653. [Google Scholar] [CrossRef]
- Fahy, J.V.; Dickey, B.F. Airway Mucus Function and Dysfunction. N. Engl. J. Med. 2010, 363, 2233–2247. [Google Scholar] [CrossRef]
- Knowles, M.R.; Boucher, R.C. Mucus Clearance as a Primary Innate Defense Mechanism for Mammalian Airways. J. Clin. Investig. 2002, 109, 571–577. [Google Scholar] [CrossRef]
- Bustamante-Marin, X.M.; Ostrowski, L.E. Cilia and Mucociliary Clearance. Cold Spring Harb. Perspect Biol. 2017, 9, a028241. [Google Scholar] [CrossRef]
- Aschner, Y.; Zemans, R.L.; Yamashita, C.M.; Downey, G.P. Matrix Metalloproteinases and Protein Tyrosine Kinases: Potential Novel Targets in Acute Lung Injury and ARDS. Chest 2014, 146, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Kido, H.; Okumura, Y.; Takahashi, E.; Pan, H.Y.; Wang, S.; Yao, D.; Yao, M.; Chida, J.; Yano, M. Role of Host Cellular Proteases in the Pathogenesis of Influenza and Influenza-Induced Multiple Organ Failure. Biochim. Biophys. Acta 2012, 1824, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Turk, B. Targeting Proteases: Successes, Failures and Future Prospects. Nat. Rev. Drug Discov. 2006, 5, 785–799. [Google Scholar] [CrossRef]
- Puente, X.S.; Sánchez, L.M.; Overall, C.M.; López-Otín, C. Human and Mouse Proteases: A Comparative Genomic Approach. Nat. Rev. Genet. 2003, 4, 544–558. [Google Scholar] [CrossRef]
- Szabo, R.; Wu, Q.; Dickson, R.B.; Netzel-Arnett, S.; Antalis, T.M.; Bugge, T.H. Type II Transmembrane Serine Proteases. Thromb. Haemost. 2003, 90, 185–193. [Google Scholar] [CrossRef]
- Rosendal, E.; Mihai, I.S.; Becker, M.; Das, D.; Frängsmyr, L.; Persson, B.D.; Rankin, G.D.; Gröning, R.; Trygg, J.; Forsell, M.; et al. Serine Protease Inhibitors Restrict Host Susceptibility to SARS-CoV-2 Infections. mBio 2022, 13, e0089222. [Google Scholar] [CrossRef] [PubMed]
- Greene, C.M.; McElvaney, N.G. Proteases and Antiproteases in Chronic Neutrophilic Lung Disease—Relevance to Drug Discovery. Br. J. Pharmacol. 2009, 158, 1048–1058. [Google Scholar] [CrossRef]
- Akaike, T.; Molla, A.; Ando, M.; Araki, S.; Maeda, H. Molecular Mechanism of Complex Infection by Bacteria and Virus Analyzed by a Model Using Serratial Protease and Influenza Virus in Mice. J. Virol. 1989, 63, 2252–2259. [Google Scholar] [CrossRef]
- Beppu, Y.; Imamura, Y.; Tashiro, M.; Towatari, T.; Ariga, H.; Kido, H. Human Mucus Protease Inhibitor in Airway Fluids Is a Potential Defensive Compound against Infection with Influenza A and Sendai Viruses1. J. Biochem. 1997, 121, 309–316. [Google Scholar] [CrossRef]
- Hennet, T.; Peterhans, E.; Stocker, R. Alterations in Antioxidant Defences in Lung and Liver of Mice Infected with Influenza A Virus. J. Gen. Virol. 1992, 73 Pt 1, 39–46. [Google Scholar] [CrossRef]
- Reichert, R.; Hochstrasser, K.; Werle, E. Der Proteaseninhibitorspiegel in menschlichem Nasensekret unter physiologischen und pathophysiologischen Bedingungen. Klin. Wochenschr. 1971, 49, 1234–1236. [Google Scholar] [CrossRef] [PubMed]
- Bojkova, D.; Klann, K.; Koch, B.; Widera, M.; Krause, D.; Ciesek, S.; Cinatl, J.; Münch, C. Proteomics of SARS-CoV-2-Infected Host Cells Reveals Therapy Targets. Nature 2020, 583, 469–472. [Google Scholar] [CrossRef]
- Zecha, J.; Lee, C.-Y.; Bayer, F.P.; Meng, C.; Grass, V.; Zerweck, J.; Schnatbaum, K.; Michler, T.; Pichlmair, A.; Ludwig, C.; et al. Data, Reagents, Assays and Merits of Proteomics for SARS-CoV-2 Research and Testing. Mol. Cell Proteom. 2020, 19, 1503–1522. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Verdugo, I.; Descamps, D.; Chignard, M.; Touqui, L.; Sallenave, J.-M. Lung Protease/Anti-Protease Network and Modulation of Mucus Production and Surfactant Activity. Biochimie 2010, 92, 1608–1617. [Google Scholar] [CrossRef]
- Haga, S.; Yamamoto, N.; Nakai-Murakami, C.; Osawa, Y.; Tokunaga, K.; Sata, T.; Yamamoto, N.; Sasazuki, T.; Ishizaka, Y. Modulation of TNF-Alpha-Converting Enzyme by the Spike Protein of SARS-CoV and ACE2 Induces TNF-Alpha Production and Facilitates Viral Entry. Proc. Natl. Acad. Sci. USA 2008, 105, 7809–7814. [Google Scholar] [CrossRef]
- Healy, E.F.; Lilic, M. A Model for COVID-19-Induced Dysregulation of ACE2 Shedding by ADAM17. Biochem. Biophys. Res. Commun. 2021, 573, 158–163. [Google Scholar] [CrossRef]
- Zipeto, D.; Palmeira, J.d.F.; Argañaraz, G.A.; Argañaraz, E.R. ACE2/ADAM17/TMPRSS2 Interplay May Be the Main Risk Factor for COVID-19. Front. Immunol. 2020, 11, 576745. [Google Scholar] [CrossRef]
- Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.-C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ. Res. 2020, 126, 1456–1474. [Google Scholar] [CrossRef] [PubMed]
- Belouzard, S.; Madu, I.; Whittaker, G.R. Elastase-Mediated Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein at Discrete Sites within the S2 Domain. J. Biol. Chem. 2010, 285, 22758–22763. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, S.; Ujike, M.; Morikawa, S.; Tashiro, M.; Taguchi, F. Protease-Mediated Enhancement of Severe Acute Respiratory Syndrome Coronavirus Infection. Proc. Natl. Acad. Sci. USA 2005, 102, 12543–12547. [Google Scholar] [CrossRef]
- Guizani, I.; Fourti, N.; Zidi, W.; Feki, M.; Allal-Elasmi, M. SARS-CoV-2 and Pathological Matrix Remodeling Mediators. Inflamm. Res. 2021, 70, 847–858. [Google Scholar] [CrossRef]
- Silva, V.; Radic, M. COVID-19 Pathology Sheds Further Light on Balance between Neutrophil Proteases and Their Inhibitors. Biomolecules 2022, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Geraghty, P.; Rogan, M.P.; Greene, C.M.; Boxio, R.M.; Poiriert, T.; O’Mahony, M.; Belaaouaj, A.; O’Neill, S.J.; Taggart, C.C.; McElvaney, N.G. Neutrophil Elastase Up-Regulates Cathepsin B and Matrix Metalloprotease-2 Expression. J. Immunol. 2007, 178, 5871–5878. [Google Scholar] [CrossRef]
- Akgun, E.; Tuzuner, M.B.; Sahin, B.; Kilercik, M.; Kulah, C.; Cakiroglu, H.N.; Serteser, M.; Unsal, I.; Baykal, A.T. Proteins Associated with Neutrophil Degranulation Are Upregulated in Nasopharyngeal Swabs from SARS-CoV-2 Patients. PLoS ONE 2020, 15, e0240012. [Google Scholar] [CrossRef]
- Pham, C.T. Neutrophil Serine Proteases Fine-Tune the Inflammatory Response. Int. J. Biochem. Cell Biol. 2008, 40, 1317–1333. [Google Scholar] [CrossRef] [PubMed]
