Postmortem Immunohistochemical Findings in Early Acute Myocardial Infarction: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Complement Factors and CD 59
2.2. Myoglobin (MB)
2.3. Fibrinogen
2.4. Desmin
2.5. Tumor Necrosis Factor Alpha (TNF-α), P-38, and JNK (Jun N Terminal Kinase)
2.6. Transforming Growth Factor β1 (TGF-β1)
2.7. Cardiac Troponins
2.8. H-FABP (Heart Fatty Acid Binding Protein)
2.9. Dityrosine
2.10. Fibronectin
2.11. CD 15
2.12. CD 18
2.13. ICAM 1
2.14. ILs (Interleukins)
2.15. Monocyte Chemoattractant Protein-1 (MCP 1)
2.16. Tryptase
2.17. Adiponectin
2.18. Macrophage Migration Inhibitory Factor (MIF)
3. Discussion
3.1. Agonal Myocardial Immunohistochemical Changes
3.2. Myocardial Immunohistochemical Changes Following Autolysis and Putrefaction
3.3. Perimortem Catecholamines
3.4. Gender and Myocardial Ischemic Preconditions
3.5. Overall Considerations
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marijon, E.; Narayanan, K.; Smith, K.; Barra, S.; Basso, C.; Blom, M.T.; Crotti, L.; D’Avila, A.; Deo, R.; Dumas, F.; et al. The Lancet Commission to reduce the global burden of sudden cardiac death: A call for multidisciplinary action. Lancet 2023, 402, 883–936. [Google Scholar] [CrossRef]
- Oliveira, G.B.F.; Avezum, A.; Roever, L. Cardiovascular disease burden: Evolving knowledge of risk factors in myocardial infarction and stroke through population-based research and perspectives in global prevention. Front. Cardiovasc. Med. 2015, 2, 32. [Google Scholar] [CrossRef] [PubMed]
- Kotabagi, R.B.; Apte, V.V.; Pathak, P.R. Post mortem diagnosis of early myocardial infarction. Med. J. Armed Forces India 2000, 56, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Vanhaebost, J.; Ducrot, K.; de Froidmont, S.; Scarpelli, M.P.; Egger, C.; Baumann, P.; Schmit, G.; Grabherr, S.; Palmiere, C. Diagnosis of myocardial ischemia combining multiphase postmortem CT-angiography, histology, and postmortem biochemistry. Radiol. Med. 2017, 122, 95–105. [Google Scholar] [CrossRef]
- Barberi, C.; van den Hondel, K.E. The use of cardiac troponin T (cTnT) in the postmortem diagnosis of acute myocardial infarction and sudden cardiac death: A systematic review. Forensic Sci. Int. 2018, 292, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Wagensveld, I.M.; Blokker, B.M.; Pezzato, A.; Wielopolski, P.A.; Renken, N.S.; von der Thüsen, J.H.; Krestin, G.P.; Hunink, M.G.M.; Oosterhuis, J.W.; Weustink, A.C. Diagnostic accuracy of postmortem computed tomography, magnetic resonance imaging, and computed tomography-guided biopsies for the detection of ischaemic heart disease in a hospital setting. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 739–748. [Google Scholar] [CrossRef]
- Rutty, G.N.; Morgan, B.; Robinson, C.; Raj, V.; Pakkal, M.; Amoroso, J.; Visser, T.; Saunders, S.; Biggs, M.; Hollingbury, F.; et al. Diagnostic accuracy of post-mortem CT with targeted coronary angiography versus autopsy for coroner-requested post-mortem investigations: A prospective, masked, comparison study. Lancet 2017, 390, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; ESC Scientific Document Group. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2019, 40, 237–269. [Google Scholar] [CrossRef] [PubMed]
- Michaud, K.; Basso, C.; d’Amati, G.; Giordano, C.; Kholová, I.; Preston, S.D.; Rizzo, S.; Sabatasso, S.; Sheppard, M.N.; Vink, A.; et al. Diagnosis of myocardial infarction at autopsy: AECVP reappraisal in the light of the current clinical classification. Virchows Arch. 2020, 476, 179–194. [Google Scholar] [CrossRef]
- Moldovan, R.; Ichim, V.A.; Beliș, V. Recent perspectives on the early expression immunohistochemical markers in post-mortem recognition of myocardial infarction. Leg. Med. 2023, 64, 102293. [Google Scholar] [CrossRef]
- Mondello, C.; Cardia, L.; Ventura-Spagnolo, E. Immunohistochemical detection of early myocardial infarction: A systematic review. Int. J. Leg. Med. 2017, 131, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Barranco, R.; Ventura, F. Immunohistochemistry in the Detection of Early Myocardial Infarction: Systematic Review and Analysis of Limitations Because of Autolysis and Putrefaction. Appl. Immunohistochem. Mol. Morphol. 2020, 28, 95–102. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- Casscells, W.; Kimura, H.; Sanchez, J.A.; Yu, Z.X.; Ferrans, V.J. Immunohistochemical study of fibronectin in experimental myocardial infarction. Am. J. Pathol. 1990, 137, 801–810. Available online: https://www.ncbi.nlm.nih.gov/pubmed/2221013 (accessed on 7 May 2024). [PubMed]
- Brinkmann, B.; Sepulchre, M.A.; Fechner, G. The application of selected histochemical and immunohistochemical markers and procedures to the diagnosis of early myocardial damage. Int. J. Leg. Med. 1993, 106, 135–141. [Google Scholar] [CrossRef]
- Väkevä, A.; Morgan, B.P.; Tikkanen, I.; Helin, K.; Laurila, P.; Meri, S. Time course of complement activation and inhibitor expression after ischemic injury of rat myocardium. Am. J. Pathol. 1994, 144, 1357–1368. Available online: https://www.ncbi.nlm.nih.gov/pubmed/7515561 (accessed on 7 May 2024).
