Leptin Is Associated with Testosterone, Nutritional Markers, and Vascular Muscular Dysfunction in Chronic Kidney Disease
Abstract
:1. Introduction
2. Results
2.1. Hemodialysis Group
2.2. Pre-Dialysis Group
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Methods
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akoumianakis, I.; Antoniades, C. The interplay between adipose tissue and the cardiovascular system: Is fat always bad? Cardiovasc. Res. 2017, 113, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Ghorban-Sabbagh, M.; Nazemian, F.; Naghibi, M.; Shakeri, M.T.; Ahmadi-Simab, S.; Javidi-Dasht-Bayaz, R. Correlation between serum leptin and bone mineral density in hemodialysis patients. J. Renal Inj. Prev. 2016, 5, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, N. Leptin in chronic kidney disease: A link between hematopoiesis, bone metabolism, and nutrition. Int. Urol. Nephrol. 2014, 46, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Moorthi, R.N.; Moe, S.M. Recent advances in the noninvasive diagnosis of renal osteodystrophy. Kidney Int. 2013, 84, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Merabet, E.; Dagogo-Jack, S.; Coyne, D.W.; Klein, S.; Santiago, J.V.; Hmiel, S.P.; Landt, M. Increased plasma leptin concentration in end-stage renal disease. J. Clin. Endocrinol. Metab. 1997, 82, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Verroust, P.J.; Christensen, E.I. Editorial Comments Megalin and cubilin-the story of two multipurpose receptors unfolds. Nephrol. Dial. Transplant. 2002, 17, 1867–1871. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, A.; Toro, A.; Vilariño-García, T.; Maymó, J.; Guadix, P.; Dueñas, J.L.; Fernández-Sánchez, M.; Varone, C.; Sánchez-Margalet, V. Leptin action in normal and pathological pregnancies. J. Cell Mol. Med. 2018, 22, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Perakakis, N.; Farr, O.M.; Mantzoros, C.S. Leptin in Leanness and Obesity: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 77, 745–760. [Google Scholar] [CrossRef]
- Halaas, J.L.; Gajiwala, K.S.; Maffei, M.; Cohen, S.L.; Chait, B.T.; Rabinowitz, D.; Lallone, R.L.; Burley, S.K.; Friedman, J.M. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995, 269, 543–546. [Google Scholar] [CrossRef]
- Weigle, D.S.; Bukowski, T.R.; Foster, D.C.; Holderman, S.; Kramer, J.M.; Lasser, G.; Lofton-Day, C.E.; Prunkard, D.E.; Raymond, C.; Kuijper, J.L. Recombinant ob protein reduces feeding and body weight in the ob/ob mouse. J. Clin. Investig. 1995, 96, 2065–2070. [Google Scholar] [CrossRef]
- Singh, A.; Wirtz, M.; Parker, N.; Hogan, M.; Strahler, J.; Michailidis, G.; Schmidt, S.; Vidal-Puig, A.; Diano, S.; Andrews, P.; et al. Leptin-mediated changes in hepatic mitochondrial metabolism, structure, and protein levels. Proc. Natl. Acad. Sci. USA 2009, 106, 13100–13105. [Google Scholar] [CrossRef] [PubMed]
- Vaisse, C.; Halaas, J.L.; Horvath, C.M.; Darnell, J.E., Jr.; Stoffel, M.; Friedman, J.M. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat. Genet. 1996, 14, 95–97. [Google Scholar] [CrossRef]
- Hwa, J.J.; Fawzi, A.B.; Graziano, M.P.; Ghibaudi, L.; Williams, P.; Van Heek, M.; Davis, H.; Rudinski, M.; Sybertz, E.; Strader, C.D. Leptin increases energy expenditure and selectively promotes fat metabolism in ob/ob mice. Am. J. Physiol. 1997, 272 Pt 2, R1204–R1209. [Google Scholar] [CrossRef]
- Mistry, A.M.; Swick, A.G.; Romsos, D.R. Leptin rapidly lowers food intake and elevates metabolic rates in lean and ob/ob mice. J. Nutr. 1997, 127, 2065–2072. [Google Scholar] [CrossRef]
- Commins, S.P.; Watson, P.M.; Padgett, M.A.; Dudley, A.; Argyropoulos, G.; Gettys, T.W. Induction of uncoupling protein expression in brown and white adipose tissue by leptin. Endocrinology 1999, 140, 292–300. [Google Scholar] [CrossRef]
- Zeng, W.; Pirzgalska, R.M.; Pereira, M.M.; Kubasova, N.; Barateiro, A.; Seixas, E.; Lu, Y.H.; Kozlova, A.; Voss, H.; Martins, G.G.; et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 2015, 163, 84–94. [Google Scholar] [CrossRef]