- Szturmowicz, M.; Demkow, U. Neutrophil Extracellular Traps (NETs) in Severe SARS-CoV-2 Lung Disease. Int. J. Mol. Sci. 2021, 22, 8854. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.L.; Meng, F.; Qin, P.; Herrler, G.; Huang, Y.W.; Tang, Y.D. Trypsin Promotes Porcine Deltacoronavirus Mediating Cell-to-Cell Fusion in a Cell Type-Dependent Manner. Emerg. Microbes Infect. 2020, 9, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Bussani, R.; Schneider, E.; Zentilin, L.; Collesi, C.; Ali, H.; Braga, L.; Volpe, M.C.; Colliva, A.; Zanconati, F.; Berlot, G.; et al. Persistence of Viral RNA, Pneumocyte Syncytia and Thrombosis Are Hallmarks of Advanced COVID-19 Pathology. EBioMedicine 2020, 61, 103104. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, E.; Yazawa, S.; Shimada, T.; Tamura, K.; Saga, Y.; Itamochi, M.; Inasaki, N.; Hasegawa, S.; Morinaga, Y.; Oishi, K.; et al. Activation of SARS-CoV-2 by Trypsin-like Proteases in the Clinical Specimens of Patients with COVID-19. Sci. Rep. 2023, 13, 11632. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.L.; Goldblatt, D.L.; Evans, S.E.; Tuvim, M.J.; Dickey, B.F. Airway Epithelial Innate Immunity. Front. Physiol. 2021, 12, 749077. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Sano, T.; Yamaoka, K.; Kamimura, T.; Umemoto, N.; Nishitani, H.; Yasuoka, S. Localization of Human Airway Trypsin-like Protease in the Airway: An Immunohistochemical Study. Histochem. Cell Biol. 2001, 115, 181–187. [Google Scholar] [CrossRef]
- Yamaoka, K.; Masuda, K.; Ogawa, H.; Takagi, K.; Umemoto, N.; Yasuoka, S. Cloning and Characterization of the cDNA for Human Airway Trypsin-like Protease. J. Biol. Chem. 1998, 273, 11895–11901. [Google Scholar] [CrossRef] [PubMed]
- Laporte, M.; Naesens, L. Airway Proteases: An Emerging Drug Target for Influenza and Other Respiratory Virus Infections. Curr. Opin. Virol. 2017, 24, 16–24. [Google Scholar] [CrossRef]
- Anand, D.; Hummler, E.; Rickman, O.J. ENaC Activation by Proteases. Acta. Physiol. 2022, 235, e13811. [Google Scholar] [CrossRef]
- Brown, E.F.; Mitaera, T.; Fronius, M. COVID-19 and Liquid Homeostasis in the Lung-A Perspective through the Epithelial Sodium Channel (ENaC) Lens. Cells 2022, 11, 1801. [Google Scholar] [CrossRef] [PubMed]
- Gentzsch, M.; Rossier, B.C. A Pathophysiological Model for COVID-19: Critical Importance of Transepithelial Sodium Transport upon Airway Infection. Function 2020, 1, zqaa024. [Google Scholar] [CrossRef] [PubMed]
- Muhanna, D.; Arnipalli, S.R.; Kumar, S.B.; Ziouzenkova, O. Osmotic Adaptation by Na+-Dependent Transporters and ACE2: Correlation with Hemostatic Crisis in COVID-19. Biomedicines 2020, 8, 460. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Yu, T.; Wang, T.; Ding, Y.; Cui, Y.; Nie, H. Competitive Cleavage of SARS-CoV-2 Spike Protein and Epithelial Sodium Channel by Plasmin as a Potential Mechanism for COVID-19 Infection. Am. J. Physiol. Lung Cell Mol. Physiol. 2022, 323, L569–L577. [Google Scholar] [CrossRef] [PubMed]
- Carroll, E.L.; Bailo, M.; Reihill, J.A.; Crilly, A.; Lockhart, J.C.; Litherland, G.J.; Lundy, F.T.; McGarvey, L.P.; Hollywood, M.A.; Martin, S.L. Trypsin-Like Proteases and Their Role in Muco-Obstructive Lung Diseases. Int. J. Mol. Sci. 2021, 22, 5817. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhu, Q.; Xiao, Y.; Wu, C.; Jiang, Z.; Liu, L.; Qu, J. Clinical and Etiological Analysis of Co-Infections and Secondary Infections in COVID-19 Patients: An Observational Study. Clin. Respir. J. 2021, 15, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huang, S.; Chen, Q.; Liu, Q.; Lv, X. Trypsin May Induce Cytokine Storm in M1 Macrophages, Resulting in Critical Coronavirus Disease. Respir. Physiol. Neurobiol. 2022, 303, 103920. [Google Scholar] [CrossRef]
- Subramaniam, S.; Ruf, W.; Bosmann, M. Advocacy of Targeting Protease-Activated Receptors in Severe Coronavirus Disease 2019. Br. J. Pharmacol. 2022, 179, 2086–2099. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, R.; Takahashi, A.; Nakaya, Y.; Maezawa, H.; Miki, M.; Nakamura, Y.; Ohgushi, F.; Yasuoka, S. Human Airway Trypsin-like Protease Stimulates Human Bronchial Fibroblast Proliferation in a Protease-Activated Receptor-2-Dependent Pathway. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 290, L385–L395. [Google Scholar] [CrossRef] [PubMed]
- Beaufort, N.; Leduc, D.; Eguchi, H.; Mengele, K.; Hellmann, D.; Masegi, T.; Kamimura, T.; Yasuoka, S.; Fend, F.; Chignard, M.; et al. The Human Airway Trypsin-like Protease Modulates the Urokinase Receptor (uPAR, CD87) Structure and Functions. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 292, L1263–L1272. [Google Scholar] [CrossRef]
- Vizovišek, M.; Fonović, M.; Turk, B. Cysteine Cathepsins in Extracellular Matrix Remodeling: Extracellular Matrix Degradation and Beyond. Matrix. Biol. 2019, 75–76, 141–159. [Google Scholar] [CrossRef]
- Vidak, E.; Javoršek, U.; Vizovišek, M.; Turk, B. Cysteine Cathepsins and Their Extracellular Roles: Shaping the Microenvironment. Cells 2019, 8, 264. [Google Scholar] [CrossRef]
- Berdowska, I. Cysteine Proteases as Disease Markers. Clin. Chim. Acta 2004, 342, 41–69. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Qian, L.; Sun, R.; Huang, B.; Dong, X.; Xiao, Q.; Zhang, Q.; Lu, T.; Yue, L.; Chen, S.; et al. Multi-Organ Proteomic Landscape of COVID-19 Autopsies. Cell 2021, 184, 775–791.e14. [Google Scholar] [CrossRef]
- Pišlar, A.; Mitrović, A.; Sabotič, J.; Pečar Fonović, U.; Perišić Nanut, M.; Jakoš, T.; Senjor, E.; Kos, J. The Role of Cysteine Peptidases in Coronavirus Cell Entry and Replication: The Therapeutic Potential of Cathepsin Inhibitors. PLoS Pathog. 2020, 16, e1009013. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.M.; Zhu, Y.; Zhang, L.; Zhong, G.; Tai, L.; Liu, S.; Yin, G.; Lu, J.; He, Q.; Li, M.J.; et al. Novel Cleavage Sites Identified in SARS-CoV-2 Spike Protein Reveal Mechanism for Cathepsin L-Facilitated Viral Infection and Treatment Strategies. Cell Discov. 2022, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Miki, T.; Hashiguchi, N.; Tabe, Y.; Nagaoka, I. Is the Neutrophil a “prima Donna” in the Procoagulant Process during Sepsis? Crit. Care 2014, 18, 230. [Google Scholar] [CrossRef]
- LaRosa, C.A.; Rohrer, M.J.; Benoit, S.E.; Rodino, L.J.; Barnard, M.R.; Michelson, A.D. Human Neutrophil Cathepsin G Is a Potent Platelet Activator. J. Vasc. Surg. 1994, 19, 306–320. [Google Scholar] [CrossRef]
- Lalmanach, G.; Naudin, C.; Lecaille, F.; Fritz, H. Kininogens: More than Cysteine Protease Inhibitors and Kinin Precursors. Biochimie 2010, 92, 1568–1579. [Google Scholar] [CrossRef]
- Rossier, B.C.; Stutts, M.J. Activation of the Epithelial Sodium Channel (ENaC) by Serine Proteases. Annu. Rev. Physiol. 2009, 71, 361–379. [Google Scholar] [CrossRef]
- Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.M.; Carson-Chahhoud, K.; Ardalan, M.; Kolahi, A.-A.; Safiri, S. How SARS-CoV-2 Might Affect Potassium Balance via Impairing Epithelial Sodium Channels? Mol. Biol. Rep. 2021, 48, 6655–6661. [Google Scholar] [CrossRef] [PubMed]
- Rudensky, A.; Beers, C. Lysosomal Cysteine Proteases and Antigen Presentation. Ernst. Schering. Res. Found. Workshop. 2006, 56, 81–95. [Google Scholar] [CrossRef]