- Mathey, D.; Schofer, J.; Schäfer, H.J.; Hamdoch, T.; Joachim, H.C.; Ritgen, A.; Hugo, F.; Bhakdi, S. Early accumulation of the terminal complement-complex in the ischaemic myocardium after reperfusion. Eur. Heart J. 1994, 15, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Robert-Offerman, S.R.; Leers, M.P.; van Suylen, R.J.; Nap, M.; Daemen, M.J.; Theunissen, P.H. Evaluation of the membrane attack complex of complement for the detection of a recent myocardial infarction in man. J. Pathol. 2000, 191, 48–53. [Google Scholar] [CrossRef]
- Dai, R.P.; Dheen, S.T.; Tay, S.S.W. Induction of cytokine expression in rat post-ischemic sinoatrial node (SAN). Cell Tissue Res. 2002, 310, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-M.; Lai, K.W.-H.; Chen, Y.-X.; Huang, X.-R.; Lan, H.Y. Expression of macrophage migration inhibitory factor in acute ischemic myocardial injury. J. Histochem. Cytochem. 2003, 51, 625–631. [Google Scholar] [CrossRef]
- Sumitra, M.; Manikandan, P.; Nayeem, M.; Manohar, B.M.; Lokanadam, B.; Vairamuthu, S.; Subramaniam, S.; Puvanakrishnan, R. Time course studies on the initiation of complement activation in acute myocardial infarction induced by coronary artery ligation in rats. Mol. Cell. Biochem. 2005, 268, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Martínez Díaz, F.; Rodríguez-Morlensín, M.; Pérez-Cárceles, M.D.; Noguera, J.; Luna, A.; Osuna, E. Histology and Histopathology. Histol. Histopathol. 2005, 20, 475–481. Available online: https://www.hh.um.es/Abstracts/Vol_20/20_2/20_2_475.htm (accessed on 4 May 2024). [PubMed]
- Meng, X.; Ming, M.; Wang, E. Heart fatty acid binding protein as a marker for postmortem detection of early myocardial damage. Forensic Sci. Int. 2006, 160, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Dai, R.-P.; Xu, J.-M.; Tao, L.-J.; Li, L.; Li, Z.-P.; Zhang, J.-Y. Induction of tumor necrosis-alpha, p38 and JNK in the spinal cord following acute heart injury in the rat model. Acta Anaesthesiol. Scand. 2007, 51, 365–371. [Google Scholar] [CrossRef]
- Jasra, S.K.; Badian, C.; Macri, I.; Ra, P. Recognition of early myocardial infarction by immunohistochemical staining with cardiac troponin-I and complement C9. J. Forensic Sci. 2012, 57, 1595–1600. [Google Scholar] [CrossRef]
- Turillazzi, E.; Di Paolo, M.; Neri, M.; Riezzo, I.; Fineschi, V. A theoretical timeline for myocardial infarction: Immunohistochemical evaluation and western blot quantification for Interleukin-15 and Monocyte chemotactic protein-1 as very early markers. J. Transl. Med. 2014, 12, 188. [Google Scholar] [CrossRef] [PubMed]
- Mayer, F.; Pröpper, S.; Ritz-Timme, S. Dityrosine, a protein product of oxidative stress, as a possible marker of acute myocardial infarctions. Int. J. Leg. Med. 2014, 128, 787–794. [Google Scholar] [CrossRef]