- Burcelin, R.; Kamohara, S.; Li, J.; Tannenbaum, G.S.; Charron, M.J.; Friedman, J.M. Acute intravenous leptin infusion increases glucose turnover but not skeletal muscle glucose uptake in ob/ob mice. Diabetes 1999, 48, 1264–1269. [Google Scholar] [CrossRef] [PubMed]
- Katsiki, N.; Mikhailidis, D.P.; Banach, M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol. Sin. 2018, 39, 1176–1188. [Google Scholar] [CrossRef]
- Beltowski, J. Leptin and atherosclerosis. Atherosclerosis 2006, 189, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Simonds, S.E.; Pryor, J.T.; Cowley, M.A. Does leptin cause an increase in blood pressure in animals and humans? Curr. Opin. Nephrol. Hypertens. 2017, 26, 20–25. [Google Scholar] [CrossRef]
- Parvanova, A.; Reseghetti, E.; Abbate, M.; Ruggenenti, P. Mechanisms and treatment of obesity-related hypertension-Part 1: Mechanisms. Clin. Kidney J. 2023, 17, sfad282. [Google Scholar] [CrossRef] [PubMed]
- Sweigert, P.J.; Bansal, V.K.; Hoppensteadt, D.A.; Saluk, J.L.; Syed, D.A.; Fareed, J. Inflammatory and Metabolic Syndrome Biomarker Analysis of Vascular Outcomes in End-stage Renal Disease. Int. J. Angiol. 2017, 26, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Sasso, C.V.; Lhamyani, S.; Hevilla, F.; Padial, M.; Blanca, M.; Barril, G.; Jiménez-Salcedo, T.; Martínez, E.S.; Nogueira, Á.; Lago-Sampedro, A.M.; et al. Modulation of miR-29a and miR-29b Expression and Their Target Genes Related to Inflammation and Renal Fibrosis by an Oral Nutritional Supplement with Probiotics in Malnourished Hemodialysis Patients. Int. J. Mol. Sci. 2024, 25, 1132. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Qiao, J.; Hu, J.; Fan, M.; Zhao, Y.; Su, H.; Wang, Z.; Yu, Q.; Ma, Q.; Li, Y.; et al. Leptin promotes endothelial dysfunction in chronic kidney disease by modulating the MTA1-mediated WNT/beta-catenin pathway. Mol. Cell Biochem. 2020, 473, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.W.; Chi, P.J.; Lin, Y.L.; Wang, C.H.; Hsu, B.G. Serum leptin levels are positively associated with aortic stiffness in patients with chronic kidney disease stage 3–5. Adipocyte 2020, 9, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Kastarinen, H.; Kesaniemi, Y.A.; Ukkola, O. Leptin and lipid metabolism in chronic kidney failure. Scand. J. Clin. Lab. Investig. 2009, 69, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A.; Bajo, M.A.; Rebollo, F.; Diez, J.J.; Diaz, C.; Paiva, A.; Codoceo, R.; Selgas, R. Leptin as a marker of nutrition and cardiovascular risk in peritoneal dialysis patients. Adv. Perit. Dial. 2002, 18, 212–217. [Google Scholar] [PubMed]
- Scholze, A.; Rattensperger, D.; Zidek, W.; Tepel, M. Low serum leptin predicts mortality in patients with chronic kidney disease stage 5. Obesity (Silver Spring) 2007, 15, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Yang, Q.; Yang, M.; Han, M.; Xiong, Y.; Liao, R.; Su, B. Serum leptin concentration can predict cardiovascular outcomesand all-cause death in maintenance hemodialysis patients. Clin. Chim. Acta 2021, 520, 87–94. [Google Scholar] [CrossRef]
- Yu, T.H.; Tang, W.H.; Hung, W.C.; Lee, T.L.; Tsai, I.T.; Hsuan, C.F.; Chen, C.C.; Chung, F.M.; Lee, Y.J.; Wu, C.C. Elevated plasma leptin levels are associated with vascular access dysfunction in patients on maintenance hemodialysis. J. Clin. Lab. Anal. 2023, 37, e24974. [Google Scholar] [CrossRef]
- Considine, R.V.; Sinha, M.K.; Heiman, M.L.; Kriauciunas, A.; Stephens, T.W.; Nyce, M.R.; Ohannesian, J.P.; Marco, C.C.; McKee, L.J.; Bauer, T.L. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 1996, 334, 292–295. [Google Scholar] [CrossRef]
- Marshall, J.A.; Grunwald, G.K.; Donahoo, W.T.; Scarbro, S.; Shetterly, S.M. Percent body fat and lean mass explain the gender difference in leptin: Analysis and interpretation of leptin in Hispanic and non-Hispanic white adults. Obes. Res. 2000, 8, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Cobo, G.; Cordeiro, A.C.; Amparo, F.C.; Amodeo, C.; Lindholm, B.; Carrero, J.J. Visceral Adipose Tissue and Leptin Hyperproduction Are Associated With Hypogonadism in Men With Chronic Kidney Disease. J. Ren. Nutr. 2017, 27, 243–248. [Google Scholar] [CrossRef]