- Minakshi, R.; Padhan, K. The YXXΦ Motif within the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 3a Protein Is Crucial for Its Intracellular Transport. Virol. J. 2014, 11, 75. [Google Scholar] [CrossRef]
- Scarcella, M.; d’Angelo, D.; Ciampa, M.; Tafuri, S.; Avallone, L.; Pavone, L.M.; De Pasquale, V. The Key Role of Lysosomal Protease Cathepsins in Viral Infections. Int. J. Mol. Sci. 2022, 23, 9089. [Google Scholar] [CrossRef]
- Ghosh, S.; Dellibovi-Ragheb, T.A.; Kerviel, A.; Pak, E.; Qiu, Q.; Fisher, M.; Takvorian, P.M.; Bleck, C.; Hsu, V.W.; Fehr, A.R.; et al. β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway. Cell 2020, 183, 1520–1535.e14. [Google Scholar] [CrossRef] [PubMed]
- Buijsers, B.; Yanginlar, C.; de Nooijer, A.; Grondman, I.; Maciej-Hulme, M.L.; Jonkman, I.; Janssen, N.A.F.; Rother, N.; de Graaf, M.; Pickkers, P.; et al. Increased Plasma Heparanase Activity in COVID-19 Patients. Front. Immunol. 2020, 11, 575047. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.P.; Fernandes, D.E.; Casimiro, F.; da Mata, G.F.; Passos, M.T.; Varela, P.; Mastroianni-Kirsztajn, G.; Pesquero, J.B. Cathepsin L in COVID-19: From Pharmacological Evidences to Genetics. Front. Cell Infect. Microbiol. 2020, 10, 589505. [Google Scholar] [CrossRef] [PubMed]
- Kinaneh, S.; Khamaysi, I.; Karram, T.; Hamoud, S. Heparanase as a Potential Player in SARS-CoV-2 Infection and Induced Coagulopathy. Biosci. Rep. 2021, 41, BSR20210290. [Google Scholar] [CrossRef]
- Nadir, Y.; Brenner, B. Relevance of Heparan Sulfate and Heparanase to Severity of COVID-19 in the Elderly. Semin. Thromb. Hemost. 2021, 47, 348–350. [Google Scholar] [CrossRef]
- Drost, C.C.; Rovas, A.; Osiaevi, I.; Rauen, M.; van der Vlag, J.; Buijsers, B.; Salmenov, R.; Lukasz, A.; Pavenstädt, H.; Linke, W.A.; et al. Heparanase Is a Putative Mediator of Endothelial Glycocalyx Damage in COVID-19—A Proof-of-Concept Study. Front. Immunol. 2022, 13, 916512. [Google Scholar] [CrossRef]
- Masola, V.; Bellin, G.; Gambaro, G.; Onisto, M. Heparanase: A Multitasking Protein Involved in Extracellular Matrix (ECM) Remodeling and Intracellular Events. Cells 2018, 7, 236. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, R.D.; Elkin, M.; Rapraeger, A.C.; Ilan, N.; Vlodavsky, I. Heparanase Regulation of Cancer, Autophagy and Inflammation: New Mechanisms and Targets for Therapy. FEBS J. 2017, 284, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Zhou, S. The Functions of Heparanase in Human Diseases. Mini. Rev. Med. Chem. 2017, 17, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Simmons, G.; Gosalia, D.N.; Rennekamp, A.J.; Reeves, J.D.; Diamond, S.L.; Bates, P. Inhibitors of Cathepsin L Prevent Severe Acute Respiratory Syndrome Coronavirus Entry. Proc. Natl. Acad. Sci. USA 2005, 102, 11876–11881. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Luo, S.; Libby, P.; Shi, G.P. Cathepsin L-Selective Inhibitors: A Potentially Promising Treatment for COVID-19 Patients. Pharmacol. Ther. 2020, 213, 107587. [Google Scholar] [CrossRef] [PubMed]
- McElvaney, O.F.; Asakura, T.; Meinig, S.L.; Torres-Castillo, J.L.; Hagan, R.S.; Gabillard-Lefort, C.; Murphy, M.P.; Thorne, L.B.; Borczuk, A.; Reeves, E.P.; et al. Protease-Anti-Protease Compartmentalization in SARS-CoV-2 ARDS: Therapeutic Implications. EBioMedicine 2022, 77, 103894. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; He, Q.Y.; Fan, J.; Jones, B.; Zhou, Y.; Xie, Y.; Cheung, C.Y.; Wu, A.; Chiu, J.F.; Peiris, J.S.; et al. The Use of Proteomics in the Discovery of Serum Biomarkers from Patients with Severe Acute Respiratory Syndrome. Proteomics 2004, 4, 3477–3484. [Google Scholar] [CrossRef] [PubMed]
- Strnad, P.; McElvaney, N.G.; Lomas, D.A. Alpha. N. Engl. J. Med. 2020, 382, 1443–1455. [Google Scholar] [CrossRef]
- Azouz, N.P.; Klingler, A.M.; Callahan, V.; Akhrymuk, I.V.; Elez, K.; Raich, L.; Henry, B.M.; Benoit, J.L.; Benoit, S.W.; Noé, F.; et al. Alpha 1 Antitrypsin Is an Inhibitor of the SARS-CoV-2-Priming Protease TMPRSS2. Pathog. Immun. 2021, 6, 55–74. [Google Scholar] [CrossRef]
- Philippe, A.; Puel, M.; Narjoz, C.; Gendron, N.; Durey-Dragon, M.A.; Vedie, B.; Balduyck, M.; Chocron, R.; Hauw-Berlemont, C.; Sanchez, O.; et al. Imbalance between Alpha-1-Antitrypsin and Interleukin 6 Is Associated with in-Hospital Mortality and Thrombosis during COVID-19. Biochimie 2022, 202, 206–211. [Google Scholar] [CrossRef]
- McElvaney, O.J.; McEvoy, N.L.; McElvaney, O.F.; Carroll, T.P.; Murphy, M.P.; Dunlea, D.M.; Ní Choileáin, O.; Clarke, J.; O’Connor, E.; Hogan, G.; et al. Characterization of the Inflammatory Response to Severe COVID-19 Illness. Am. J. Respir. Crit. Care Med. 2020, 202, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Schumertl, T.; Lokau, J.; Rose-John, S.; Garbers, C. Function and Proteolytic Generation of the Soluble Interleukin-6 Receptor in Health and Disease. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119143. [Google Scholar] [CrossRef]
- Iwasaki, M.; Saito, J.; Zhao, H.; Sakamoto, A.; Hirota, K.; Ma, D. Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications. Inflammation 2021, 44, 13–34. [Google Scholar] [CrossRef]
- Bai, X.; Hippensteel, J.; Leavitt, A.; Maloney, J.P.; Beckham, D.; Garcia, C.; Li, Q.; Freed, B.M.; Ordway, D.; Sandhaus, R.A.; et al. Hypothesis: Alpha-1-Antitrypsin Is a Promising Treatment Option for COVID-19. Med. Hypotheses 2021, 146, 110394. [Google Scholar] [CrossRef]
- Martini, F.; De Mattei, M.; Contini, C.; Tognon, M.G. Potential Use of Alpha-1 Anti-Trypsin in the Covid-19 Treatment. Front. Cell Dev. Biol. 2020, 8, 577528. [Google Scholar] [CrossRef]
- Turk, V.; Bode, W. The Cystatins: Protein Inhibitors of Cysteine Proteinases. FEBS Lett. 1991, 285, 213–219. [Google Scholar] [CrossRef]
- Tavéra, C.; Prévot, D.; Girolami, J.P.; Leung-Tack, J.; Collé, A. Tissue and Biological Fluid Distribution of Cysteine Proteinases Inhibitor: Rat Cystatin C. Biol. Chem. Hoppe Seyler 1990, 371, 187–192. [Google Scholar] [PubMed]
- Collins, A.R.; Grubb, A. Inhibitory Effects of Recombinant Human Cystatin C on Human Coronaviruses. Antimicrob. Agents Chemother 1991, 35, 2444–2446. [Google Scholar] [CrossRef]
- Collins, A.R.; Grubb, A. Cystatin D, a Natural Salivary Cysteine Protease Inhibitor, Inhibits Coronavirus Replication at Its Physiologic Concentration. Oral. Microbiol. Immunol. 1998, 13, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Pierre, P.; Mellman, I. Developmental Regulation of Invariant Chain Proteolysis Controls MHC Class II Trafficking in Mouse Dendritic Cells. Cell 1998, 93, 1135–1145. [Google Scholar] [CrossRef]