- Gozalo, A.S.; Lambert, L.E.; Zerfas, P.M.; Elkins, W.R. Detection of early myocardial cell death in owl monkeys (Aotus nancymai) using complement component C9 immunohistochemistry in formalin-fixed paraffin-embedded heart tissues: A retrospective study. J. Med. Primatol. 2022, 51, 93–100. [Google Scholar] [CrossRef]
- Kloner, R.A.; Ganote, C.E.; Jennings, R.B. The “No-Reflow” Phenomenon after Temporary Coronary Occlusion in the Dog. J. Clin. Investig. 1974, 54, 1496–1508. [Google Scholar] [CrossRef]
- Dudkina, N.V.; Spicer, B.A.; Reboul, C.F.; Conroy, P.J.; Lukoyanova, N.; Elmlund, H.; Law, R.H.P.; Ekkel, S.M.; Kondos, S.C.; Goode, R.J.A.; et al. Structure of the poly-C9 component of the complement membrane attack complex. Nat. Commun. 2016, 7, 10588. [Google Scholar] [CrossRef]
- Howie, A.J.; Gregory, J.; Thompson, R.A.; Adkins, M.A.; Niblett, A.J. Technical improvements in the immunoperoxidase study of renal biopsy specimens. J. Clin. Pathol. 1990, 43, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Engel, A.G.; Biesecker, G. Complement activation in muscle fiber necrosis: Demonstration of the membrane attack complex of complement in necrotic fibers. Ann. Neurol. 1982, 12, 289–296. [Google Scholar] [CrossRef]
- Schäfer, H.; Mathey, D.; Hugo, F.; Bhakdi, S. Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium. J. Immunol. 1986, 137, 1945–1949. Available online: https://www.ncbi.nlm.nih.gov/pubmed/3528291 (accessed on 7 May 2024). [CrossRef] [PubMed]
- Bhakdi, S.; Tranum-Jensen, J. Molecular composition of the terminal membrane and fluid-phase C5b-9 complexes of rabbit complement. Absence of disulphide-bonded C9 dimers in the membrane complex. Biochem. J. 1983, 209, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Edston, E.; Kawa, K. Immunohistochemical detection of early myocardial infarction. An evaluation of antibodies against the terminal complement complex (C5b-9). Int. J. Leg. Med. 1995, 108, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Väkevä, A.; Lehto, T.; Takala, A.; Meri, S. Detection of a soluble form of the complement membrane attack complex inhibitor CD59 in plasma after acute myocardial infarction. Scand. J. Immunol. 2000, 52, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Ordway, G.A.; Garry, D.J. Myoglobin: An essential hemoprotein in striated muscle. J. Exp. Biol. 2004, 207, 3441–3446. [Google Scholar] [CrossRef] [PubMed]
- Koch, J.; Lüdemann, J.; Spies, R.; Last, M.; Amemiya, C.T.; Burmester, T. Unusual Diversity of Myoglobin Genes in the Lungfish. Mol. Biol. Evol. 2016, 33, 3033–3041. [Google Scholar] [CrossRef] [PubMed]
- Vanek, T.; Kohli, A. Biochemistry, Myoglobin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023; Available online: https://www.ncbi.nlm.nih.gov/pubmed/31334976 (accessed on 7 May 2024).
- Block, M.I.; Said, J.W.; Siegel, R.J.; Fishbein, M.C. Myocardial myoglobin following coronary artery occlusion. An immunohistochemical study. Am. J. Pathol. 1983, 111, 374–379. Available online: https://www.ncbi.nlm.nih.gov/pubmed/6344648 (accessed on 7 May 2024).
