Antioxidant Activity and the Therapeutic Effect of Sinomenine Hydrochloride-Loaded Liposomes-in-Hydrogel on Atopic Dermatitis
Abstract
:1. Introduction
2. Results
2.1. Molecular Docking of SIN as the Active Structure of SINH
2.2. Basic Characteristics of SINH-L-H
2.3. In Vitro/Ex Vivo Dialysis Diffusion Dialysis
2.4. Determination of Antioxidant Activity
2.4.1. The Scavenging Rate on Hydroxyl Radicals
2.4.2. The Inhibitory Rate on ABTS Radicals
2.5. The Therapeutic Effects on AD Mice
2.5.1. Measurements Results of Skin Irritation of SINH-L-H
2.5.2. General Condition of Mice and Manifestation of Skin Lesions
2.5.3. Ear Swelling in Mice
2.5.4. Mouse Organ Index
2.5.5. Malondialdehyde (MDA) in Mouse Organ
2.5.6. HE Staining
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animals
4.3. Preparation SINH-L, SINH-H, and SINH-L-H
4.4. Quality Evaluation of SINH-L
4.4.1. Appearance and Morphology of Cryo-EM
4.4.2. Particle Size and Zeta Potential
4.4.3. Encapsulation Rate and Drug Load
4.5. Molecular Docking
4.6. Ex Vivo/Ex Vivo Dialysis Diffusion Dialysis of SH-L-H
4.7. Determination of Antioxidant Activity of SINH-L-H
4.7.1. The Scavenging Rate on Hydroxyl Radicals
4.7.2. The Inhibitory Rate on ABTS Radicals
4.8. The Therapeutic Effect of SINH-L-H on AD
4.8.1. Skin Irritation of SINH-L-H
4.8.2. Establishment of AD Model and Administration
4.8.3. Degree of Skin Lesion Score (EASI Score) in AD Mice
4.8.4. Determination of Ear Swelling Rate in Mice
4.8.5. Measurement of Organ Index in Mice
4.8.6. Determination of MDA Content in Organ
4.8.7. Hematoxylin and Eosin Staining
4.8.8. Statistical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, Z.; Lu, W.; Zhao, J.; Zhang, H.; Qian, L.; Wang, Q.; Chen, W. Probiotics modulate the gut microbiota composition and immune responses in patients with atopic dermatitis: A pilot study. Eur. J. Nutr. 2020, 59, 2119–2130. [Google Scholar] [CrossRef]
- Nowicka, D.; Grywalska, E. The Role of Immune Defects and Colonization of Staphylococcus aureus in the Pathogenesis of Atopic Dermatitis. Anal. Cell. Pathol. 2018, 2018, 1956403. [Google Scholar] [CrossRef]
- Dizon, M.P.; Yu, A.M.; Singh, R.K.; Wan, J.; Chren, M.M.; Flohr, C.; Silverberg, J.I.; Margolis, D.J.; Langan, S.M.; Abuabara, K. Systematic review of atopic dermatitis disease definition in studies using routinely collected health data. Br. J. Dermatol. 2018, 178, 1280–1287. [Google Scholar] [CrossRef]
- Puar, N.; Chovatiya, R.; Paller, A.S. New treatments in atopic dermatitis. Ann. Allergy Asthma Immunol. 2021, 126, 21–31. [Google Scholar] [CrossRef]
- Jia, Y.; Hu, J.; An, K.; Zhao, Q.; Dang, Y.; Liu, H.; Wei, Z.; Geng, S.; Xu, F. Hydrogel dressing integrating FAK inhibition and ROS scavenging for mechano-chemical treatment of atopic dermatitis. Nat. Commun. 2023, 14, 2478. [Google Scholar] [CrossRef]
- Kim, J.; Kim, B.E.; Leung, D.Y.M. Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc. 2019, 40, 84–92. [Google Scholar] [CrossRef]
- Kim, G.D.; Lee, S.E.; Park, Y.S.; Shin, D.H.; Park, G.G.; Park, C.S. Immunosuppressive effects of fisetin against dinitrofluorobenzene-induced atopic dermatitis-like symptoms in NC/Nga mice. Food Chem. Toxicol. 2014, 66, 341–349. [Google Scholar] [CrossRef]