- Vilariño-García, T.; Polonio-González, M.L.; Pérez-Pérez, A.; Ribalta, J.; Arrieta, F.; Aguilar, M.; Obaya, J.C.; Gimeno-Orna, J.A.; Iglesias, P.; Navarro, J.; et al. Role of Leptin in Obesity, Cardiovascular Disease, and Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 2338. [Google Scholar] [CrossRef]
- Alix, P.M.; Guebre-Egziabher, F.; Soulage, C.O. Leptin as an uremic toxin: Deleterious role of leptin in chronic kidney disease. Biochimie 2014, 105, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Noor, S.; Alam, F.; Fatima, S.S.; Khan, M.; Rehman, R. Role of Leptin and dyslipidemia in chronic kidney disease. Pak. J. Pharm. Sci. 2018, 31, 893–897. [Google Scholar]
- Nasri, H.; Shirani, S.; Baradaran, A. Lipids in Association with Leptin in Maintenance Hemodialysis Patients. J. Med. Sci. 2006, 6, 173–179. [Google Scholar] [CrossRef]
- Ostlund, R.E., Jr.; Yang, J.W.; Klein, S.; Gingerich, R. Relation between plasma leptin concentration and body fat, gender, diet, age, and metabolic covariates. J. Clin. Endocrinol. Metab. 1996, 81, 3909–3913. [Google Scholar] [CrossRef]
- Korczyńska, J.; Czumaj, A.; Chmielewski, M.; Śledziński, M.; Mika, A.; Śledziński, T. Increased expression of the leptin gene in adipose tissue of patients with chronic kidney disease–the possible role of an abnormal serum fatty acid profile. Metabolites 2020, 10, 98. [Google Scholar] [CrossRef]
- Fain, J.N.; Madan, A.K.; Hiler, M.L.; Cheema, P.; Bahouth, S.W. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 2004, 145, 2273–2282. [Google Scholar] [CrossRef]
- Rymarz, A.; Matyjek, A.; Gomółka, M.; Niemczyk, S. Lean Tissue Index and Body Cell Mass Can Be Predictors of Low Free Testosterone Levels in Men on Hemodialysis. J. Ren. Nutr. 2019, 29, 529–535. [Google Scholar] [CrossRef]
- Khodamoradi, K.; Khosravizadeh, Z.; Seetharam, D.; Mallepalli, S.; Farber, N.; Arora, H. The role of leptin and low testosterone in obesity. Int. J. Impot. Res. 2022, 34, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, D.; Aldred, H.; Clark, S.; Channer, K.S.; Jones, T.H. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: Correlations with bioavailable testosterone and visceral adiposity. Diabetes Care 2007, 30, 911–917. [Google Scholar] [CrossRef]
- Gautier, A.; Bonnet, F.; Dubois, S.; Massart, C.; Grosheny, C.; Bachelot, A.; Aubé, C.; Balkau, B.; Ducluzeau, P.H. Associations between visceral adipose tissue, inflammation and sex steroid concentrations in men. Clin. Endocrinol. 2013, 78, 373–378. [Google Scholar] [CrossRef]
- Hellström, L.; Wahrenberg, H.; Hruska, K.; Reynisdottir, S.; Arner, P. Mechanisms behind gender differences in circulating leptin levels. J. Intern. Med. 2000, 247, 457–462. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, J.; Yuan, Y.; Zha, X.; Xing, C.; Shen, C.; Shen, Z.; Qin, C.; Zeng, M.; Yang, G.; et al. Association of Increased Serum Leptin with Ameliorated Anemia and Malnutrition in Stage 5 Chronic Kidney Disease Patients after Parathyroidectomy. Sci. Rep. 2016, 6, 27918. [Google Scholar] [CrossRef]
- Chan, W.B.; Ma, R.C.; Chan, N.N.; Ng, M.C.; Lee, Z.S.; Lai, C.W.; Tong, P.C.; So, W.Y.; Chan, J.C. Increased leptin concentrations and lack of gender difference in Type 2 diabetic patients with nephropathy. Diabetes Res. Clin. Pract. 2004, 64, 93–98. [Google Scholar] [CrossRef]
- Ramel, A.; Arnarson, A.; Parra, D.; Kiely, M.; Bandarra, N.M.; Martinéz, J.A.; Thorsdottir, I. Gender difference in the prediction of weight loss by leptin among overweight adults. Ann. Nutr. Metab. 2010, 56, 190–197. [Google Scholar] [CrossRef]
- Chan, J.L.; Heist, K.; DePaoli, A.M.; Veldhuis, J.D.; Mantzoros, C.S. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J. Clin. Investig. 2003, 111, 1409–1421. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.L.; Mantzoros, C.S. Role of leptin in energy-deprivation states: Normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet 2005, 366, 74–85. [Google Scholar] [CrossRef]
- Skiba, R.; Rymarz, A.; Matyjek, A.; Dymus, J.; Woźniak-Kosek, A.; Syryło, T.; Zieliński, H.; Niemczyk, S. Testosterone Replacement Therapy in Chronic Kidney Disease Patients. Nutrients 2022, 14, 3444. [Google Scholar] [CrossRef] [PubMed]