- Waterman, M.R.; Gomez-Sanchez, C.E.; Templeton, G.H. Myoglobinemia as a clue to the presence of acute myocardial infarction. Clin. Res. 1976, 24, 422A. [Google Scholar]
- Ortmann, C.; Pfeiffer, H.; Brinkmann, B. A comparative study on the immunohistochemical detection of early myocardial damage. Int. J. Leg. Med. 2000, 113, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, X.; Hu, J.; Qin, Q. The contrast of immunohistochemical studies of myocardial fibrinogen and myoglobin in early myocardial ischemia in rats. Leg. Med. 2002, 4, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Amin, H.A.A.; El-Hennawy, A.M.Y.; Nakhla, G.A.A.; Tabak, S.A.-H.; Hassan, H.H. Immuno-histochemistry in the detection of early myocardial infarction (a post-mortem study). Egypt. J. Forensic Sci. 2011, 1, 5–12. [Google Scholar] [CrossRef]
- Wilhelmsen, L.; Svärdsudd, K.; Korsan-Bengtsen, K.; Larsson, B.O.; Welin, L.; Tibblin, G. Fibrinogen as a Risk Factor for Stroke and Myocardial Infarction. N. Engl. J. Med. 1984, 311, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Raza-Ahmad, A. Fibrinogen: A diagnostic marker for early ischemia. Biotech. Histochem. 1994, 69, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Sabatasso, S.; Mangin, P.; Fracasso, T.; Moretti, M.; Docquier, M.; Djonov, V. Early markers for myocardial ischemia and sudden cardiac death. Int. J. Leg. Med. 2016, 130, 1265–1280. [Google Scholar] [CrossRef] [PubMed]
- Paulin, D.; Li, Z. Desmin: A major intermediate filament protein essential for the structural integrity and function of muscle. Exp. Cell Res. 2004, 301, 1–7. [Google Scholar] [CrossRef]
- Milner, D.J.; Taffet, G.E.; Wang, X.; Pham, T.; Tamura, T.; Hartley, C.; Gerdes, M.A.; Capetanaki, Y. The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. J. Mol. Cell. Cardiol. 1999, 31, 2063–2076. [Google Scholar] [CrossRef] [PubMed]
- Hein, S.; Scheffold, T.; Schaper, J. Ischemia induces early changes to cytoskeletal and contractile proteins in diseased human myocardium. J. Thorac. Cardiovasc. Surg. 1995, 110, 89–98. [Google Scholar] [CrossRef]
- Doyama, K.; Fujiwara, H.; Fukumoto, M.; Tanaka, M.; Fujiwara, Y.; Oda, T.; Inada, T.; Ohtani, S.; Hasegawa, K.; Fujiwara, T.; et al. Tumour necrosis factor is expressed in cardiac tissues of patients with heart failure. Int. J. Cardiol. 1996, 54, 217–225. [Google Scholar] [CrossRef]
- Jacobs, M.; Staufenberger, S.; Gergs, U.; Meuter, K.; Brandstätter, K.; Hafner, M.; Ertl, G.; Schorb, W. Tumor necrosis factor-alpha at acute myocardial infarction in rats and effects on cardiac fibroblasts. J. Mol. Cell. Cardiol. 1999, 31, 1949–1959. [Google Scholar] [CrossRef]
- Romero-Becerra, R.; Santamans, A.M.; Folgueira, C.; Sabio, G. p38 MAPK Pathway in the Heart: New Insights in Health and Disease. Int. J. Mol. Sci. 2020, 21, 7412. [Google Scholar] [CrossRef]
- Meldrum, D.R.; Meng, X.; Dinarello, C.A.; Ayala, A.; Cain, B.S.; Shames, B.D.; Ao, L.; Banerjee, A.; Harken, A.H. Human myocardial tissue TNFalpha expression following acute global ischemia in vivo. J. Mol. Cell. Cardiol. 1998, 30, 1683–1689. [Google Scholar] [CrossRef]
- Yu, W.; Zha, W.; Guo, S.; Cheng, H.; Wu, J.; Liu, C. Flos Puerariae extract prevents myocardial apoptosis via attenuation oxidative stress in streptozotocin-induced diabetic mice. PLoS ONE 2014, 9, e98044. [Google Scholar] [CrossRef]
- Dean, R.G.; Balding, L.C.; Candido, R.; Burns, W.C.; Cao, Z.; Twigg, S.M.; Burrell, L.M. Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J. Histochem. Cytochem. 2005, 53, 1245–1256. [Google Scholar] [CrossRef]
- Sobel, B.E. Acute myocardial infarction. In Cecil Textbook of Medicine; Goldman, L., Bennet, J.C., Eds.; Saunders: Philadelphia, PA, USA, 2000. [Google Scholar]
- Fishbein, M.C.; Wang, T.; Matijasevic, M.; Hong, L.; Apple, F.S. Myocardial tissue troponins T and, I. An immunohistochemical study in experimental models of myocardial ischemia. Cardiovasc. Pathol. 2003, 12, 65–71. [Google Scholar] [CrossRef]
- Chmurzyńska, A. The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism. J. Appl. Genet. 2006, 47, 39–48. [Google Scholar] [CrossRef]
- Ye, X.-D.; He, Y.; Wang, S.; Wong, G.T.; Irwin, M.G.; Xia, Z. Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta Pharmacol. Sin. 2018, 39, 1155–1163. [Google Scholar] [CrossRef]