- León Machado, J.A.; Steimle, V. The MHC Class II Transactivator CIITA: Not (Quite) the Odd-One-Out Anymore among NLR Proteins. Int. J. Mol. Sci. 2021, 22, 1074. [Google Scholar] [CrossRef] [PubMed]
- Girona-Alarcon, M.; Argüello, G.; Esteve-Sole, A.; Bobillo-Perez, S.; Burgos-Artizzu, X.P.; Bonet-Carne, E.; Mensa-Vilaró, A.; Codina, A.; Hernández-Garcia, M.; Jou, C.; et al. Low Levels of CIITA and High Levels of SOCS1 Predict COVID-19 Disease Severity in Children and Adults. iScience 2022, 25, 103595. [Google Scholar] [CrossRef] [PubMed]
- Bruchez, A.; Sha, K.; Johnson, J.; Chen, L.; Stefani, C.; McConnell, H.; Gaucherand, L.; Prins, R.; Matreyek, K.A.; Hume, A.J.; et al. MHC Class II Transactivator CIITA Induces Cell Resistance to Ebola Virus and SARS-like Coronaviruses. Science 2020, 370, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Zi, M.; Xu, Y. Involvement of Cystatin C in Immunity and Apoptosis. Immunol. Lett. 2018, 196, 80–90. [Google Scholar] [CrossRef]
- Matuszewski, M.; Reznikov, Y.; Pruc, M.; Peacock, F.W.; Navolokina, A.; Júarez-Vela, R.; Jankowski, L.; Rafique, Z.; Szarpak, L. Prognostic Performance of Cystatin C in COVID-19: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 14607. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; Kulkarni, A.; Navikala, K.; Gowda, V.; Shaikh, M.A. Serum Cystatin C Levels as a Predictor of Severity and Mortality Among Patients With COVID-19 Infection. Cureus 2023, 15, e42003. [Google Scholar] [CrossRef]
- Zinellu, A.; Mangoni, A.A. Cystatin C, COVID-19 Severity and Mortality: A Systematic Review and Meta-Analysis. J. Nephrol. 2022, 35, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Al-Tamimi, A.O.; Halwani, R.; Alsaidi, H.; Kannan, M.; Ahmad, F. Lipocalin-2, S100A8/A9, and Cystatin C: Potential Predictive Biomarkers of Cardiovascular Complications in COVID-19. Exp. Biol. Med. 2022, 247, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, S.; Peng, D.; Zhu, H.M.; Li, B.Y.; Yang, X.; Sun, X.L.; Zhang, M. Predictive Value of Serum Cystatin C for Risk of Mortality in Severe and Critically Ill Patients with COVID-19. World J. Clin. Cases 2020, 8, 4726–4734. [Google Scholar] [CrossRef]
- Aita, A.; Battisti, I.; Contran, N.; Furlan, S.; Padoan, A.; Franchin, C.; Barbaro, F.; Cattelan, A.M.; Zambon, C.F.; Plebani, M.; et al. Salivary Proteomic Analysis in Asymptomatic and Symptomatic SARS-CoV-2 Infection: Innate Immunity, Taste Perception and FABP5 Proteins Make the Difference. Clin. Chim. Acta 2022, 537, 26–37. [Google Scholar] [CrossRef]
- Mohtasham, N.; Bargi, R.; Farshbaf, A.; Shahri, M.V.; Hesari, K.K.; Mohajertehran, F. Salivary Antiviral and Antibacterial Properties in the Encounter of SARS-CoV-2. Curr. Pharm. Des. 2023, 29, 2140–2148. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Prieto, A.; Rubić, I.; Gonzalez-Sanchez, J.C.; Kuleš, J.; Martínez-Subiela, S.; Cerón, J.J.; Bernal, E.; Torres-Cantero, A.; Vicente-Romero, M.R.; Mrljak, V.; et al. Saliva Changes in Composition Associated to COVID-19: A Preliminary Study. Sci. Rep. 2022, 12, 10879. [Google Scholar] [CrossRef] [PubMed]
- Larsson, A.O.; Hultström, M.; Frithiof, R.; Nyman, U.; Lipcsey, M.; Eriksson, M.B. Differential Bias for Creatinine- and Cystatin C- Derived Estimated Glomerular Filtration Rate in Critical COVID-19. Biomedicines 2022, 10, 2708. [Google Scholar] [CrossRef] [PubMed]
- Gren, S.T.; Janciauskiene, S.; Sandeep, S.; Jonigk, D.; Kvist, P.H.; Gerwien, J.G.; Håkansson, K.; Grip, O. The Protease Inhibitor Cystatin C Down-Regulates the Release of IL-β and TNF-α in Lipopolysaccharide Activated Monocytes. J. Leukoc. Biol. 2016, 100, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Avotins, L.; Kroica, J.; Petersons, A.; Zentina, D.; Kravale, Z.; Saulite, A.; Racenis, K. eGFR cystatinC /eGFR Creatinine Ratio < 0.6 in Patients with SARS-CoV-2 Pneumonia: A Prospective Cohort Study. BMC Nephrol. 2023, 24, 269. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, P.; Cao, W.; Liu, Z.; Ma, J.; Zheng, K.; Chen, L.; Li, X.; Qin, Y. Divergence between Serum Creatine and Cystatin C in Estimating Glomerular Filtration Rate of Critically Ill COVID-19 Patients. Ren. Fail. 2021, 43, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Cambier, S.; Metzemaekers, M.; de Carvalho, A.C.; Nooyens, A.; Jacobs, C.; Vanderbeke, L.; Malengier-Devlies, B.; Gouwy, M.; Heylen, E.; Meersseman, P.; et al. Atypical Response to Bacterial Coinfection and Persistent Neutrophilic Bronchoalveolar Inflammation Distinguish Critical COVID-19 from Influenza. JCI Insight 2022, 7, e155055. [Google Scholar] [CrossRef]
- Hiemstra, P.S. Novel Roles of Protease Inhibitors in Infection and Inflammation. Biochem. Soc. Trans. 2002, 30, 116–120. [Google Scholar] [CrossRef]
- Melms, J.C.; Biermann, J.; Huang, H.; Wang, Y.; Nair, A.; Tagore, S.; Katsyv, I.; Rendeiro, A.F.; Amin, A.D.; Schapiro, D.; et al. A Molecular Single-Cell Lung Atlas of Lethal COVID-19. Nature 2021, 595, 114–119. [Google Scholar] [CrossRef]
- Ruaro, B.; Salton, F.; Braga, L.; Wade, B.; Confalonieri, P.; Volpe, M.C.; Baratella, E.; Maiocchi, S.; Confalonieri, M. The History and Mystery of Alveolar Epithelial Type II Cells: Focus on Their Physiologic and Pathologic Role in Lung. Int. J. Mol. Sci. 2021, 22, 2566. [Google Scholar] [CrossRef]
- Sibila, O.; Perea, L.; Albacar, N.; Moisés, J.; Cruz, T.; Mendoza, N.; Solarat, B.; Lledó, G.; Espinosa, G.; Barberà, J.A.; et al. Elevated Plasma Levels of Epithelial and Endothelial Cell Markers in COVID-19 Survivors with Reduced Lung Diffusing Capacity Six Months after Hospital Discharge. Respir. Res. 2022, 23, 37. [Google Scholar] [CrossRef]
- Olagnier, D.; Farahani, E.; Thyrsted, J.; Blay-Cadanet, J.; Herengt, A.; Idorn, M.; Hait, A.; Hernaez, B.; Knudsen, A.; Iversen, M.B.; et al. SARS-CoV2-Mediated Suppression of NRF2-Signaling Reveals Potent Antiviral and Anti-Inflammatory Activity of 4-Octyl-Itaconate and Dimethyl Fumarate. Nat. Commun. 2020, 11, 4938. [Google Scholar] [CrossRef]
- Laforge, M.; Elbim, C.; Frère, C.; Hémadi, M.; Massaad, C.; Nuss, P.; Benoliel, J.J.; Becker, C. Tissue Damage from Neutrophil-Induced Oxidative Stress in COVID-19. Nat. Rev. Immunol. 2020, 20, 515–516. [Google Scholar] [CrossRef]
- Mitra, P. Inhibiting Fusion with Cellular Membrane System: Therapeutic Options to Prevent Severe Acute Respiratory Syndrome Coronavirus-2 Infection. Am. J. Physiol. Cell Physiol. 2020, 319, C500–C509. [Google Scholar] [CrossRef] [PubMed]
