Estimation of Individual Positive Anti-Islet Autoantibodies from 3 Screen ICA Titer
Abstract
:1. Introduction
2. Results
2.1. Prevalence of Individual Autoantibodies in 3 Screen ICA Titer Groups
2.2. Associations between 3 Screen ICA Titer and the Combination of Individual Autoantibodies
2.3. Associations between 3 Screen ICA Titer and the Number of Individual Autoantibodies
2.4. Comparison of 3 Screen ICA Titers among the Individual Autoantibody Combination Groups
2.5. Factors Associated with 3 Screen ICA-Positive but Negative for Individual Autoantibodies
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Autoantibody Assays
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kawasaki, E. Anti-islet autoantibodies in type 1 diabetes. Int. J. Mol. Sci. 2023, 24, 10012. [Google Scholar] [CrossRef]
- Lernmark, Å. Etiology of autoimmune islet disease: Timing is everything. Diabetes 2021, 70, 1431–1439. [Google Scholar] [CrossRef]
- Roep, B.O.; Thomaidou, S.; van Tienhoven, R.; Zaldumbide, A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat. Rev. Endocrinol. 2021, 17, 150–161. [Google Scholar] [CrossRef]
- Quattrin, T.; Mastrandrea, L.D.; Walker, L.S.K. Type 1 diabetes. Lancet 2023, 401, 2149–2162. [Google Scholar] [CrossRef] [PubMed]
- Mittal, R.; Camick, N.; Lemos, J.R.N.; Hirani, K. Gene-environment interaction in the pathophysiology of type 1 diabetes. Front. Endocrinol. 2024, 15, 1335435. [Google Scholar] [CrossRef]
- Atkinson, M.A.; Mirmira, R.G. The pathogenic “symphony” in type 1 diabetes: A disorder of the immune system, β cells, and exocrine pancreas. Cell Metab. 2023, 35, 1500–1518. [Google Scholar] [CrossRef]
- Thompson, P.J.; Pipella, J.; Rutter, G.A.; Gaisano, H.Y.; Santamaria, P. Islet autoimmunity in human type 1 diabetes: Initiation and progression from the perspective of the beta cell. Diabetologia 2023, 66, 1971–1982. [Google Scholar] [CrossRef]
- Donath, M.Y. Type 1 diabetes: What is the role of autoimmunity in β cell death? J. Clin. Investig. 2022, 132, e164460. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. S1), S20–S42. [Google Scholar] [CrossRef]
- Antar, S.A.; Ashour, N.A.; Sharaky, M.; Khattab, M.; Ashour, N.A.; Zaid, R.T.; Roh, E.J.; Elkamhawy, A.; Al-Karmalawy, A.A. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed. Pharmacother. 2023, 168, 115734. [Google Scholar] [CrossRef]
- Felton, J.L.; Redondo, M.J.; Oram, R.A.; Speake, C.; Long, S.A.; Onengut-Gumuscu, S.; Rich, S.S.; Monaco, G.S.F.; Harris-Kawano, A.; Perez, D.; et al. Islet autoantibodies as precision diagnostic tools to characterize heterogeneity in type 1 diabetes: A systematic review. Commun. Med. 2024, 4, 66. [Google Scholar] [CrossRef]
- Winter, W.E.; Pittman, D.L.; Jialal, I. Practical clinical applications of islet autoantibody testing in type 1 diabetes. J. Appl. Lab. Med. 2022, 7, 197–205. [Google Scholar] [CrossRef] [PubMed]
- So, M.; Speake, C.; Steck, A.K.; Lundgren, M.; Colman, P.G.; Palmer, J.P.; Herold, K.C.; Greenbaum, C.J. Advances in type 1 diabetes prediction using islet autoantibodies: Beyond a simple count. Endocr. Rev. 2021, 42, 584–604. [Google Scholar] [CrossRef] [PubMed]