- Ketchem, J.M.; Bowman, E.J.; Isales, C.M. Male sex hormones, aging, and inflammation. Biogerontology 2023, 24, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.; Batur, P. Prescribing testosterone and DHEA: The role of androgens in women. Cleve Clin. J. Med. 2021, 88, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.S.; Steele, C.N.; You, Z.; Nowak, K.L.; Jovanovich, A.J. Sex hormones and the risk of cardiovascular disease and mortality in male and female patients with chronic kidney disease: A systematic review and meta-analysis. Physiol. Rep. 2022, 10, e15490. [Google Scholar] [CrossRef]
- Gulamhusein, N.; Ahmed, S.B.; Holodinsky, J.K.; Buchan, M.; Hernandez-Reyes, A.; Pyakurel, S.; Sola, D.Y.; Pajevic, M.; Dumanski, S.M. The Association Between Testosterone and Vascular Function in Reproductive-Aged Females With Chronic Kidney Disease. CJC Open 2023, 6 Part B, 530–538. [Google Scholar] [CrossRef]
- Sieveking, D.P.; Lim, P.; Chow, R.W.; Dunn, L.L.; Bao, S.; McGrath, K.C.; Heather, A.K.; Handelsman, D.J.; Celermajer, D.S.; Ng, M.K. A sex-specific role for androgens in angiogenesis. J. Exp. Med. 2010, 207, 345–352. [Google Scholar] [CrossRef]
- Aminzadeh, M.A.; Pahl, M.V.; Barton, C.H.; Doctor, N.S.; Vaziri, N.D. Human uraemic plasma stimulates release of leptin and uptake of tumour necrosis factor- in visceral adipocytes. Nephrol. Dial. Transplant. 2009, 24, 3626–3631. [Google Scholar] [CrossRef]
- Dessie, G.; Ayelign, B.; Akalu, Y.; Shibabaw, T.; Molla, M.D. Effect of Leptin on Chronic Inflammatory Disorders: Insights to Therapeutic Target to Prevent Further Cardiovascular Complication. Diabetes Metab. Syndr. Obes. 2021, 14, 3307–3322. [Google Scholar] [CrossRef]
- He, W.-H.; Li, B.; Zhu, X.; Zhang, K.-H.; Li, B.-M.; Liu, Z.-J.; Liu, G.-Y.; Wang, J. The role and mechanism of NADPH oxidase in leptin-induced reactive oxygen species production in hepatic stellate cells. Zhonghua Gan Zang Bing Za Zhi 2010, 18, 849–854. [Google Scholar] [CrossRef]
- Ambarkar, M.; Pemmaraju, S.V.; Gouroju, S.; Manohar, S.M.; Bitla, A.R.; Yajamanam, N.; Vishnubhotla, S. Adipokines and their Relation to Endothelial Dysfunction in Patients with Chronic Kidney Disease. J. Clin. Diagn. Res. 2016, 10, BC04–BC08. [Google Scholar] [CrossRef]
- Mak, R.H.; Cheung, W. Cachexia in chronic kidney disease: Role of inflammation and neuropeptide signaling. Curr. Opin. Nephrol. Hypertens. 2007, 16, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Beldhuis, I.E.; Myhre, P.L.; Bristow, M.; Claggett, B.; Damman, K.; Fang, J.C.; Fleg, J.L.; McKinlay, S.; Lewis, E.F.; O’Meara, E.; et al. Spironolactone in Patients With Heart Failure, Preserved Ejection Fraction, and Worsening Renal Function. J. Am. Coll. Cardiol. 2021, 77, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Gluszewska, A.; Gryglewska, B.; Rewiuk, K.; Zarzycki, B.; Dzieza-Grudnik, A.; Kwater, A.; Major, P.; Budzynski, A.; Gasowski, J.; Grodzicki, T. Arterial structure and function and its short- and long-term changes after bariatric surgery. J. Physiol. Pharmacol. 2019, 70, 909–916. [Google Scholar] [CrossRef]
- Ding, N.; Liu, B.; Song, J.; Bao, S.; Zhen, J.; Lv, Z.; Wang, R. Leptin promotes endothelial dysfunction in chronic kidney disease through AKT/GSK3β and β-catenin signals. Biochem. Biophys. Res. Commun. 2016, 480, 544–551. [Google Scholar] [CrossRef]
- Jamroz-Wiśniewska, A.; Gertler, A.; Solomon, G.; Wood, M.E.; Whiteman, M.; Beltowski, J. Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: Role of nitric oxide and hydrogen sulfide. PLoS ONE 2014, 9, e86744. [Google Scholar] [CrossRef]
- Coen, G. Leptin and bone metabolism. J. Nephrol. 2004, 17, 187–189. [Google Scholar]
- Park, S.-H.; Jia, T.; Qureshi, A.R.; Bárány, P.; Heimbürger, O.; Larsson, T.E.; Axelsson, J.; Stenvinkel, P.; Lindholm, B. Determinants and survival implications of low bone mineral density in end-stage renal disease patients. J. Nephrol. 2013, 26, 485–494. [Google Scholar] [CrossRef]