- Frazier, W.; Bhardwaj, N. Atopic Dermatitis: Diagnosis and Treatment. Am. Fam. Physician 2020, 101, 590–598. [Google Scholar]
- Sidbury, R.; Kodama, S. Atopic dermatitis guidelines: Diagnosis, systemic therapy, and adjunctive care. Clin. Dermatol. 2018, 36, 648–652. [Google Scholar] [CrossRef]
- Yin, N.; Xiong, Y.; Tao, W.; Chen, J.; Wang, Z. Sinomenine alleviates lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. Immunopharmacol. Immunotoxicol. 2020, 42, 147–155. [Google Scholar] [CrossRef]
- Kiasalari, Z.; Afshin-Majd, S.; Baluchnejadmojarad, T.; Azadi-Ahmadabadi, E.; Fakour, M.; Ghasemi-Tarie, R.; Jalalzade-Ogvar, S.; Khodashenas, V.; Tashakori-Miyanroudi, M.; Roghani, M. Sinomenine Alleviates Murine Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis through Inhibiting NLRP3 Inflammasome. J. Mol. Neurosci. 2021, 71, 215–224. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Zhu, W.; Ma, C.; Ruan, J.; Long, H.; Wang, Y. Sinomenine Inhibits the Progression of Rheumatoid Arthritis by Regulating the Secretion of Inflammatory Cytokines and Monocyte/Macrophage Subsets. Front. Immunol. 2018, 9, 2228. [Google Scholar] [CrossRef]
- Jutley, G.; Raza, K.; Buckley, C.D. New pathogenic insights into rheumatoid arthritis. Curr. Opin. Rheumatol. 2015, 27, 249–255. [Google Scholar] [CrossRef]
- Zhang, M.W.; Wang, X.H.; Shi, J.; Yu, J.G. Sinomenine in Cardio-Cerebrovascular Diseases: Potential Therapeutic Effects and Pharmacological Evidences. Front. Cardiovasc. Med. 2021, 8, 749113. [Google Scholar] [CrossRef]
- Tong, B.; Yu, J.; Wang, T.; Dou, Y.; Wu, X.; Kong, L.; Dai, Y.; Xia, Y. Sinomenine suppresses collagen-induced arthritis by reciprocal modulation of regulatory T cells and Th17 cells in gut-associated lymphoid tissues. Mol. Immunol. 2015, 65, 94–103. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Yu, K.; Liu, Y.; Chen, X. Sinomenine inhibits maturation of monocyte-derived dendritic cells through blocking activation of NF-kappa B. Int. Immunopharmacol. 2007, 7, 637–645. [Google Scholar] [CrossRef]
- Zhou, H.; Wong, Y.F.; Wang, J.; Cai, X.; Liu, L. Sinomenine ameliorates arthritis via MMPs, TIMPs, and cytokines in rats. Biochem. Biophys. Res. Commun. 2008, 376, 352–357. [Google Scholar] [CrossRef]
- Li, R.Z.; Guan, X.X.; Wang, X.R.; Bao, W.-Q.; Lian, L.-R.; Choi, S.W.; Zhang, F.Y.; Yan, P.-Y.; Leung, E.L.H.; Pan, H.-D.; et al. Sinomenine hydrochloride bidirectionally inhibits progression of tumor and autoimmune diseases by regulating AMPK pathway. Phytomedicine 2023, 114, 154751. [Google Scholar] [CrossRef]
- Xia, B.; Li, Q.; Wu, J.; Yuan, X.; Wang, F.; Lu, X.; Huang, C.; Zheng, K.; Yang, R.; Yin, L.; et al. Sinomenine Confers Protection Against Myocardial Ischemia Reperfusion Injury by Preventing Oxidative Stress, Cellular Apoptosis, and Inflammation. Front. Pharmacol. 2022, 13, 922484. [Google Scholar] [CrossRef]
- Song, H.; Wen, J.; Li, H.; Meng, Y.; Zhang, Y.; Zhang, N.; Zheng, W. Enhanced transdermal permeability and drug deposition of rheumatoid arthritis via sinomenine hydrochloride-loaded antioxidant surface transethosome. Int. J. Nanomedicine 2019, 14, 3177–3188. [Google Scholar] [CrossRef]