- Incani, M.; Baroni, M.G.; Cossu, E. Testing for type 1 diabetes autoantibodies in gestational diabetes mellitus (GDM): Is it clinically useful? BMC Endocr. Disord. 2019, 19, 44. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, V.; Ahmed, A.; Anjankar, A. A review on latent autoimmune diabetes in adults. Cureus 2023, 15, e47915. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Yu, L. Understanding islet autoantibodies in prediction of type 1 diabetes. J. Endocr. Soc. 2024, 8, bvad160. [Google Scholar] [CrossRef]
- Pöllänen, P.M.; Ryhänen, S.J.; Toppari, J.; Ilonen, J.; Vähäsalo, P.; Veijola, R.; Siljander, H.; Knip, M. Dynamics of islet autoantibodies during prospective follow-up from birth to age 15 years. J. Clin. Endocrinol. Metab. 2020, 105, e4638–e4651. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, E.; Jinnouchi, H.; Maeda, Y.; Okada, A.; Ito, Y.; Kawai, K. Improving diagnostic accuracy of 3 Screen ICA ELISA kit in the identification of Japanese type 1 diabetes. J. Diabetes Investig. 2023, 14, 1081–1091. [Google Scholar] [CrossRef]
- Takehana, N.; Fukui, T.; Mori, Y.; Hiromura, M.; Terasaki, M.; Ohara, M.; Takada, M.; Tomoyasu, M.; Ito, Y.; Kobayashi, T.; et al. Comparison of positive rates between glutamic acid decarboxylase antibodies and ElisaRSR 3 Screen ICA in recently obtained sera from patients who had been previously diagnosed with slowly progressive type 1 diabetes. J. Diabetes Investig. 2023, 14, 856–863. [Google Scholar] [CrossRef]
- Ziegler, A.G.; Haupt, F.; Scholz, M.; Weininger, K.; Wittich, S.; Löbner, S.; Matzke, C.; Gezginci, C.; Riethausen, S.; Beyerlein, A.; et al. 3 Screen ELISA for high-throughput detection of beta cell autoantibodies in capillary blood. Diabetes Technol. Ther. 2016, 18, 687–693. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, L.; Chen, S.; Guan, J.; Powell, M.; Furmaniak, J.; Smith, B.R.; Chen, L. Characteristic phenotype of Chinese patients with adult-onset diabetes who are autoantibody positive by 3-Screen ICA ELISA. Acta Diabetol. 2022, 59, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Atapattu, N.; Amoroso, M.; Powell, M.; de Silva, D.G.H.; de Silva, K.S.H.; Furmaniak, J.; Smith, B.R.; Premawardhana, L.D. The prevalence of diabetes and thyroid related autoantibodies in Sri Lankan children with type 1 diabetes and their unaffected siblings—The utility of a new screening assay. Front. Endocrinol. 2023, 14, 1028285. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.G.; Kick, K.; Bonifacio, E.; Haupt, F.; Hippich, M.; Dunstheimer, D.; Lang, M.; Laub, O.; Warncke, K.; Lange, K.; et al. Yield of a public health screening of children for islet autoantibodies in Bavaria, Germany. JAMA 2020, 323, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Hummel, S.; Carl, J.; Friedl, N.; Winkler, C.; Kick, K.; Stock, J.; Reinmüller, F.; Ramminger, C.; Schmidt, J.; Lwowsky, D.; et al. Children diagnosed with presymptomatic type 1 diabetes through public health screening have milder diabetes at clinical manifestation. Diabetologia 2023, 66, 1633–1642. [Google Scholar] [CrossRef] [PubMed]
- Sing, A.B.E.; Naselli, G.; Huang, D.; Watson, K.; Colman, P.G.; Harrison, L.C.; Wentworth, J.M. Feasibility and validity of in-home self-collected capillary blood spot screening for type 1 diabetes risk. Diabetes Technol. Ther. 2024, 26, 87–94. [Google Scholar] [CrossRef]