- Wang, C.-H.; Lai, Y.-H.; Lin, Y.-L.; Kuo, C.-H.; Syu, R.-J.; Chen, M.-C.; Hsu, B.-G. Increased Serum Leptin Level Predicts Bone Mineral Density in Hemodialysis Patients. Int. J. Endocrinol. 2020, 2020, 8451751. [Google Scholar] [CrossRef]
- Coimbra, S.; Rocha, S.; Valente, M.J.; Catarino, C.; Bronze-da-Rocha, E.; Belo, L.; Santos-Silva, A. New Insights into Adiponectin and Leptin Roles in Chronic Kidney Disease. Biomedicines 2022, 10, 2642. [Google Scholar] [CrossRef]
- Shih, Y.L.; Shih, C.C.; Chen, S.Y.; Chen, J.Y. Elevated serum leptin levels are associated with lower renal function among middle-aged and elderly adults in Taiwan, a community-based, cross-sectional study. Front. Endocrinol. 2022, 13, 1047731. [Google Scholar] [CrossRef]
- Korczynska, J.; Czumaj, A.; Chmielewski, M.; Swierczynski, J.; Sledzinski, T. The Causes and Potential Injurious Effects of Elevated Serum Leptin Levels in Chronic Kidney Disease Patients. Int. J. Mol. Sci. 2021, 22, 4685. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.C.; Lee, S.; Kim, Y.S.; Park, J.M.; Han, K.; Lee, H.; Hong, K.W.; Kim, J.K.; Cho, E.S.; Chung, T.H.; et al. Serum leptin level and incidence of CKD: A longitudinal study of adult enrolled in the Korean genome and epidemiology study(KoGES). BMC Nephrol. 2022, 23, 197. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, L.; Manfredi, M.; Perna, L.; Iacone, R.; Russo, O.; Strazzullo, P.; Galletti, F. Circulating leptin levels predict the decline in renal function with age in a sample of adult men (The Olivetti Heart Study). Intern. Emerg. Med. 2019, 14, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.; Stevens, P.E. Summary of KDIGO 2012 CKD Guideline: Behind the scenes, need for guidance, and a framework for moving forward. Kidney Int 2014, 85, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Onofriescu, M.; Mardare, N.G.; Segall, L.; Voroneanu, L.; Cuşai, C.; Hogaş, S.; Ardeleanu, S.; Nistor, I.; Prisadă, O.V.; Sascău, R.; et al. Randomized trial of bioelectrical impedance analysis versus clinical criteria for guiding ultrafiltration in hemodialysis patients: Effects on blood pressure, hydration status, and arterial stiffness. Int. Urol. Nephrol. 2012, 44, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Rusu, C.C.; Racasan, S.; Kacso, I.M.; Moldovan, D.; Potra, A.; Tirinescu, D.; Budurea, C.; Orasan, R.; Patiu, I.M.; Bondor, C.I.; et al. The metabolic hormone FGF21 is associated with endothelial dysfunction in hemodialysis patients. Int. Urol. Nephrol. 2017, 49, 517–523. [Google Scholar] [CrossRef]
- Rusu, C.C.; Kacso, I.; Moldovan, D.; Potra, A.; Tirinescu, D.; Ticala, M.; Rotar, A.M.; Orasan, R.; Budurea, C.; Barar, A.; et al. Triiodothyronine and Protein Malnutrition Could Influence Pulse Wave Velocity in Pre-Dialysis Chronic Kidney Disease Patients. Diagnostics 2023, 13, 2462. [Google Scholar] [CrossRef]
Variable | Group A Hemodialysis (n = 88) | Group B Std. V KDIGO (n = 23) | Group C Std. IV KDIGO (n = 26) | Group D Std. III KDIGO (n = 25) | p |
---|---|---|---|---|---|
Male sex n (%) | 50 (56.8) | 12 (52.2) | 12 (46.2) | 14 (56) | 0.803 |
Age (years) | 61.5 (54, 71) b,c | 65 (60, 70) | 69 (62, 78) | 70 (65, 75) | 0.003 |
WC (cm) | 98 (84, 108) | 104 (93.5, 111) | 96 (90, 106) | 105 (104, 108) | 0.094 |
BMI (kg/m2) | 27.54 (23.2, 31) | 27.3 (25.6, 29.9) | 28.25 (24.85, 29.6) | 29.1 (27.7, 33.5) | 0.133 |
LTM (kg) | 29.71 (25.2, 37.64) | 33.9 (29.25, 52.65) | 39.5 (26.25, 45) | 35.35 (26.6, 42.45) | 0.065 |
ATM (kg) | 41.75 (26.51, 51.38) | 35.3 (23.75, 38.75) e | 35.5 (32.15, 43.7) f | 46.8 (40.45, 60.65) | 0.009 |
SBP (mmHg) | 142.32 ± 21.29 | 155.76 ± 24.48 | 145.81 ± 23.88 | 144.67 ± 18.21 | 0.140 |
DBP (mmHg) | 75 (67, 80) a,b,c | 94 (86, 98) | 80 (74, 92) | 82 (80, 98) | <0.001 |
PP (mmHg) | 68.28 ± 18.77 | 62.18 ± 18.06 | 62.33 ± 20.16 | 58.67 ± 15.41 | 0.115 |
Diabetes n (%) | 17 (19.5) a,b,c | 10 (43.5) | 10 (38.5) | 8 (32) | 0.059 |
Hypertension n (%) | 62 (70.5) b | 18 (85.7) | 24 (100) | 19 (90.5) | 0.005 |
Fasting glucose (mg/dL) | 93.89 (87.43, 113) | 99 (91, 129.5) | 108 (90, 139.5) | 101 (94, 122) | 0.180 |
Triglycerides (mg/dL) | 134 (95.33, 181.16) | 131 (99.5, 170.5) | 148 (116, 188) | 126 (93, 159.5) | 0.675 |