- Mackie, P.L. The Classification of Viruses Infecting the Respiratory Tract. Paediatr. Respir. Rev. 2003, 4, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.L.; Simonetti, B.; Klein, K.; Chen, K.E.; Williamson, M.K.; Antón-Plágaro, C.; Shoemark, D.K.; Simón-Gracia, L.; Bauer, M.; Hollandi, R.; et al. Neuropilin-1 Is a Host Factor for SARS-CoV-2 Infection. Science 2020, 370, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wen, Z.; Cao, H.; Luo, J.; Shuai, L.; Wang, C.; Ge, J.; Bu, Z.; Wang, J. Transferrin Receptor Protein 1 Cooperates with mGluR2 To Mediate the Internalization of Rabies Virus and SARS-CoV-2. J. Virol. 2023, 97, e0161122. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Y.; Zeng, X.; Chen, H.; Chen, Y.; Yang, D.; Shen, Z.; Wang, X.; Liu, X.; Xiong, M.; et al. Kidney Injury Molecule-1 Is a Potential Receptor for SARS-CoV-2. J. Mol. Cell Biol. 2021, 13, 185–196. [Google Scholar] [CrossRef]
- Elfiky, A.A. SARS-CoV-2 Spike-Heat Shock Protein A5 (GRP78) Recognition May Be Related to the Immersed Human Coronaviruses. Front. Pharmacol. 2020, 11, 577467. [Google Scholar] [CrossRef]
- Wang, K.; Chen, W.; Zhang, Z.; Deng, Y.; Lian, J.Q.; Du, P.; Wei, D.; Zhang, Y.; Sun, X.X.; Gong, L.; et al. CD147-Spike Protein Is a Novel Route for SARS-CoV-2 Infection to Host Cells. Signal Transduct. Target. Ther. 2020, 5, 283. [Google Scholar] [CrossRef]
- Shiliaev, N.; Lukash, T.; Palchevska, O.; Crossman, D.K.; Green, T.J.; Crowley, M.R.; Frolova, E.I.; Frolov, I. Natural and Recombinant SARS-CoV-2 Isolates Rapidly Evolve. J. Virol. 2021, 95, e0135721. [Google Scholar] [CrossRef] [PubMed]
- Vankadari, N.; Wilce, J.A. Emerging WuHan (COVID-19) Coronavirus: Glycan Shield and Structure Prediction of Spike Glycoprotein and Its Interaction with Human CD26. Emerg. Microbes Infect. 2020, 9, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Maleksabet, H.; Rezaee, E.; Tabatabai, S.A. Host-Cell Surface Binding Targets in SARS-CoV-2 for Drug Design. Curr. Pharm. Des. 2022, 28, 3583–3591. [Google Scholar] [CrossRef] [PubMed]
- Aboudounya, M.M.; Heads, R.J. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediators. Inflamm. 2021, 2021, 8874339. [Google Scholar] [CrossRef]
- Beyerstedt, S.; Casaro, E.B.; Rangel, É. COVID-19: Angiotensin-Converting Enzyme 2 (ACE2) Expression and Tissue Susceptibility to SARS-CoV-2 Infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, M.E.; Thurman, A.; Pezzulo, A.A.; Leidinger, M.R.; Klesney-Tait, J.A.; Karp, P.H.; Tan, P.; Wohlford-Lenane, C.; McCray, P.B.; Meyerholz, D.K. Heterogeneous Expression of the SARS-Coronavirus-2 Receptor ACE2 in the Human Respiratory Tract. EBioMedicine 2020, 60, 102976. [Google Scholar] [CrossRef] [PubMed]
- Essalmani, R.; Andréo, U.; Evagelidis, A.; Le Dévéhat, M.; Pereira Ramos, O.H.; Fruchart Gaillard, C.; Susan-Resiga, D.; Cohen, É.; Seidah, N.G. SKI-1/S1P Facilitates SARS-CoV-2 Spike Induced Cell-to-Cell Fusion via Activation of SREBP-2 and Metalloproteases, Whereas PCSK9 Enhances the Degradation of ACE2. Viruses 2023, 15, 360. [Google Scholar] [CrossRef]
- Verdecchia, P.; Cavallini, C.; Spanevello, A.; Angeli, F. The Pivotal Link between ACE2 Deficiency and SARS-CoV-2 Infection. Eur. J. Intern. Med. 2020, 76, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.; Nery, L.; Martins, L.; Jabour, L.; Dias, R.; Simões E Silva, A.C. Downregulation of Membrane-Bound Angiotensin Converting Enzyme 2 (ACE2) Receptor Has a Pivotal Role in COVID-19 Immunopathology. Curr. Drug Targets 2021, 22, 254–281. [Google Scholar] [CrossRef]
- Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; et al. A Crucial Role of Angiotensin Converting Enzyme 2 (ACE2) in SARS Coronavirus-Induced Lung Injury. Nat. Med. 2005, 11, 875–879. [Google Scholar] [CrossRef]
- Oudit, G.Y.; Kassiri, Z.; Jiang, C.; Liu, P.P.; Poutanen, S.M.; Penninger, J.M.; Butany, J. SARS-Coronavirus Modulation of Myocardial ACE2 Expression and Inflammation in Patients with SARS. Eur. J. Clin. Investig. 2009, 39, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Kuba, K.; Yamaguchi, T.; Penninger, J.M. Angiotensin-Converting Enzyme 2 (ACE2) in the Pathogenesis of ARDS in COVID-19. Front. Immunol. 2021, 12, 732690. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, S.; Sisti, D.; Vandini, D.; Barocci, S.; Sudano, M.; Carlotti, E.; Teng, J.L.L.; Zamai, L. Circulating ACE2 Level and Zinc/Albumin Ratio as Potential Biomarkers for a Precision Medicine Approach to COVID-19. Adv. Biol. Regul. 2023, 89, 100973. [Google Scholar] [CrossRef] [PubMed]
- Oudit, G.Y.; Wang, K.; Viveiros, A.; Kellner, M.J.; Penninger, J.M. Angiotensin-Converting Enzyme 2-at the Heart of the COVID-19 Pandemic. Cell 2023, 186, 906–922. [Google Scholar] [CrossRef]
- Bell, J.H.; Herrera, A.H.; Li, Y.; Walcheck, B. Role of ADAM17 in the Ectodomain Shedding of TNF-Alpha and Its Receptors by Neutrophils and Macrophages. J. Leukoc. Biol. 2007, 82, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Black, R.A.; Rauch, C.T.; Kozlosky, C.J.; Peschon, J.J.; Slack, J.L.; Wolfson, M.F.; Castner, B.J.; Stocking, K.L.; Reddy, P.; Srinivasan, S.; et al. A Metalloproteinase Disintegrin That Releases Tumour-Necrosis Factor-Alpha from Cells. Nature 1997, 385, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Hojyo, S.; Uchida, M.; Tanaka, K.; Hasebe, R.; Tanaka, Y.; Murakami, M.; Hirano, T. How COVID-19 Induces Cytokine Storm with High Mortality. Inflamm. Regen. 2020, 40, 37. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Ding, Y.; Zhang, Q.; Che, X.; He, Y.; Shen, H.; Wang, H.; Li, Z.; Zhao, L.; Geng, J.; et al. Expression of Elevated Levels of Pro-Inflammatory Cytokines in SARS-CoV-Infected ACE2+ Cells in SARS Patients: Relation to the Acute Lung Injury and Pathogenesis of SARS. J. Pathol. 2006, 210, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Oudit, G.Y.; Pfeffer, M.A. Plasma Angiotensin-Converting Enzyme 2: Novel Biomarker in Heart Failure with Implications for COVID-19. Eur. Heart J. 2020, 41, 1818–1820. [Google Scholar] [CrossRef]
- Wang, K.; Gheblawi, M.; Nikhanj, A.; Munan, M.; MacIntyre, E.; O’Neil, C.; Poglitsch, M.; Colombo, D.; Del Nonno, F.; Kassiri, Z.; et al. Dysregulation of ACE (Angiotensin-Converting Enzyme)-2 and Renin-Angiotensin Peptides in SARS-CoV-2 Mediated Mortality and End-Organ Injuries. Hypertension 2022, 79, 365–378. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.; An, Y. ACE2 Shedding and the Role in COVID-19. Front. Cell Infect. Microbiol. 2021, 11, 789180. [Google Scholar] [CrossRef] [PubMed]
- Osman, I.O.; Melenotte, C.; Brouqui, P.; Million, M.; Lagier, J.-C.; Parola, P.; Stein, A.; La Scola, B.; Meddeb, L.; Mege, J.-L.; et al. Expression of ACE2, Soluble ACE2, Angiotensin I, Angiotensin II and Angiotensin-(1-7) Is Modulated in COVID-19 Patients. Front. Immunol. 2021, 12, 625732. [Google Scholar] [CrossRef] [PubMed]