- Heinecke, J.W.; Li, W.; Daehnke, H.L., 3rd; Goldstein, J.A. Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J. Biol. Chem. 1993, 268, 4069–4077. Available online: https://www.ncbi.nlm.nih.gov/pubmed/8382689 (accessed on 7 May 2024). [CrossRef]
- Dalton, C.J.; Lemmon, C.A. Fibronectin: Molecular Structure, Fibrillar Structure and Mechanochemical Signaling. Cells 2021, 10, 2443. [Google Scholar] [CrossRef] [PubMed]
- Muncie, J.M.; Weaver, V.M. The Physical and Biochemical Properties of the Extracellular Matrix Regulate Cell Fate. Curr. Top. Dev. Biol. 2018, 130, 1–37. [Google Scholar] [CrossRef]
- Singh, P.; Carraher, C.; Schwarzbauer, J.E. Assembly of fibronectin extracellular matrix. Annu. Rev. Cell Dev. Biol. 2010, 26, 397–419. [Google Scholar] [CrossRef]
- Saleki, S.; Azmoudeh-Ardalan, F.; Eftekhari, H.; Haeri, H.; Emamzadehfard, S. Fibronectin as an immunohistochemical marker for postmortem diagnosis of myocardial infarction. Mathews J. Immunol. Allergy 2017, 1, 1–15. Available online: https://www.mathewsopenaccess.com/scholarly-articles/fibronectin-as-an-immunohistochemical-marker-for-postmortem-diagnosis-of-myocardial-infarction.pdf (accessed on 7 May 2024).
- Hu, B.J.; Chen, Y.C.; Zhu, J.Z. Immunohistochemical study of fibronectin for postmortem diagnosis of early myocardial infarction. Forensic Sci. Int. 1996, 78, 209–217. [Google Scholar] [CrossRef]
- Gadhoum, S.Z.; Sackstein, R. CD15 expression in human myeloid cell differentiation is regulated by sialidase activity. Nat. Chem. Biol. 2008, 4, 751–757. [Google Scholar] [CrossRef]
- Mortensen, E.S.; Rognum, T.O.; Straume, B.; Jørgensen, L. Frequency of acute asymptomatic myocardial infarction and an estimate of infarct age in cases of abrupt sudden death observed in a forensic autopsy material. J. Cell. Mol. Med. 2008, 12, 2119–2129. [Google Scholar] [CrossRef]
- Jorgensen, L.; Rowsell, H.C.; Hovig, T.; Mustard, J.F. Resolution and organization of platelet-rich mural thrombi in carotid arteries of swine. Am. J. Pathol. 1967, 51, 681–719. Available online: https://www.ncbi.nlm.nih.gov/pubmed/4168026 (accessed on 7 May 2024).
- Dreyer, W.J.; Michael, L.H.; West, M.S.; Smith, C.W.; Rothlein, R.; Rossen, R.D.; Anderson, D.C.; Entman, M.L. Neutrophil accumulation in ischemic canine myocardium. Insights into time course, distribution, and mechanism of localization during early reperfusion. Circulation 1991, 84, 400–411. [Google Scholar] [CrossRef]
- Hillis, G.; Taggart, P.; Dalsey, W.; Mangione, A.; Ma, X.L. The expression of the CD18 leucocyte integrin in a rabbit model of acute myocardial infarction: A pilot study of temporal changes and relationship to infarct size. Cardiology 2001, 95, 35–39. [Google Scholar] [CrossRef]
- Pigott, R.; Dillon, L.P.; Hemingway, I.H.; Gearing, A.J. Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem. Biophys. Res. Commun. 1992, 187, 584–589. [Google Scholar] [CrossRef]
- Li, Y.H.; Teng, J.K.; Tsai, W.C.; Tsai, L.M.; Lin, L.J.; Chen, J.H. Elevation of soluble adhesion molecules is associated with the severity of myocardial damage in acute myocardial infarction. Am. J. Cardiol. 1997, 80, 1218–1221. [Google Scholar] [CrossRef]
- Niessen, H.W.; Lagrand, W.K.; Visser, C.A.; Meijer, C.J.; Hack, C.E. Upregulation of ICAM-1 on cardiomyocytes in jeopardized human myocardium during infarction. Cardiovasc. Res. 1999, 41, 603–610. [Google Scholar] [CrossRef]
- Prondzinsky, R.; Unverzagt, S.; Lemm, H.; Wegener, N.-A.; Schlitt, A.; Heinroth, K.M.; Dietz, S.; Buerke, U.; Kellner, P.; Loppnow, H.; et al. Interleukin-6, -7, -8 and -10 predict outcome in acute myocardial infarction complicated by cardiogenic shock. Clin. Res. Cardiol. 2012, 101, 375–384. [Google Scholar] [CrossRef]
- Guo, L.; Liu, M.-F.; Huang, J.-N.; Li, J.-M.; Jiang, J.; Wang, J.-A. Role of interleukin-15 in cardiovascular diseases. J. Cell. Mol. Med. 2020, 24, 7094–7101. [Google Scholar] [CrossRef]
- Charo, I.F.; Myers, S.J.; Herman, A.; Franci, C.; Connolly, A.J.; Coughlin, S.R. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc. Natl. Acad. Sci. USA 1994, 91, 2752–2756. [Google Scholar] [CrossRef]
- Frangogiannis, N.G.; Entman, M.L. Chemokines in myocardial ischemia. Trends Cardiovasc. Med. 2005, 15, 163–169. [Google Scholar] [CrossRef]
- Morimoto, H.; Takahashi, M. Role of monocyte chemoattractant protein-1 in myocardial infarction. Int. J. Biomed. Sci. 2007, 3, 159–167. Available online: https://www.ncbi.nlm.nih.gov/pubmed/23675039 (accessed on 7 May 2024).