LDL-cholesterol (mg/dL) | 100.21 ± 36.88 | 120.53 ± 51.74 | 123.35 ± 46.66 | 127.84 ± 38.3 | 0.015 |
Total cholesterol (mg/dL) | 173.15 ± 40.6 | 173.89 ± 39.16 | 173.96 ± 32.66 | 188.33 ± 35.58 | 0.386 |
HDL-cholesterol (mg/dL) | 39.61 (30.75, 47.64) | 41 (32.5, 47.5) | 35.5 (28, 41) | 45 (39, 49.5) | 0.111 |
Hemoglobin (g/dL) | 11.5 (10.65, 12.3) c | 11 (10.3, 11.8) e | 12.05 (10.3, 13.2) | 13.4 (12, 14) | 0.001 |
Ferritin (ng/mL) | 567 (333.03, 782.65) a,b,c | 178.5 (63.5, 351) | 98 (34, 186) | 88.5 (61.5, 157) | <0.001 |
Hs-CRP (mg/dL) | 0.59 (0.23, 1.33) | 0.5 (0.2, 1.27) | 0.53 (0.29, 1.19) | 0.38 (0.23, 0.89) | 0.660 |
WBC (no./mmc) | 6440 (5530, 7815) c | 7770 (6120, 9800) | 7315 (6200, 8370) | 8630 (6500, 8930) | 0.005 |
Bicarbonate level (mEq/L) | 21.4 (18.45, 24.25) | 19.15 (16.3, 20.85) | 19.9 (17.3, 23.6) | 20 (17.7, 22.3) | 0.068 |
Calcium (mg/dL) | 8.9 (8.32, 9.2) | 8.66 (8.04, 9.1) c | 9.23 (8.64, 9.68) | 9.32 (8.94, 9.62) | 0.003 |
Phosphorus (mg/dL) | 4.71 (3.98, 5.89) b,c | 4.72 (4.18, 5.81) d,e | 3.7 (3.16, 4.48) | 3.15 (2.91, 3.53) | <0.001 |
AP (UI/L) | 73 (55.92, 95.43) | 86 (70, 98) | 83 (77.5, 107.5) | 75 (70, 110.5) | 0.175 |
iPTH (pg/mL) | 286.75 (164.65, 729.65) b,c | 283.95 (151.85, 398.85) d,e | 104.1 (52.15, 153.1) | 104.2 (78.3, 152.45) | <0.001 |
Creatinine (mg/dL) | 8.59 (7.3, 10.4) a,b,c | 4.7 (4.04, 6.33) d,e | 2.4 (2.09, 2.51) f | 1.56 (1.37, 1.68) | <0.001 |
Albumin (g/dL) | 3.91 (3.7, 4.08) b,c | 3.76 (3.56, 4.13) d | 3.57 (3.47, 3.82) f | 4.38 (3.9, 4.46) | 0.002 |
eGFR (mL/min/m2) | 10.17 ± 3.11 d,e | 23.63 ± 4.3 f | 41.68 ± 8.13 | <0.001 | |
Testosterone (ng/mL) | 2.1 (0.7, 4) | 2.7 (0.6, 3.55) | 0.65 (0.4, 3.6) | 0.9 (0.4, 3.2) | 0.076 |
Leptin (ng/mL) | 5.99 (1.57, 31.14) | 3.41 (1.9, 9.67) e | 14.48 (3.86, 37.9) | 19.98 (6.33, 39.44) | 0.020 |
Betablockers n (%) | 50 (56.8) | 12 (54.5) | 13 (52) | 14 (66.7) | 0.774 |
ACEI + ARB | 37 (42) | 7 (31.8) | 14 (56) | 11 (52.4) | 0.319 |
Statin n (%) | 16 (18.2) | 8 (42.1) | 6 (24) | 7 (33.3) | 0.111 |
Antiagregants n (%) | 32 (36.4) | 4 (19) | 10 (40) | 5 (23.8) | 0.301 |
Ba PWV (cm/s) | - | 9.98 ± 2.5 | 11.12 ± 2.25 | 10.65 ± 2.11 | 0.324 |
NMD (%) | 7.25 (2.27, 12.5) | - | - | - | - |
FMD (%) | 8.33 (4.31, 14.29) | - | - | - | - |
Variable | Group A Hemodialysis (n = 88) | Group Pre-Dialysis (n = 74) | ||||
---|---|---|---|---|---|---|
Women (n = 38) | Men (n = 50) | p | Women (n = 36) | Men (n = 38) | p | |
Age (years) | 66 (56, 75) | 59 (52, 68) | 0.032 | 70 (65, 77) | 67 (61, 71) | 0.122 |
WC (cm) | 99 (80, 115) | 97.5 (85, 104) | 0.622 | 105 (91, 107) | 104 (97, 109) | 0.254 |
BMI (kg/m2) | 29.12 (24.38, 36.48) | 26.54 (22.83, 29.53) | 0.010 | 29.85 (26.4, 33.3) | 28.2 (26.75, 29.1) | 0.168 |
LTM (kg) | 25.98 (22.47, 27.96) | 35.56 (30.12, 43.41) | <0.001 | 27.1 (24.7, 34.7) | 42.4 (36, 52.7) | <0.001 |
ATM (kg) | 43.44 (30.15, 62.45) | 39.65 (24.95, 46.62) | 0.013 | 40.9 (35.1, 55.2) | 36.6 (30.2, 44.1) | 0.167 |
SBP (mmHg) | 139.26 ± 18.81 | 144.64 ± 22.92 | 0.243 | 143 (127, 162) | 151 (130, 170) | 0.254 |
DBP (mmHg) | 70 (67, 78) | 80 (70, 82) | 0.020 | 80.5 (74, 96) | 91 (81, 99) | 0.022 |
PP (mmHg) | 68.66 ± 19.23 | 68 ± 18.6 | 0.872 | 66 (44, 74) | 57 (50, 72) | 0.856 |
Diabetes n (%) | 6 (15.8) | 11 (22.4) | 0.437 | 13 (36.1) | 15 (39.5) | 0.766 |
Hypertension n (%) | 26 (68.4) | 36 (72) | 0.715 | 26 (86.7) | 35 (97.2) | 0.169 |
Fasting glucose (mg/dL) | 93.5 (87.2, 110) | 94 (87.65, 115) | 0.150 | 108.5 (99, 139) | 97 (89, 124.5) | 0.896 |
Triglycerides (mg/dL) | 145.97 (102, 225) | 125.69 (94.05, 163.51) | 0.080 | 148 (114.5, 171.5) | 126 (93, 155.5) | 0.541 |
LDL-cholesterol (mg/dL) | 106 ± 36.3 | 95.81 ± 37.06 | 0.201 | 106.8 (76.2, 140) | 136 (105, 163) | 0.055 |
Total cholesterol (mg/dL) | 184.89 ± 40.36 | 164.22 ± 38.83 | 0.017 | 171.5 (153.5, 201) | 176 (155, 195.5) | 0.754 |
HDL-cholesterol (mg/dL) | 41.25 (30.14, 49) | 36.5 (31.69, 45.8) | 0.374 | 42 (32.5, 48.5) | 39 (33, 46) | 0.778 |
Hemoglobin (g/dL) | 11.05 (10.6, 11.6) | 12 (10.8, 12.6) | 0.015 | 11.55 (10.75, 12.5) | 13 (10.3, 14.8) | 0.306 |