- Vickers, C.; Hales, P.; Kaushik, V.; Dick, L.; Gavin, J.; Tang, J.; Godbout, K.; Parsons, T.; Baronas, E.; Hsieh, F.; et al. Hydrolysis of Biological Peptides by Human Angiotensin-Converting Enzyme-Related Carboxypeptidase. J. Biol. Chem. 2002, 277, 14838–14843. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol. Rev. 2018, 98, 505–553. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.Y.; Zheng, B.; Zhang, Y.; Li, J.P. Role and Mechanism of Angiotensin-Converting Enzyme 2 in Acute Lung Injury in Coronavirus Disease 2019. Chronic. Dis. Transl. Med. 2020, 6, 98–105. [Google Scholar] [CrossRef] [PubMed]
- El-Arif, G.; Khazaal, S.; Farhat, A.; Harb, J.; Annweiler, C.; Wu, Y.; Cao, Z.; Kovacic, H.; Abi Khattar, Z.; Fajloun, Z.; et al. Angiotensin II Type I Receptor (AT1R): The Gate towards COVID-19-Associated Diseases. Molecules 2022, 27, 2048. [Google Scholar] [CrossRef] [PubMed]
- Banu, N.; Panikar, S.S.; Leal, L.R.; Leal, A.R. Protective Role of ACE2 and Its Downregulation in SARS-CoV-2 Infection Leading to Macrophage Activation Syndrome: Therapeutic Implications. Life Sci. 2020, 256, 117905. [Google Scholar] [CrossRef] [PubMed]
- Mehrabadi, M.E.; Hemmati, R.; Tashakor, A.; Homaei, A.; Yousefzadeh, M.; Hemati, K.; Hosseinkhani, S. Induced Dysregulation of ACE2 by SARS-CoV-2 Plays a Key Role in COVID-19 Severity. Biomed. Pharmacother. 2021, 137, 111363. [Google Scholar] [CrossRef] [PubMed]
- Montecucco, F.; Pende, A.; Mach, F. The Renin-Angiotensin System Modulates Inflammatory Processes in Atherosclerosis: Evidence from Basic Research and Clinical Studies. Mediators. Inflamm. 2009, 2009, 752406. [Google Scholar] [CrossRef]
- Husain, K.; Hernandez, W.; Ansari, R.A.; Ferder, L. Inflammation, Oxidative Stress and Renin Angiotensin System in Atherosclerosis. World J. Biol. Chem. 2015, 6, 209–217. [Google Scholar] [CrossRef]
- Papp, M.; Li, X.; Zhuang, J.; Wang, R.; Uhal, B.D. Angiotensin Receptor Subtype AT(1) Mediates Alveolar Epithelial Cell Apoptosis in Response to ANG II. Am. J. Physiol. Lung Cell Mol. Physiol. 2002, 282, L713–L718. [Google Scholar] [CrossRef] [PubMed]
- Bhoola, K.D.; Figueroa, C.D.; Worthy, K. Bioregulation of Kinins: Kallikreins, Kininogens, and Kininases. Pharmacol. Rev. 1992, 44, 1–80. [Google Scholar] [PubMed]
- Kaplan, A.P.; Joseph, K.; Shibayama, Y.; Reddigari, S.; Ghebrehiwet, B. Activation of the Plasma Kinin Forming Cascade along Cell Surfaces. Int. Arch. Allergy Immunol. 2001, 124, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Motta, G.; Shariat-Madar, Z.; Mahdi, F.; Sampaio, C.A.; Schmaier, A.H. Assembly of High Molecular Weight Kininogen and Activation of Prekallikrein on Cell Matrix. Thromb. Haemost. 2001, 86, 840–847. [Google Scholar] [PubMed]
- Rabito, S.F.; Orstavik, T.B.; Scicli, A.G.; Schork, A.; Carretero, O.A. Role of the Autonomic Nervous System in the Release of Rat Submandibular Gland Kallikrein into the Circulation. Circ. Res. 1983, 52, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Yayama, K.; Kunimatsu, N.; Teranishi, Y.; Takano, M.; Okamoto, H. Tissue Kallikrein Is Synthesized and Secreted by Human Vascular Endothelial Cells. Biochim. Biophys. Acta 2003, 1593, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Coffman, L.G.; Brown, J.C.; Johnson, D.A.; Parthasarathy, N.; D’Agostino, R.B.; Lively, M.O.; Hua, X.; Tilley, S.L.; Muller-Esterl, W.; Willingham, M.C.; et al. Cleavage of High-Molecular-Weight Kininogen by Elastase and Tryptase Is Inhibited by Ferritin. Am. J. Physiol. Lung Cell Mol. Physiol. 2008, 294, L505–L515. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Tanase, S.; Hayashi, I.; Potempa, J.; Kozik, A.; Travis, J. Release of a New Vascular Permeability Enhancing Peptide from Kininogens by Human Neutrophil Elastase. Biochem. Biophys. Res. Commun. 2002, 294, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Marshall, P.; Heudi, O.; McKeown, S.; Amour, A.; Abou-Shakra, F. Study of Bradykinin Metabolism in Human and Rat Plasma by Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometry and Orthogonal Acceleration Time-of-Flight Mass Spectrometry. Rapid. Commun. Mass. Spectrom. 2002, 16, 220–228. [Google Scholar] [CrossRef]
- Schmaier, A.H. The Contact Activation and Kallikrein/Kinin Systems: Pathophysiologic and Physiologic Activities. J. Thromb. Haemost. 2016, 14, 28–39. [Google Scholar] [CrossRef]
- Wu, Y. The Plasma Contact System as a Modulator of Innate Immunity. Curr. Opin. Hematol. 2018, 25, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.P.; Ghebrehiwet, B. The Plasma Bradykinin-Forming Pathways and Its Interrelationships with Complement. Mol. Immunol. 2010, 47, 2161–2169. [Google Scholar] [CrossRef] [PubMed]
- Rhaleb, N.-E.; Yang, X.-P.; Carretero, O.A. The Kallikrein-Kinin System as a Regulator of Cardiovascular and Renal Function. Compr. Physiol. 2011, 1, 971–993. [Google Scholar] [CrossRef] [PubMed]
- Schmaier, A.H. The Plasma Kallikrein-Kinin System Counterbalances the Renin-Angiotensin System. J. Clin. Investig. 2002, 109, 1007–1009. [Google Scholar] [CrossRef] [PubMed]
- Cyr, M.; Lepage, Y.; Blais, C.; Gervais, N.; Cugno, M.; Rouleau, J.L.; Adam, A. Bradykinin and Des-Arg(9)-Bradykinin Metabolic Pathways and Kinetics of Activation of Human Plasma. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H275–H283. [Google Scholar] [CrossRef]
- Tabassum, A.; Iqbal, M.S.; Sultan, S.; Alhuthali, R.A.; Alshubaili, D.I.; Sayyam, R.S.; Abyad, L.M.; Qasem, A.H.; Arbaeen, A.F. Dysregulated Bradykinin: Mystery in the Pathogenesis of COVID-19. Mediators. Inflamm. 2022, 2022, 7423537. [Google Scholar] [CrossRef] [PubMed]
- Marceau, F.; Bachelard, H.; Bouthillier, J.; Fortin, J.P.; Morissette, G.; Bawolak, M.T.; Charest-Morin, X.; Gera, L. Bradykinin Receptors: Agonists, Antagonists, Expression, Signaling, and Adaptation to Sustained Stimulation. Int. Immunopharmacol. 2020, 82, 106305. [Google Scholar] [CrossRef]
- Erdös, E.G.; Deddish, P.A. The Kinin System: Suggestions to Broaden Some Prevailing Concepts. Int. Immunopharmacol. 2002, 2, 1741–1746. [Google Scholar] [CrossRef] [PubMed]
- Lazartigues, E.; Feng, Y.; Lavoie, J.L. The Two fACEs of the Tissue Renin-Angiotensin Systems: Implication in Cardiovascular Diseases. Curr. Pharm. Des. 2007, 13, 1231–1245. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Tan, F.; Erdös, E.G.; Deddish, P.A. Hydrolysis of Angiotensin Peptides by Human Angiotensin I-Converting Enzyme and the Resensitization of B2 Kinin Receptors. Hypertension 2005, 46, 1368–1373. [Google Scholar] [CrossRef]
- Erdös, E.G.; Jackman, H.L.; Brovkovych, V.; Tan, F.; Deddish, P.A. Products of Angiotensin I Hydrolysis by Human Cardiac Enzymes Potentiate Bradykinin. J. Mol. Cell Cardiol. 2002, 34, 1569–1576. [Google Scholar] [CrossRef]
- Marcic, B.; Deddish, P.A.; Jackman, H.L.; Erdös, E.G. Enhancement of Bradykinin and Resensitization of Its B2 Receptor. Hypertension 1999, 33, 835–843. [Google Scholar] [CrossRef]
