Dysembryogenetic Pathogenesis of Basal Cell Carcinoma: The Evidence to Date
Abstract
:1. Introduction
2. Materials and Methods
- Hedgehog Signalling Pathway: Dysregulation of the Hedgehog signalling pathway, which is crucial in embryonic development, is a hallmark of BCC. Mutations in genes involved in this pathway, such as PTCH1 and SMO, are commonly found in BCC. These mutations can lead to uncontrolled cell growth and tumour formation, resembling the role of Hedgehog signalling in embryogenesis.
- Origin from Basal Cells: BCC arises from basal cells located in the basal layer of the epidermis. Basal cells are known to have stem cell-like properties and play a key role in embryonic skin development. The involvement of these basal cells in BCC suggests a link between BCC and embryological processes.
- Expression of Embryonic Markers: Studies have reported the expression of embryonic markers in BCC cells. For example, certain proteins or genes that are typically expressed during embryonic development have been found to be aberrantly expressed in BCC. This suggests a potential reactivation of embryonic programs in BCC pathogenesis.
- Tumour Microenvironment Resembling Developing Tissue: The microenvironment surrounding BCC shares similarities with the microenvironment of developing tissues. This includes factors such as altered extracellular matrix composition, signalling molecule gradients, and interactions with neighbouring cells, which can influence cancer growth and progression in ways reminiscent of embryonic development.
- Animal Models: Genetically engineered mouse models with mutations in Hedgehog pathway genes, or other embryonic signalling pathways, can develop BCC-like tumours. These models provide experimental evidence for the involvement of developmental pathways in BCC pathogenesis and support the embryological basis of BCC.
3. Results
- (1)
- Correlation between the topographic distribution of BCC and the macroscopic embryology.
- (2)
- Correlation between BCC and the microscopic embryology.
- (3)
- The genetic BCC.
- (4)
- Correlation between BCC and the hair follicle.
- (5)
- Correlation between BCC and the molecular embryology.
4. Discussion
4.1. Correlation between the Topographic Distribution of BCC and the Macroscopic Embryology
4.2. Correlation between BCC and the Microscopic Embryology
4.3. Correlation between BCC and the Hair Follicle
4.4. The Genetic BCC
4.5. Correlation between BCC and the Molecular Embryology
5. Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Wunderlich, K.; Suppa, M.; Gandini, S.; Lipski, J.; White, J.M.; Del Marmol, V. Risk Factors and Innovations in Risk Assessment for Melanoma, Basal Cell Carcinoma, and Squamous Cell Carcinoma. Cancers 2024, 16, 1016. [Google Scholar] [CrossRef]
- Peris, K.; Fargnoli, M.C.; Kaufmann, R.; Arenberger, P.; Bastholt, L.; Seguin, N.B.; Bataille, V.; Brochez, L.; Del Marmol, V.; Dummer, R.; et al. European consensus-based interdisciplinary guideline for diagnosis and treatment of basal cell carcinoma-update. Eur. J. Cancer 2023, 192, 113254. [Google Scholar] [CrossRef] [PubMed]
- Raju, T.N. The Nobel chronicles. 1995: Edward B Lewis (b 1918), Christiane Nüsslein-Volhard (b 1942), and Eric Francis Wieschaus (b 1947). Lancet 2000, 356, 81. [Google Scholar] [CrossRef] [PubMed]
- OpenAI. ChatGPT 3.5. Available online: https://chat.openai.com/chat (accessed on 5 May 2024).