- Törn, C.; Vaziri-Sani, F.; Ramelius, A.; Elding Larsson, H.; Ivarsson, S.A.; Amoroso, M.; Furmaniak, J.; Powell, M.; Smith, B.R. Evaluation of the RSR 3 screen ICA and 2 screen ICA as screening assays for type 1 diabetes in Sweden. Acta Diabetol. 2022, 59, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Verge, C.F.; Gianani, R.; Kawasaki, E.; Yu, L.; Pietropaolo, M.; Chase, H.P.; Eisenbarth, G.S. Number of autoantibodies (against insulin, GAD or ICA512/IA2) rather than particular autoantibody specificities determines risk of type 1 diabetes. J. Autoimmun. 1996, 9, 379–383. [Google Scholar] [CrossRef]
- Kawasaki, E.; Nakamura, K.; Kuriya, G.; Satoh, T.; Kuwahara, H.; Kobayashi, M.; Abiru, N.; Yamasaki, H.; Eguchi, K. Autoantibodies to insulin, insulinoma-associated antigen-2, and zinc transporter 8 improve the prediction of early insulin requirement in adult-onset autoimmune diabetes. J. Clin. Endocrinol. Metab. 2010, 95, 707–713. [Google Scholar] [CrossRef]
- Bottazzo, G.F.; Bosi, E.; Cull, C.A.; Bonifacio, E.; Locatelli, M.; Zimmet, P.; Mackay, I.R.; Holman, R.R. IA-2 antibody prevalence and risk assessment of early insulin requirement in subjects presenting with type 2 diabetes (UKPDS 71). Diabetologia 2005, 48, 703–708. [Google Scholar] [CrossRef]
- Christie, M.R.; Brown, T.J.; Cassidy, D. Binding of antibodies in sera from type 1 (insulin-dependent) diabetic patients to glutamate decarboxylase from rat tissues. Evidence for antigenic and non-antigenic forms of the enzyme. Diabetologia 1992, 35, 380–384. [Google Scholar] [CrossRef]
- Torii, S. Expression and function of IA-2 family proteins, unique neuroendocrine-specific protein-tyrosine phosphatases. Endocr. J. 2009, 56, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, S.L.; McCormick, N.H.; Velasquez, V.; Lopez, V. Zinc in specialized secretory tissues: Roles in the pancreas, prostate, and mammary gland. Adv. Nutr. 2011, 2, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Buzzetti, R.; Di Pietro, S.; Giaccari, A.; Petrone, A.; Locatelli, M.; Suraci, C.; Capizzi, M.; Arpi, M.L.; Bazzigaluppi, E.; Dotta, F.; et al. High titer of autoantibodies to GAD identifies a specific phenotype of adult-onset autoimmune diabetes. Diabetes Care 2007, 30, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, E.; Kuriya, G.; Satoh, T.; Fujishima, K.; Moriuchi, A.; Fukushima, K.; Ozaki, M.; Abiru, N.; Yamasaki, H.; Eguchi, K. Humoral immune response to islet autoantigens in Japanese patients with type 1 diabetes. Ann. N. Y. Acad. Sci. 2008, 1150, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, E.; Maruyama, T.; Imagawa, A.; Awata, T.; Ikegami, H.; Uchigata, Y.; Osawa, H.; Kawabata, Y.; Kobayashi, T.; Shimada, A.; et al. Diagnostic criteria for acute-onset type 1 diabetes mellitus (2012): Report of the Committee of Japan Diabetes Society on the Research of Fulminant and Acute-onset Type 1 Diabetes Mellitus. J. Diabetes Investig. 2014, 5, 115–118. [Google Scholar] [CrossRef]