- Shen, Q.; Zhang, X.; Qi, J.; Shu, G.; Du, Y.; Ying, X. Sinomenine hydrochloride loaded thermosensitive liposomes combined with microwave hyperthermia for the treatment of rheumatoid arthritis. Int. J. Pharm. 2020, 576, 119001. [Google Scholar] [CrossRef]
- Freitas, B.; Lavrador, P.; Almeida, R.J.; Gaspar, V.M.; Mano, J.F. Self-Assembled Bioactive Colloidal Gels as Injectable Multiparticle Shedding Platforms. ACS Appl. Mater. Interfaces 2020, 12, 31282–31291. [Google Scholar] [CrossRef]
- Yang, X.; Xia, H.; Li, Y.; Cheng, Y.; Wang, Y.; Xia, Y.; Yue, Y.; Cheng, X.; Chu, Z. In vitro and Ex vivo Antioxidant Activity and Sustained Release Properties of Sinomenine-Loaded Liposomes-in-Hydrogel Biomaterials Simulating Cells-in-Extracellular Matrix. Nat. Prod. Commun. 2022, 17, 1934578X221130699. [Google Scholar] [CrossRef]
- Ho, T.-C.; Chang, C.-C.; Chan, H.-P.; Chung, T.-W.; Shu, C.-W.; Chuang, K.-P.; Duh, T.-H.; Yang, M.-H.; Tyan, Y.-C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef]
- Large, D.E.; Abdelmessih, R.G.; Fink, E.A.; Auguste, D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021, 176, 113851. [Google Scholar] [CrossRef]
- Dumortier, A.; Durham, A.D.; Di Piazza, M.; Vauclair, S.; Koch, U.; Ferrand, G.; Ferrero, I.; Demehri, S.; Song, L.L.; Farr, A.G.; et al. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS ONE 2010, 5, e9258. [Google Scholar] [CrossRef]
- Ziegler, S.F. The role of thymic stromal lymphopoietin (TSLP) in allergic disorders. Curr. Opin. Immunol. 2010, 22, 795–799. [Google Scholar] [CrossRef]
- Tidwell, W.J.; Fowler, J.F., Jr. T-cell inhibitors for atopic dermatitis. J. Am. Acad. Dermatol. 2018, 78, S67–S70. [Google Scholar] [CrossRef]
- Czarnowicki, T.; Gonzalez, J.; Bonifacio, K.M.; Shemer, A.; Xiangyu, P.; Kunjravia, N.; Malajian, D.; Fuentes-Duculan, J.; Esaki, H.; Noda, S.; et al. Diverse activation and differentiation of multiple B-cell subsets in patients with atopic dermatitis but not in patients with psoriasis. J. Allergy Clin. Immunol. 2016, 137, 118–129 e115. [Google Scholar] [CrossRef] [PubMed]
- Kasperkiewicz, M.; Schmidt, E.; Ludwig, R.J.; Zillikens, D. Targeting IgE Antibodies by Immunoadsorption in Atopic Dermatitis. Front. Immunol. 2018, 9, 254. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jian, Z.; Baskys, A.; Yang, J.; Li, J.; Guo, H.; Hei, Y.; Xian, P.; He, Z.; Li, Z.; et al. MSC-derived exosomes protect against oxidative stress-induced skin injury via adaptive regulation of the NRF2 defense system. Biomaterials 2020, 257, 120264. [Google Scholar] [CrossRef] [PubMed]
- Mews, J.; Tomaszewska, A.; Siewiera, J.; Lewicki, S.; Kuczborska, K.; Lipińska-Opałka, A.; Kalicki, B. Effects of Hyperbaric Oxygen Therapy in Children with Severe Atopic Dermatitis. J. Clin. Med. 2021, 10, 1157. [Google Scholar] [CrossRef] [PubMed]
Storage Temperature | Storage Period (d) | Characters | Exterior | Viscosity (_mPa·s) |
---|---|---|---|---|
4 °C | 0 | Milky white, even and delicate | 9.84 ± 0.14 | |
7 | Milky white, even and delicate | 9.76 ± 0.08 | ||
14 | Milky white, even and delicate | 9.80 ± 0.03 | ||
21 | Milky white, even and delicate | 9.79 ± 0.05 | ||