- Zhu, L.; Carretero, O.A.; Liao, T.D.; Harding, P.; Li, H.; Sumners, C.; Yang, X.P. Role of Prolylcarboxypeptidase in Angiotensin II Type 2 Receptor-Mediated Bradykinin Release in Mouse Coronary Artery Endothelial Cells. Hypertension 2010, 56, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Tolouian, R.; Vahed, S.Z.; Ghiyasvand, S.; Tolouian, A.; Ardalan, M. COVID-19 Interactions with Angiotensin-Converting Enzyme 2 (ACE2) and the Kinin System; Looking at a Potential Treatment. J. Renal. Inj. Prev. 2020, 9, e19. [Google Scholar] [CrossRef]
- Garvin, M.R.; Alvarez, C.; Miller, J.I.; Prates, E.T.; Walker, A.M.; Amos, B.K.; Mast, A.E.; Justice, A.; Aronow, B.; Jacobson, D. A Mechanistic Model and Therapeutic Interventions for COVID-19 Involving a RAS-Mediated Bradykinin Storm. Elife 2020, 9, e59177. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.A.; Roche, R. A Hypothesized Role for Dysregulated Bradykinin Signaling in COVID-19 Respiratory Complications. FASEB J. 2020, 34, 7265–7269. [Google Scholar] [CrossRef]
- Sodhi, C.P.; Wohlford-Lenane, C.; Yamaguchi, Y.; Prindle, T.; Fulton, W.B.; Wang, S.; McCray, P.B.; Chappell, M.; Hackam, D.J.; Jia, H. Attenuation of Pulmonary ACE2 Activity Impairs Inactivation of Des-Arg. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 314, L17–L31. [Google Scholar] [CrossRef]
- Kaplan, A.P.; Ghebrehiwet, B. Pathways for Bradykinin Formation and Interrelationship with Complement as a Cause of Edematous Lung in COVID-19 Patients. J. Allergy Clin. Immunol. 2021, 147, 507–509. [Google Scholar] [CrossRef] [PubMed]
- de Maat, S.; de Mast, Q.; Danser, A.H.J.; van de Veerdonk, F.L.; Maas, C. Impaired Breakdown of Bradykinin and Its Metabolites as a Possible Cause for Pulmonary Edema in COVID-19 Infection. Semin. Thromb. Hemost. 2020, 46, 835–837. [Google Scholar] [CrossRef]
- Ghahestani, S.-M.; Mahmoudi, J.; Hajebrahimi, S.; Sioofy-Khojine, A.-B.; Salehi-Pourmehr, H.; Sadeghi-Ghyassi, F.; Mostafaei, H. Bradykinin as a Probable Aspect in SARS-Cov-2 Scenarios: Is Bradykinin Sneaking out of Our Sight? Iran J. Allergy Asthma Immunol. 2020, 19, 13–17. [Google Scholar] [CrossRef]
- Martens, C.P.; Van Mol, P.; Wauters, J.; Wauters, E.; Gangnus, T.; Noppen, B.; Callewaert, H.; Feyen, J.H.M.; Liesenborghs, L.; Heylen, E.; et al. Dysregulation of the Kallikrein-Kinin System in Bronchoalveolar Lavage Fluid of Patients with Severe COVID-19. EBioMedicine 2022, 83, 104195. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.C.; Hase, N.; Inoue, Y.; Bradley, E.W.; Yahiro, E.; Li, M.; Naqvi, N.; Powell, P.C.; Shi, K.; Takahashi, Y.; et al. Mast Cell Chymase Limits the Cardiac Efficacy of Ang I-Converting Enzyme Inhibitor Therapy in Rodents. J. Clin. Investig. 2010, 120, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- Dell’Italia, L.J.; Collawn, J.F.; Ferrario, C.M. Multifunctional Role of Chymase in Acute and Chronic Tissue Injury and Remodeling. Circ. Res. 2018, 122, 319–336. [Google Scholar] [CrossRef] [PubMed]
- Siragy, H.M.; Jaffa, A.A.; Margolius, H.S.; Carey, R.M. Renin-Angiotensin System Modulates Renal Bradykinin Production. Am. J. Physiol. 1996, 271, R1090–R1095. [Google Scholar] [CrossRef] [PubMed]
- Krivoy, N.; Schlüter, H.; Karas, M.; Zidek, W. Generation of Angiotensin II from Human Plasma by Tissue Kallikrein. Clin. Sci. 1992, 83, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Colarusso, C.; Terlizzi, M.; Pinto, A.; Sorrentino, R. A Lesson from a Saboteur: High-MW Kininogen Impact in Coronavirus-induced Disease 2019. Br. J. Pharmacol. 2020, 177, 4866–4872. [Google Scholar] [CrossRef] [PubMed]
- van de Veerdonk, F.L.; Netea, M.G.; van Deuren, M.; van der Meer, J.W.; de Mast, Q.; Brüggemann, R.J.; van der Hoeven, H. Kallikrein-Kinin Blockade in Patients with COVID-19 to Prevent Acute Respiratory Distress Syndrome. Elife 2020, 9, e57555. [Google Scholar] [CrossRef] [PubMed]
- Poor, H.D. Pulmonary Thrombosis and Thromboembolism in COVID-19. Chest 2021, 160, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.S.; Mcrae, S. COVID-19 and Immunothrombosis: Pathophysiology and Therapeutic Implications. Crit. Rev. Oncol. Hematol. 2021, 168, 103529. [Google Scholar] [CrossRef]
- Dharra, R.; Kumar Sharma, A.; Datta, S. Emerging Aspects of Cytokine Storm in COVID-19: The Role of Proinflammatory Cytokines and Therapeutic Prospects. Cytokine 2023, 169, 156287. [Google Scholar] [CrossRef]
- Ramasamy, S.; Subbian, S. Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis. Clin. Microbiol. Rev. 2021, 34, e00299-20. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Xu, Y.; Wang, T.; Xie, F. Innate and Adaptive Immune Response in SARS-CoV-2 Infection-Current Perspectives. Front. Immunol. 2022, 13, 1053437. [Google Scholar] [CrossRef]
- Bernard, I.; Limonta, D.; Mahal, L.K.; Hobman, T.C. Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Viruses 2020, 13, 29. [Google Scholar] [CrossRef]
- Yang, K.; Liu, S.; Yan, H.; Lu, W.; Shan, X.; Chen, H.; Bao, C.; Feng, H.; Liao, J.; Liang, S.; et al. SARS-CoV-2 Spike Protein Receptor-Binding Domain Perturbates Intracellular Calcium Homeostasis and Impairs Pulmonary Vascular Endothelial Cells. Signal Transduct. Target. Ther. 2023, 8, 276. [Google Scholar] [CrossRef] [PubMed]
- Lui, K.O.; Ma, Z.; Dimmeler, S. SARS-CoV-2 Induced Vascular Endothelial Dysfunction: Direct or Indirect Effects? Cardiovasc. Res. 2024, 120, 34–43. [Google Scholar] [CrossRef]
- Rayner, S.G.; Hung, C.F.; Liles, W.C.; Altemeier, W.A. Lung Pericytes as Mediators of Inflammation. Am. J. Physiol. Lung Cell Mol. Physiol. 2023, 325, L1–L8. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, X.; Chen, M.; Feng, Y.; Xiong, C. The ACE2 Expression in Human Heart Indicates New Potential Mechanism of Heart Injury among Patients Infected with SARS-CoV-2. Cardiovasc. Res. 2020, 116, 1097–1100. [Google Scholar] [CrossRef]
- Yuan, K.; Agarwal, S.; Chakraborty, A.; Condon, D.F.; Patel, H.; Zhang, S.; Huang, F.; Mello, S.A.; Kirk, O.I.; Vasquez, R.; et al. Lung Pericytes in Pulmonary Vascular Physiology and Pathophysiology. Compr. Physiol. 2021, 11, 2227–2247. [Google Scholar] [CrossRef]
- Cardot-Leccia, N.; Hubiche, T.; Dellamonica, J.; Burel-Vandenbos, F.; Passeron, T. Pericyte Alteration Sheds Light on Micro-Vasculopathy in COVID-19 Infection. Intensive Care Med. 2020, 46, 1777–1778. [Google Scholar] [CrossRef]