- Payne, V.; Kam, P.C.A. Mast cell tryptase: A review of its physiology and clinical significance. Anaesthesia 2004, 59, 695–703. [Google Scholar] [CrossRef]
- Fang, K.; Wolters, P.; Steinhoff, M.; Bidgol, A.; Blount, J.L.; Caughey, G. Mast cell expression of gelatinases A and B is regulated by kit ligand and TGF-beta. J. Immunol. 1999, 162, 5528–5535. [Google Scholar] [CrossRef]
- Frangogiannis, N.G.; Smith, C.W.; Entman, M.L. The inflammatory response in myocardial infarction. Cardiovasc. Res. 2002, 53, 31–47. [Google Scholar] [CrossRef]
- Nguyen, T.M.D. Adiponectin: Role in Physiology and Pathophysiology. Int. J. Prev. Med. 2020, 11, 136. [Google Scholar] [CrossRef]
- Achari, A.E.; Jain, S.K. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int. J. Mol. Sci. 2017, 18, 1321. [Google Scholar] [CrossRef]
- Shibata, R.; Sato, K.; Kumada, M.; Izumiya, Y.; Sonoda, M.; Kihara, S.; Ouchi, N.; Walsh, K. Adiponectin accumulates in myocardial tissue that has been damaged by ischemia-reperfusion injury via leakage from the vascular compartment. Cardiovasc. Res. 2007, 74, 471–479. [Google Scholar] [CrossRef]
- Grieb, G.; Merk, M.; Bernhagen, J.; Bucala, R. Macrophage migration inhibitory factor (MIF): A promising biomarker. Drug News Perspect. 2010, 23, 257–264. [Google Scholar] [CrossRef]
- Bucala, R.; Bernhagen, J. MIF Family Cytokines in Innate Immunity and Homeostasis; Springer: Berlin/Heidelberg, Germany, 2017; Available online: https://play.google.com/store/books/details?id=N9MnDwAAQBAJ (accessed on 7 May 2024).
- Simons, D.; Grieb, G.; Hristov, M.; Pallua, N.; Weber, C.; Bernhagen, J.; Steffens, G. Hypoxia-induced endothelial secretion of macrophage migration inhibitory factor and role in endothelial progenitor cell recruitment. J. Cell. Mol. Med. 2011, 15, 668–678. [Google Scholar] [CrossRef]
- Calandra, T.; Bernhagen, J.; Mitchell, R.A.; Bucala, R. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J. Exp. Med. 1994, 179, 1895–1902. [Google Scholar] [CrossRef]
- Calandra, T.; Roger, T. Macrophage migration inhibitory factor: A regulator of innate immunity. Nat. Rev. Immunol. 2003, 3, 791–800. [Google Scholar] [CrossRef]
- Aljakna, A.; Lauer, E.; Lenglet, S.; Grabherr, S.; Fracasso, T.; Augsburger, M.; Sabatasso, S.; Thomas, A. Multiplex quantitative imaging of human myocardial infarction by mass spectrometry-immunohistochemistry. Int. J. Leg. Med. 2018, 132, 1675–1684. [Google Scholar] [CrossRef]
- Campobasso, C.P.; Dell’Erba, A.S.; Addante, A.; Zotti, F.; Marzullo, A.; Colonna, M.F. Sudden cardiac death and myocardial ischemia indicators: A comparative study of four immunohistochemical markers. Am. J. Forensic Med. Pathol. 2008, 29, 154–161. [Google Scholar] [CrossRef]
- Miyazaki, S.; Fujiwara, H.; Onodera, T.; Kihara, Y.; Matsuda, M.; Wu, D.J.; Nakamura, Y.; Kumada, T.; Sasayama, S.; Kawai, C. Quantitative analysis of contraction band and coagulation necrosis after ischemia and reperfusion in the porcine heart. Circulation 1987, 75, 1074–1082. [Google Scholar] [CrossRef]
- Morita, S.; Furukawa, S.; Nishi, K. Classification of contraction bands using immunohistochemistry. Am. J. Forensic Med. Pathol. 2015, 36, 23–26. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Owen, H.E.; Howie, A.J. High prevalence of acute myocardial damage in a hospital necropsy series, shown by C9 immunohistology. J. Clin. Pathol. 1998, 51, 548–551. [Google Scholar] [CrossRef]