30 | Milky white, even and delicate | 9.82 ± 0.03 | ||
Normal temperature | 0 | Milky white, even and delicate | 9.84 ± 0.02 | |
7 | Milky white, even and delicate | 9.73 ± 0.01 | ||
14 | Milky white, even and delicate | 9.70 ± 0.03 | ||
21 | Pale yellow, even and delicate | 9.65 ± 0.04 | ||
30 | Yellow, layered | 9.57 ± 0.06 |
Time | Group | Irritation Intensity | |||
---|---|---|---|---|---|
B-L-H Skin Status | B-L-H Skin Score | SINH-L-H Skin Status | SINH-L-H Skin Score | ||
1 h | 0 | 0 | None | ||
24 h | 0 | 0.2 | None | ||
48 h | 0 | 0 | None | ||
72 h | 0 | 0 | None |
Time | Group | Irritation Intensity | |||
---|---|---|---|---|---|
B-L-H Skin Status | B-L-H Skin Score | SINH-L-H Skin Status | SINH-L-H Skin Score | ||
1 d | 0 | 0 | None | ||
2 d | 0 | 0.2 | None | ||
3 d | 0 | 0 | None | ||
4 d | 0 | 0 | None | ||
5 d | 0 | 0 | None | ||
6 d | 0 | 0 | None | ||
7 d | 0 | 0 | None |
Skin Reaction | Degree of Response | Score |
---|---|---|
Erythema and eschar | Erythema free | 0 |
Slight erythema (barely visible) | 1 | |
Moderate erythema | 2 | |
Erythema severa | 3 | |
Purplish red erythema to slight eschar formation | 4 | |
Edema condition | No edema | 0 |
Slight edema (barely visible) | 1 | |
Mild edema (edema bulge clearly defined) | 2 | |
Moderate edema (edema bulge about 1 mm) | 3 | |
Severe edema (swelling of more than 1 mm, extended range) | 4 | |
Highest score | 8 |
Average Score | Irritation Intensity |
---|---|
0–0.49 | Non-irritant |
0.5–2.99 | Mild irritation |
3–5.99 | Moderate irritation |
6–8 | Strong irritation |
Skin Condition | Degree of Response | Points |
---|---|---|
No obvious skin injury was observed by naked eye | None | 0 |
Visual inspection requires careful examination to see the lesions | Mild | 1 |
The lesions are clearly visible to the naked eye | Medium | 2 |
The lesions were severe and very visible | Severe | 3 |
The score between the various symptoms can be recorded as a half grade (0.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wu, Y.; Jia, R.; Fang, Y.; Cao, K.; Yang, X.; Qu, X.; Xia, H. Antioxidant Activity and the Therapeutic Effect of Sinomenine Hydrochloride-Loaded Liposomes-in-Hydrogel on Atopic Dermatitis. Int. J. Mol. Sci. 2024, 25, 7676. https://doi.org/10.3390/ijms25147676
Chen X, Wu Y, Jia R, Fang Y, Cao K, Yang X, Qu X, Xia H. Antioxidant Activity and the Therapeutic Effect of Sinomenine Hydrochloride-Loaded Liposomes-in-Hydrogel on Atopic Dermatitis. International Journal of Molecular Sciences. 2024; 25(14):7676. https://doi.org/10.3390/ijms25147676
Chicago/Turabian StyleChen, Xue, Yang Wu, Ruoyang Jia, Yuqing Fang, Keang Cao, Xinying Yang, Xiaobo Qu, and Hongmei Xia. 2024. "Antioxidant Activity and the Therapeutic Effect of Sinomenine Hydrochloride-Loaded Liposomes-in-Hydrogel on Atopic Dermatitis" International Journal of Molecular Sciences 25, no. 14: 7676. https://doi.org/10.3390/ijms25147676
APA StyleChen, X., Wu, Y., Jia, R., Fang, Y., Cao, K., Yang, X., Qu, X., & Xia, H. (2024). Antioxidant Activity and the Therapeutic Effect of Sinomenine Hydrochloride-Loaded Liposomes-in-Hydrogel on Atopic Dermatitis. International Journal of Molecular Sciences, 25(14), 7676. https://doi.org/10.3390/ijms25147676