Ferritin (ng/mL) | 665.7 (402.34, 846.6) | 472 (317.5, 723) | 0.033 | 91 (55, 186) | 106 (63, 279.5) | 0.679 |
Hs-CRP (mg/dL) | 0.61 (0.34, 1.43) | 0.53 (0.21, 1.32) | 0.440 | 0.43 (0.2, 0.91) | 0.52 (0.34, 1.42) | 0.236 |
WBC (no./mmc) | 6210 (5530, 7440) | 6495 (5260, 7880) | 0.947 | 7065 (6160, 8875) | 7800 (6410, 9060) | 0.146 |
Bicarbonate level (mEq/L) | 22.8 (18.2, 24.1) | 20.5 (18.6, 24.5) | 0.330 | 19 (17.3, 21.1) | 19.6 (16.5, 22.3) | 0.673 |
Calcium (mg/dL) | 8.97 (8.4, 9.2) | 8.79 (8.24, 9.2) | 0.303 | 9.3 (8.93, 9.68) | 8.79 (8.44, 9.3) | 0.314 |
Phosphorus (mg/dL) | 4.5 (3.8, 5.19) | 5.12 (4.08, 6.84) | 0.127 | 4.08 (3.48, 4.88) | 3.56 (2.93, 4.5) | 0.249 |
AP (UI/L) | 79.61 (61, 100) | 66.2 (51.83, 94.44) | 0.130 | 89.5 (78, 106) | 77 (68, 105.5) | 0.095 |
iPTH (pg/mL) | 266.5 (158.7, 481.85) | 336 (185.7, 798) | 0.179 | 140 (94.35, 260.95) | 118.4 (87.5, 202.6) | 0.176 |
Creatinine (mg/dL) | 8.1 (6.8, 8.73) | 9.42 (7.7, 11.3) | <0.001 | 2.18 (1.6, 3.44) | 2.47 (1.8, 4.5) | 0.225 |
Albumin (g/dL) | 3.87 (3.62, 4) | 3.94 (3.74, 4.13) | 0.053 | 3.79 (3.61, 4.07) | 3.76 (3.49, 4.26) | 0.875 |
eGFR (mL/min/m2) | 23 (13.5, 32) | 26 (12, 38) | 0.354 | |||
Testosterone (ng/mL) | 0.7 (0.5, 1.3) | 3.65 (2.5, 4.8) | <0.001 | 0.5 (0.3, 0.6) | 3.3 (2.3, 4.3) | <0.001 |
Leptin (ng/mL) | 24.3 (5.43, 49.47) | 3.49 (0.57, 9.58) | <0.001 | 35.5 (13.93, 54.97) | 3.82 (1.54, 7.68) | <0.001 |
Betablockers n (%) | 21 (55.3) | 29 (58) | 0.797 | 19 (63.3) | 20 (52.6) | 0.376 |
ACEI + ARB | 14 (36.8) | 23 (46) | 0.804 | 15 (50) | 17 (44.7) | 0.666 |
Statin n (%) | 7 (18.4) | 9 (18) | 0.002 | 10 (35.7) | 11 (29.7) | 0.609 |
Antiagregants n (%) | 17 (44.7) | 15 (30) | 0.155 | 7 (24.1) | 12 (31.6) | 0.503 |
Ba PWV (cm/s) | 10.6 (9.7, 12.2) | 10.65 (9.05, 11.95) | 0.516 | |||
NMD (%) | 9.68 (4.65, 14.09) | 4.34 (1.83, 11.69) | 0.014 | |||
FMD (%) | 11.11 (4.55, 15.38) | 8.16 (4.08, 14.29) | 0.454 | |||
HD duration | 69 (34, 88) | 54 (22, 83) | 0.034 |
Variable | Women in Group A (n = 38) | Men in Group A (n = 50) | Group A | Multivariate Analysis in Group A | ||||
---|---|---|---|---|---|---|---|---|
Leptin (ng/mL) | Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | B Coefficient 95%CI (Lower, Upper) | p |
Age (years) | 0.166 | 0.320 | 0.159 | 0.269 | 0.210 | 0.049 | ||
WC (cm) | 0.624 | <0.001 | 0.620 | <0.001 | 0.558 | <0.001 | ||
DBP (mmHg) | −0.048 | 0.773 | −0.168 | 0.243 | −0.184 | 0.086 | ||
Triglycerides (mg/dL) | 0.152 | 0.361 | 0.201 | 0.162 | 0.235 | 0.028 | ||
LDL-cholesterol (mg/dL) | 0.004 | 0.983 | 0.271 | 0.057 | 0.221 | 0.038 | ||
Total Cholesterol (mg/dL) | −0.056 | 0.740 | 0.367 | 0.009 | 0.270 | 0.011 | ||
iPTH (pg/mL) | −0.122 | 0.464 | −0.236 | 0.098 | −0.220 | 0.039 | ||
hs-CRP (mg/dL) | 0.193 | 0.246 | 0.337 | 0.017 | 0.284 | 0.007 | 0.35 (0.07, 0.63) | 0.016 |
WBC (no/mmc) | 0.104 | 0.534 | 0.444 | 0.001 | 0.253 | 0.017 | ||
Testosterone (ng/mL) | −0.153 | 0.359 | 0.230 | 0.108 | −0.377 | <0.001 | −1.83 (−3.44, −0.23) | 0.026 |
BMI (kg/m2) | 0.713 | <0.001 | 0.713 | <0.001 | 0.737 | <0.001 | ||
LTM (kg) | −0.262 | 0.112 | −0.271 | 0.065 | −0.439 | <0.001 | ||
ATM (kg) | 0.716 | <0.001 | 0.787 | <0.001 | 0.751 | <0.001 | 0.86 (0.61, 1.12) | <0.001 |
NMD (%) | −0.379 | 0.039 | −0.137 | 0.392 | −0.177 | 0.139 |
Variable | Women in Group A (n = 38) | Men in Group A (n = 50) | Group A | Multivariate Analysis of Group A | ||||
---|---|---|---|---|---|---|---|---|
Testosterone (ng/mL) | Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p |
Age (years) | −0.119 | 0.475 | −0.080 | 0.580 | −0.221 | 0.039 | ||
SBP (mmHg) | −0.150 | 0.369 | 0.185 | 0.199 | 0.179 | 0.095 | ||
DBP (mmHg) | 0.076 | 0.651 | 0.212 | 0.138 | 0.298 | 0.005 | ||
Creatinine (mg/dL) | 0.022 | 0.894 | −0.079 | 0.585 | 0.269 | 0.011 | ||
LDL cholesterol (mg/dL) | 0.103 | 0.539 | −0.142 | 0.324 | −0.182 | 0.090 | ||
Total cholesterol (mg/dL) | 0.154 | 0.357 | −0.170 | 0.238 | −0.235 | 0.027 | ||
Phosphorus (mg/dL) | 0.279 | 0.090 | 0.140 | 0.331 | 0.223 | 0.037 | ||
Ferritin (ng/mL) | 0.149 | 0.371 | −0.225 | 0.116 | −0.236 | 0.027 | ||