- Sabatasso, S.; Moretti, M.; Mangin, P.; Fracasso, T. Early markers of myocardial ischemia: From the experimental model to forensic pathology cases of sudden cardiac death. Int. J. Leg. Med. 2018, 132, 197–203. [Google Scholar] [CrossRef]
- Hu, B.J.; Chen, Y.C.; Zhu, J.Z. Immunohistochemical study on the depletion of DESMIN, actin and myoglobin in autolyzed and putrefied normal Human myocardia. Rom. J. Leg. Med. 2020, 28, 121–126. [Google Scholar] [CrossRef]
- Thomsen, H.; Held, H. Susceptibility of C5b-9(m) to postmortem changes. Int. J. Leg. Med. 1994, 106, 291–293. [Google Scholar] [CrossRef]
- Ortmann, C.; Pfeiffer, H.; Brinkmann, B. Demonstration of myocardial necrosis in the presence of advanced putrefaction. Int. J. Leg. Med. 2000, 114, 50–55. [Google Scholar] [CrossRef]
- Lu, W.H.; Hsieh, K.S.; Lu, P.J.; Wu, Y.S.; Ho, W.Y.; Cheng, P.W.; Lai, C.C.; Hsiao, M.; Tseng, C.J. Different impacts of α- and β-blockers in neurogenic hypertension produced by brainstem lesions in rat. Anesthesiology 2014, 120, 1192–1204. [Google Scholar] [CrossRef]
- Goldspink, D.F.; Burniston, J.G.; Ellison, G.M.; Clark, W.A.; Tan, L.-B. Catecholamine-induced apoptosis and necrosis in cardiac and skeletal myocytes of the rat in vivo: The same or separate death pathways? Exp. Physiol. 2004, 89, 407–416. [Google Scholar] [CrossRef]
- Lu, W.-H.; Chen, H.-H.; Chen, B.-H.; Lee, J.-C.; Lai, C.-C.; Li, C.-H.; Tseng, C.-J. Norepinephrine Leads to More Cardiopulmonary Toxicities than Epinephrine by Catecholamine Overdose in Rats. Toxics 2020, 8, 69. [Google Scholar] [CrossRef]
- Guerra, S.; Leri, A.; Wang, X.; Finato, N.; Di Loreto, C.; Beltrami, C.A.; Kajstura, J.; Anversa, P. Myocyte death in the failing human heart is gender dependent. Circ. Res. 1999, 85, 856–866. [Google Scholar] [CrossRef]
- Bae, S.; Zhang, L. Gender differences in cardioprotection against ischemia/reperfusion injury in adult rat hearts: Focus on Akt and protein kinase C signaling. J. Pharmacol. Exp. Ther. 2005, 315, 1125–1135. [Google Scholar] [CrossRef]
- Iwasaka, T.; Nakamura, S.; Karakawa, M.; Sugiura, T.; Inada, M. Cardioprotective effect of unstable angina prior to acute anterior myocardial infarction. Chest 1994, 105, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Downey, J.M. Ischemic preconditioning protects against infarction in rat heart. Am. J. Physiol. 1992, 263, H1107–H1112. [Google Scholar] [CrossRef] [PubMed]
- Scholl, K.; Huhn, R.; Ritz-Timme, S.; Mayer, F. The impact of sex and myocardial ischemic preconditioning on immunohistochemical markers of acute myocardial infarction. Int. J. Leg. Med. 2019, 133, 529–538. [Google Scholar] [CrossRef] [PubMed]
Authors_Year | Dating Time Frame of Myocardial Infarction | Subjects | IHC Markers |
---|---|---|---|
Casscells et al._1990 [14] | 4, 24, 48, 72 h, and 7 days | Sprague Dawley rats | Fibronectin |
Brinkmann et al._1993 [15] | 0–80 h | Humans | Myoglobin, desmin, fibrinogen, complement C5b-9 |
Vakeva et al._1994 [16] | 1, 2, 3, 6, 24, or 72 h | Wistar rats | Complement C 1,3,8,9; CD59 |