- Shimada, A.; Kawasaki, E.; Abiru, N.; Awata, T.; Oikawa, Y.; Osawa, H.; Kajio, H.; Kozawa, J.; Takahashi, K.; Chujo, D.; et al. New diagnostic criteria (2023) for slowly progressive type 1 diabetes (SPIDDM): Report from Committee on Type 1 Diabetes of the Japan Diabetes Society (English version). J. Diabetes Investig. 2024, 15, 254–257. [Google Scholar] [CrossRef]
3 Screen ICA Titer (Index) | ||||||
---|---|---|---|---|---|---|
Group | n | 20–29.9 (n = 30) | 30–79.9 (n = 74) | 80–299.9 (n = 104) | 300–499.9 (n = 141) | ≥500 (n = 75) |
All negative | 19 | 19 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
GADA alone | 222 | 4 (2) | 53 (24) | 58 (26) | 67 (30) | 40 (18) |
IA-2A alone | 24 | 4 (17) | 9 (38) | 8 (33) | 3 (13) | 0 (0) |
ZnT8A alone | 13 | 3 (23) | 5 (38) | 5 (38) | 0 (0) | 0 (0) |
GADA/IA-2A | 39 | 0 (0) | 2 (5) | 12 (31) | 15 (38) | 10 (26) |
GADA/ZnT8A | 42 | 0 (0) | 3 (7) | 9 (21) | 23 (55) | 7 (17) |
IA-2A/ZnT8A | 13 | 0 (0) | 2 (15) | 8 (62) | 3 (23) | 0 (0) |
All positive | 52 | 0 (0) | 0 (0) | 4 (8) | 30 (58) | 18 (35) |
3 Screen ICA Titer (Index) | ||||||
---|---|---|---|---|---|---|
Group | n | 20–29.9 (n = 30) | 30–79.9 (n = 74) | 80–299.9 (n = 104) | 300–499.9 (n = 141) | ≥500 (n = 75) |
0 autoantibodies (+) | 19 | 19 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
1 autoantibody (+) | 259 | 11 (4) | 67 (26) | 71 (27) | 70 (27) | 40 (15) |
2 autoantibodies (+) | 94 | 0 (0) | 7 (7) | 29 (31) | 41 (44) | 17 (18) |
3 autoantibodies (+) | 52 | 0 (0) | 0 (0) | 4 (8) | 30 (58) | 18 (35) |
≥2 autoantibodies (+) | 146 | 0 (0) | 7 (5) | 33 (23) | 71 (49) | 35 (24) |
Factors | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95%CI) | p Value | OR (95%CI) | p Value | |
Acute-onset type | 0.94 (0.32–2.75) | N.S. | ||
Male | 1.68 (0.61–4.62) | N.S. | ||
Age at diagnosis | 1.00 (0.98–1.03) | N.S. | ||
Duration | 0.97 (0.93–1.01) | N.S. | ||
BMI | 0.91 (0.80–1.05) | N.S. | ||
HbA1c | 1.21 (0.80–1.82) | N.S. | ||
Blood glucose | 1.01 (1.00–1.01) | 0.013 | 1.00 (0.99–1.01) | N.S. |
C-peptide | 0.89 (0.50–1.59) | N.S. | ||
Autoimmune disease (+) | 0.48 (0.06–3.80) | N.S. | ||
GADA titer | 5.60 (3.00–10.5) | <0.0001 | 7.63 (3.28–17.7) | <0.0001 |
IA-2A titer | 0.62 (0.0–788.1) | N.S. | ||
ZnT8A titer | 1.33 (0.94–1.90) | N.S. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawasaki, E.; Jinnouchi, H.; Maeda, Y.; Okada, A.; Kawai, K. Estimation of Individual Positive Anti-Islet Autoantibodies from 3 Screen ICA Titer. Int. J. Mol. Sci. 2024, 25, 7618. https://doi.org/10.3390/ijms25147618
Kawasaki E, Jinnouchi H, Maeda Y, Okada A, Kawai K. Estimation of Individual Positive Anti-Islet Autoantibodies from 3 Screen ICA Titer. International Journal of Molecular Sciences. 2024; 25(14):7618. https://doi.org/10.3390/ijms25147618
Chicago/Turabian StyleKawasaki, Eiji, Hideaki Jinnouchi, Yasutaka Maeda, Akira Okada, and Koichi Kawai. 2024. "Estimation of Individual Positive Anti-Islet Autoantibodies from 3 Screen ICA Titer" International Journal of Molecular Sciences 25, no. 14: 7618. https://doi.org/10.3390/ijms25147618
APA StyleKawasaki, E., Jinnouchi, H., Maeda, Y., Okada, A., & Kawai, K. (2024). Estimation of Individual Positive Anti-Islet Autoantibodies from 3 Screen ICA Titer. International Journal of Molecular Sciences, 25(14), 7618. https://doi.org/10.3390/ijms25147618