Hemoglobin (g/dL) | 0.174 | 0.295 | 0.330 | 0.019 | 0.256 | 0.016 | 0.84 (0.38, 1.30) | <0.001 |
Leptin (ng/mL) | −0.153 | 0.359 | 0.230 | 0.108 | −0.377 | <0.001 | ||
BMI (kg/m2) | −0.032 | 0.850 | 0.231 | 0.114 | −0.200 | 0.064 | ||
LTM (kg) | −0.147 | 0.378 | 0.145 | 0.332 | 0.510 | <0.001 | 0.09 (0.03, 0.15) | 0.006 |
NMD (%) | 0.199 | 0.291 | −0.316 | 0.044 | −0.145 | 0.226 |
Variable | Women in Group Pre-Dialysis (n = 36) | Men in Group Pre-Dialysis (n = 38) | Group Pre-Dialysis | Multivariate Analysis on Group Pre-Dialysis | ||||
---|---|---|---|---|---|---|---|---|
Leptin (ng/mL) | Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | B Coefficient 95%CI (Lower, Upper) | p |
Testosterone (ng/mL) | −0.238 | 0.162 | −0.113 | 0.499 | −0.570 | <0.001 | −6.09 (−8.87, −3.30) | <0.001 |
DBP (mmHg) | −0.191 | 0.349 | −0.205 | 0.253 | −0.299 | 0.021 | - | |
Triglycerides (mg/dL) | 0.426 | 0.061 | 0.065 | 0.748 | 0.254 | 0.084 | - | |
Calcium (mg/dL) | 0.277 | 0.119 | 0.166 | 0.327 | 0.364 | 0.002 | - | |
Phosphorus (mg/dL) | −0.181 | 0.329 | −0.317 | 0.064 | −0.078 | 0.533 | ||
iPTH (pg/mL) | −0.425 | 0.027 | −0.109 | 0.545 | −0.173 | 0.185 | ||
Fasting glucose (mg/dL) | 0.522 | 0.009 | 0.293 | 0.083 | 0.302 | 0.019 | 0.16 (0.04, 0.03) | 0.013 |
Ferritin (ng/mL) | −0.169 | 0.453 | −0.323 | 0.076 | −0.294 | 0.033 | - | |
Bicarbonate level (mEq/L) | 0.383 | 0.308 | 0.538 | 0.021 | 0.408 | 0.034 | - | |
BMI (kg/m2) | 0.709 | <0.001 | 0.505 | 0.003 | 0.595 | <0.001 | 4.56 (3.02, 6.10) | <0.001 |
LTM (kg) | 0.048 | 0.818 | −0.094 | 0.628 | −0.384 | 0.004 | −0.97 (−1.4, −0.54) | <0.001 |
ATM (kg) | 0.685 | <0.001 | 0.446 | 0.015 | 0.591 | <0.001 | 0.81 (0.48, 1.15) | <0.001 |
eGFR (mL/min/1.73 m2) | 0.416 | 0.012 | 0.340 | 0.037 | 0.264 | 0.023 | - |
Variable | Women in Group Pre-Dialysis (n = 36) | Men in Group Pre-Dialysis (n = 38) | Group Pre-Dialysis | Multivariate Analysis on Group Pre-Dialysis | ||||
---|---|---|---|---|---|---|---|---|
Testosterone (ng/mL) | Correlation Coefficient | p | Correlation Coefficient | p | Correlation Coefficient | p | B Coefficient 95%CI (Lower, Upper) | p |
Leptin (ng/mL) | −0.238 | 0.162 | −0.113 | 0.499 | −0.570 | <0.001 | −0.03 (−0.05, −0.01) | 0.009 |
WC (cm) | 0.573 | 0.040 | 0.027 | 0.913 | 0.233 | 0.200 | ||
SBP (mmHg) | −0.228 | 0.262 | 0.124 | 0.491 | 0.255 | 0.051 | ||
LDL-cholesterol (mg/dL) | 0.154 | 0.529 | 0.086 | 0.670 | 0.264 | 0.076 | ||
Calcium (mg/dL) | −0.173 | 0.335 | −0.056 | 0.743 | −0.296 | 0.013 | ||
LTM (kg) | 0.227 | 0.275 | 0.022 | 0.911 | 0.450 | 0.001 | 0.05 (0.01, 0.09) | 0.029 |
eGFR (mL/min/1.73 m2) | −0.336 | 0.045 | 0.054 | 0.746 | −0.065 | 0.585 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusu, C.C.; Kacso, I.; Moldovan, D.; Potra, A.; Tirinescu, D.; Ticala, M.; Orasan, R.; Budurea, C.; Anton, F.; Valea, A.; et al. Leptin Is Associated with Testosterone, Nutritional Markers, and Vascular Muscular Dysfunction in Chronic Kidney Disease. Int. J. Mol. Sci. 2024, 25, 7646. https://doi.org/10.3390/ijms25147646
Rusu CC, Kacso I, Moldovan D, Potra A, Tirinescu D, Ticala M, Orasan R, Budurea C, Anton F, Valea A, et al. Leptin Is Associated with Testosterone, Nutritional Markers, and Vascular Muscular Dysfunction in Chronic Kidney Disease. International Journal of Molecular Sciences. 2024; 25(14):7646. https://doi.org/10.3390/ijms25147646
Chicago/Turabian StyleRusu, Crina Claudia, Ina Kacso, Diana Moldovan, Alina Potra, Dacian Tirinescu, Maria Ticala, Remus Orasan, Cristian Budurea, Florin Anton, Ana Valea, and et al. 2024. "Leptin Is Associated with Testosterone, Nutritional Markers, and Vascular Muscular Dysfunction in Chronic Kidney Disease" International Journal of Molecular Sciences 25, no. 14: 7646. https://doi.org/10.3390/ijms25147646
APA StyleRusu, C. C., Kacso, I., Moldovan, D., Potra, A., Tirinescu, D., Ticala, M., Orasan, R., Budurea, C., Anton, F., Valea, A., Bondor, C. I., & Carsote, M. (2024). Leptin Is Associated with Testosterone, Nutritional Markers, and Vascular Muscular Dysfunction in Chronic Kidney Disease. International Journal of Molecular Sciences, 25(14), 7646. https://doi.org/10.3390/ijms25147646