- Gavriilaki, E.; Anyfanti, P.; Gavriilaki, M.; Lazaridis, A.; Douma, S.; Gkaliagkousi, E. Endothelial Dysfunction in COVID-19: Lessons Learned from Coronaviruses. Curr. Hypertens. Rep. 2020, 22, 63. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Cugno, M.; Meroni, P.L.; Gualtierotti, R.; Griffini, S.; Grovetti, E.; Torri, A.; Lonati, P.; Grossi, C.; Borghi, M.O.; Novembrino, C.; et al. Complement Activation and Endothelial Perturbation Parallel COVID-19 Severity and Activity. J. Autoimmun. 2021, 116, 102560. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, O.; Hultström, M.; Persson, B.; Lipcsey, M.; Ekdahl, K.N.; Nilsson, B.; Frithiof, R. Mannose-Binding Lectin Is Associated with Thrombosis and Coagulopathy in Critically Ill COVID-19 Patients. Thromb. Haemost. 2020, 120, 1720–1724. [Google Scholar] [CrossRef] [PubMed]
- Ramlall, V.; Thangaraj, P.M.; Meydan, C.; Foox, J.; Butler, D.; Kim, J.; May, B.; De Freitas, J.K.; Glicksberg, B.S.; Mason, C.E.; et al. Immune Complement and Coagulation Dysfunction in Adverse Outcomes of SARS-CoV-2 Infection. Nat. Med. 2020, 26, 1609–1615. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Zhu, L.; Liu, H.; Zhang, X.; Wang, T.; Fu, Y.; Li, H.; Dong, Q.; Hu, Y.; Zhang, Z.; et al. Highly Pathogenic Coronavirus N Protein Aggravates Inflammation by MASP-2-Mediated Lectin Complement Pathway Overactivation. Signal Transduct. Target. Ther. 2022, 7, 318. [Google Scholar] [CrossRef]
- Niederreiter, J.; Eck, C.; Ries, T.; Hartmann, A.; Märkl, B.; Büttner-Herold, M.; Amann, K.; Daniel, C. Complement Activation via the Lectin and Alternative Pathway in Patients With Severe COVID-19. Front. Immunol. 2022, 13, 835156. [Google Scholar] [CrossRef]
- Sayyadi, M.; Hassani, S.; Shams, M.; Dorgalaleh, A. Status of Major Hemostatic Components in the Setting of COVID-19: The Effect on Endothelium, Platelets, Coagulation Factors, Fibrinolytic System, and Complement. Ann. Hematol. 2023, 102, 1307–1322. [Google Scholar] [CrossRef] [PubMed]
- Mastellos, D.C.; Pires da Silva, B.G.P.; Fonseca, B.A.L.; Fonseca, N.P.; Auxiliadora-Martins, M.; Mastaglio, S.; Ruggeri, A.; Sironi, M.; Radermacher, P.; Chrysanthopoulou, A.; et al. Complement C3 vs C5 Inhibition in Severe COVID-19: Early Clinical Findings Reveal Differential Biological Efficacy. Clin. Immunol. 2020, 220, 108598. [Google Scholar] [CrossRef] [PubMed]
- Polycarpou, A.; Howard, M.; Farrar, C.A.; Greenlaw, R.; Fanelli, G.; Wallis, R.; Klavinskis, L.S.; Sacks, S. Rationale for Targeting Complement in COVID-19. EMBO Mol. Med. 2020, 12, e12642. [Google Scholar] [CrossRef]
- Afzali, B.; Noris, M.; Lambrecht, B.N.; Kemper, C. The State of Complement in COVID-19. Nat. Rev. Immunol. 2022, 22, 77–84. [Google Scholar] [CrossRef]
- Vaughan, D.E.; Lazos, S.A.; Tong, K. Angiotensin II Regulates the Expression of Plasminogen Activator Inhibitor-1 in Cultured Endothelial Cells. A Potential Link between the Renin-Angiotensin System and Thrombosis. J. Clin. Investig. 1995, 95, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Nougier, C.; Benoit, R.; Simon, M.; Desmurs-Clavel, H.; Marcotte, G.; Argaud, L.; David, J.S.; Bonnet, A.; Negrier, C.; Dargaud, Y. Hypofibrinolytic State and High Thrombin Generation May Play a Major Role in SARS-COV2 Associated Thrombosis. J. Thromb. Haemost. 2020, 18, 2215–2219. [Google Scholar] [CrossRef]
- D’Alonzo, D.; De Fenza, M.; Pavone, V. COVID-19 and Pneumonia: A Role for the uPA/uPAR System. Drug Discov. Today 2020, 25, 1528–1534. [Google Scholar] [CrossRef] [PubMed]
- Maas, C.; Renné, T. Regulatory Mechanisms of the Plasma Contact System. Thromb. Res. 2012, 129 (Suppl. S2), S73–S76. [Google Scholar] [CrossRef] [PubMed]
- Stravalaci, M.; Pagani, I.; Paraboschi, E.M.; Pedotti, M.; Doni, A.; Scavello, F.; Mapelli, S.N.; Sironi, M.; Perucchini, C.; Varani, L.; et al. Recognition and Inhibition of SARS-CoV-2 by Humoral Innate Immunity Pattern Recognition Molecules. Nature Immunol. 2022, 23, 275–286. [Google Scholar] [CrossRef]
- Thomson, T.M.; Toscano-Guerra, E.; Casis, E.; Paciucci, R. C1 Esterase Inhibitor and the Contact System in COVID-19. Br. J. Haematol. 2020, 190, 520–524. [Google Scholar] [CrossRef]
- Savitt, A.G.; Manimala, S.; White, T.; Fandaros, M.; Yin, W.; Duan, H.; Xu, X.; Geisbrecht, B.V.; Rubenstein, D.A.; Kaplan, A.P.; et al. SARS-CoV-2 Exacerbates COVID-19 Pathology Through Activation of the Complement and Kinin Systems. Front. Immunol. 2021, 12, 767347. [Google Scholar] [CrossRef]
- Oehmcke-Hecht, S.; Köhler, J. Interaction of the Human Contact System with Pathogens-An Update. Front. Immunol. 2018, 9, 312. [Google Scholar] [CrossRef]
- Bailey, M.; Linden, D.; Guo-Parke, H.; Earley, O.; Peto, T.; McAuley, D.F.; Taggart, C.; Kidney, J. Vascular Risk Factors for COVID-19 ARDS: Endothelium, Contact-Kinin System. Front. Med. 2023, 10, 1208866. [Google Scholar] [CrossRef]
- Kleniewski, J.; Blankenship, D.T.; Cardin, A.D.; Donaldson, V. Mechanism of Enhanced Kinin Release from High Molecular Weight Kininogen by Plasma Kallikrein after Its Exposure to Plasmin. J. Lab. Clin. Med. 1992, 120, 129–139. [Google Scholar]
- Brown, N.J.; Gainer, J.V.; Stein, C.M.; Vaughan, D.E. Bradykinin Stimulates Tissue Plasminogen Activator Release in Human Vasculature. Hypertension 1999, 33, 1431–1435. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.C.G.; Cruz, N.A.N.; Ricelli, B.; Tedesco-Silva, H.; Medina-Pestana, J.O.; Casarini, D.E. Interactions amongst Inflammation, Renin-Angiotensin-Aldosterone and Kallikrein-Kinin Systems: Suggestive Approaches for COVID-19 Therapy. J. Venom. Anim. Toxins Incl. Trop. Dis. 2021, 27, e20200181. [Google Scholar] [CrossRef] [PubMed]
- Wujak, L.; Didiasova, M.; Zakrzewicz, D.; Frey, H.; Schaefer, L.; Wygrecka, M. Heparan Sulfate Proteoglycans Mediate Factor XIIa Binding to the Cell Surface. J. Biol. Chem. 2015, 290, 7027–7039. [Google Scholar] [CrossRef]
- Meini, S.; Zanichelli, A.; Sbrojavacca, R.; Iuri, F.; Roberts, A.T.; Suffritti, C.; Tascini, C. Understanding the Pathophysiology of COVID-19: Could the Contact System Be the Key? Front. Immunol. 2020, 11, 2014. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padín, J.F.; Pérez-Ortiz, J.M.; Redondo-Calvo, F.J. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int. J. Mol. Sci. 2024, 25, 7553. https://doi.org/10.3390/ijms25147553
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. International Journal of Molecular Sciences. 2024; 25(14):7553. https://doi.org/10.3390/ijms25147553
Chicago/Turabian StylePadín, Juan Fernando, José Manuel Pérez-Ortiz, and Francisco Javier Redondo-Calvo. 2024. "Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function" International Journal of Molecular Sciences 25, no. 14: 7553. https://doi.org/10.3390/ijms25147553
APA StylePadín, J. F., Pérez-Ortiz, J. M., & Redondo-Calvo, F. J. (2024). Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. International Journal of Molecular Sciences, 25(14), 7553. https://doi.org/10.3390/ijms25147553