Mathey et al._1994 [17] | 15–30 min, 1 h, 1.5 h, 2 h, 3 h, 5–6 h, 12–17 h, 22–29 h | Rabbits | C5b-9 |
Robert-Offerman et al._2000 [18] | <6 h, 6–24 h, 24–72 h, day 4–8, >8 days | Humans | Complement factor C9, membrane attack complex (MAC) of complement |
Dai et al._2002 [19] | 1 h, 6 h, 24 h, 3 days, and 7 days | Wistar rats | TNF-α, TGF-β1 |
Yu et al._2003 [20] | 6 h, 1 day, 3 days, 1 week, or 2 weeks | Male Sprague Dawley rats | Macrophage migration inhibitory factor (MIF) |
Sumitra et al._2005 [21] | 1st, 2nd, 4th, 8th, 16th and 32nd hour | Wistar rats | C5, C6,C7, C8, C5b-9 |
Díaz et al._2005 [22] | 2–16 h postmortem | Humans | Cardiac troponin C (cTnC) and cardiac troponin T (cTnT) |
Meng et al._2006 [23] | 15 min, 30 min, 1 h, 2 h, 4 h, 8 h | Humans, Wistar rats | Heart fatty acid binding protein (H-FABP) |
Dai et al._2007 [24] | 1 h, 6 h, 1 day, 3 days | Wistar rats | tumor necrosis-alfa, p38, JNK |
Jasra et al._2012 [25] | <6 h, >6 h | Humans | Cardiac troponin-I (CT-I) and complement C9 (C9). |
Turillazzi et al._2014 [26] | From 0–6 h to more than 12 h | Humans | CD15, IL-1β, IL-6, TNF-α, IL-15, IL-8, MCP-1, ICAM-1, CD18, tryptase |
Mayer et al._2014 [27] | 4–24 h | Humans | Dityrosine, fibronectin, C5b-9 |
Gozalo et al._2022 [28] | 0–30 min–2 months | Owl monkeys | C9 complement |
Timeframe | IHC Markers |
---|---|
1 h | C9 complement, myoglobin, desmin, fibrinogen, C5b-9, tumor necrosis alpha, p-38, JNK, TGF-β1, cTnT, CD59. |
2 h | cardiac troponin C (cTnC) |
4 h | H-FABP (heart fatty acid binding protein), dityrosine, fibronectin, CD15, IL-1β, IL-6, IL-15, IL-8, MCP-1, ICAM-1, CD18, tryptase |
6 h | MIF |
Contraction Bands | Particularities |
---|---|
Type 1 | Induced by high fever exposure |
Type 2 | CCC9-positive reaction Specific to acute myocardial infarction |
Type 3 | CCC9-negative reaction, clear SIRT 1-negative reaction Induced by exposure to low temperatures |
Type 4 | CCC9-negative reaction, SIRT 1-positive or inconclusive reaction Induced by cardiopulmonary resuscitation attempts |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isailă, O.-M.; Ion, O.M.; Luta, R.; Catinas, R.; Ionita, A.; Haisan, D.; Hostiuc, S. Postmortem Immunohistochemical Findings in Early Acute Myocardial Infarction: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 7625. https://doi.org/10.3390/ijms25147625
Isailă O-M, Ion OM, Luta R, Catinas R, Ionita A, Haisan D, Hostiuc S. Postmortem Immunohistochemical Findings in Early Acute Myocardial Infarction: A Systematic Review. International Journal of Molecular Sciences. 2024; 25(14):7625. https://doi.org/10.3390/ijms25147625
Chicago/Turabian StyleIsailă, Oana-Maria, Oana Mihaela Ion, Robert Luta, Raluca Catinas, Ana Ionita, Diana Haisan, and Sorin Hostiuc. 2024. "Postmortem Immunohistochemical Findings in Early Acute Myocardial Infarction: A Systematic Review" International Journal of Molecular Sciences 25, no. 14: 7625. https://doi.org/10.3390/ijms25147625
APA StyleIsailă, O.-M., Ion, O. M., Luta, R., Catinas, R., Ionita, A., Haisan, D., & Hostiuc, S. (2024). Postmortem Immunohistochemical Findings in Early Acute Myocardial Infarction: A Systematic Review. International Journal of Molecular Sciences, 25(14), 7625. https://doi.org/10.3390/ijms25147625