- Mohs, F.E.; Lathrop, T.G. Modes of spread of cancer of skin. AMA Arch. Derm. Syphilol. 1952, 66, 427–439. [Google Scholar] [CrossRef]
- Jackson, R. The lines of Blaschko: A review and reconsideration. Br. J. Dermatol. 1976, 95, 349–360. [Google Scholar] [CrossRef]
- Panje, W.R.; Ceilley, R.I. The influence of embryology of the mid-face on the spread of epithelial malignancies. Laryngoscope 1979, 89, 1914–1920. [Google Scholar] [CrossRef] [PubMed]
- Granström, G.; Aldenborg, F.; Jeppsson, P.H. Influence of embryonal fusion lines for recurrence of basal cell carcinomas in the head and neck. Otolaryngol. Head Neck Surg. 1986, 95, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.T.; Magnusson, M.R.; Guppy, M.P. The Role of Embryologic Fusion Planes in the Invasiveness and Recurrence of Basal Cell Carcinoma: A Classic Mix-Up of Causation and Correlation. Plast. Reconstr. Surg. Glob. Open 2016, 3, e582. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Menard, P.; Bertrand, J.C.; Goudal, J.Y. Carcinome baso-cellulaire sclérodermiforme pré-auriculaire étendu à l’articulation temporo-mandibulaire (A.T.M.). Présentation d’une observation. Rev. Stomatol. Chir. Maxillofac. 1991, 92, 22–26. [Google Scholar] [PubMed]
- Farley, R.L.; Manolidis, S.; Ratner, D. Aggressive basal cell carcinoma with invasion of the parotid gland, facial nerve, and temporal bone. Dermatol. Surg. 2006, 32, 307–315; discussion 315. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.C.; Leffell, D.J. Correlation of embryonic fusion planes with the anatomical distribution of basal cell carcinoma. Dermatol. Surg. 2007, 33, 957–964; discussion 965. [Google Scholar] [CrossRef] [PubMed]
- Wentzell, J.M.; Wisco, O.J. Embryologic fusion planes: A plea for more precise analysis. Dermatol. Surg. 2008, 34, 851–853, author reply 853. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, G.; Brenta, F.; Malovini, A.; Jaber, O.; Faga, A. Sites of Basal cell carcinomas and head and neck congenital clefts: Topographic correlation. Plast. Reconstr. Surg. Glob. Open. 2014, 9, e164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tessier, P. Anatomical classification of facial, craniofacial and latero-facial clefts. J. Maxillofac. Surg. 1976, 4, 69–92. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.H.; David, D.J.; Cooter, R.D. Hairline indicators of craniofacial clefts. Plast. Reconstr. Surg. 1988, 82, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, G.; Tresoldi, M.M.; Malovini, A.; Prigent, S.; Agozzino, M.; Faga, A. Correlation Between the Sites of Onset of Basal Cell Carcinoma and the Embryonic Fusion Planes in the Auricle. Clin. Med. Insights Oncol. 2018, 12, 1179554918817328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nicoletti, G.; Tresoldi, M.M.; Malovini, A.; Borelli, F.; Faga, A. Nonmelanoma Skin Cancers: Embryologically Relevant Sites and UV Exposure. Plast. Reconstr. Surg. Glob. Open. 2020, 8, e2683. [Google Scholar] [CrossRef] [PubMed Central]
- Pinkus, H. Skin cancer and basic research in dermatology. J. Investig. Dermatol. 1959, 33, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Pinkus, H. Adnexal tumors, benign, not-so-benign and malignant. In Advances of Biology of Skin: Carcinogenesis; Montagna, W., Ed.; Pergamon Press: Oxford, UK; New York, NY, USA, 1966; pp. 255–276. [Google Scholar]
- Milosevic, M.; Lazarevic, M.; Toljic, B.; Simonovic, J.; Trisic, D.; Nikolic, N.; Petrovic, M.; Milasin, J. Characterization of stem-like cancer cells in basal cell carcinoma and its surgical margins. Exp. Dermatol. 2018, 27, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
- Pinkus, H. Factors involved in skin carcinogenesis. J. Am. Acad. Dermatol. Online 1979, 1, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Pinkus, H. Etiology of an anatomist’s discoveries in dermatology. Am. J. Dermatopathol. 1982, 4, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Mehregan, A.H.; Pinkus, H. Adnexal tumors of the skin. Int. J. Dermatol. 1971, 10, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Kumakiri, M.; Hashimoto, K. Ultrastructural resemblance of basal cell epithelioma to primary epithelial germ. J. Cutan. Pathol. 1978, 5, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Airola, K.; Ahonen, M.; Johansson, N.; Heikkilä, P.; Kere, J.; Kähäri, V.M.; Saarialho-Kere, U.K. Human TIMP-3 is expressed during fetal development, hair growth cycle, and cancer progression. J. Histochem. Cytochem. 1998, 46, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Sellheyer, K.; Krahl, D. Spatiotemporal expression pattern of neuroepithelial stem cell marker nestin suggests a role in dermal homeostasis, neovasculogenesis, and tumor stroma development: A study on embryonic and adult human skin. J. Am. Acad. Dermatol. 2010, 63, 93–113. [Google Scholar] [CrossRef] [PubMed]
- Youssef, K.K.; Van Keymeulen, A.; Lapouge, G.; Beck, B.; Michaux, C.; Achouri, Y.; Sotiropoulou, P.A.; Blanpain, C. Identification of the cell lineage at the origin of basal cell carcinoma. Nat. Cell Biol. 2010, 12, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Youssef, K.K.; Lapouge, G.; Bouvrée, K.; Rorive, S.; Brohée, S.; Appelstein, O.; Larsimont, J.-C.; Sukumaran, V.; Van de Sande, B.; Pucci, D.; et al. Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation. Nat. Cell Biol. 2012, 14, 1282–1294. [Google Scholar] [CrossRef]
- Peterson, S.C.; Eberl, M.; Vagnozzi, A.N.; Belkadi, A.; Veniaminova, N.A.; Verhaegen, M.E.; Bichakjian, C.K.; Ward, N.L.; Dlugosz, A.A.; Wong, S.Y. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 2015, 16, 400–412. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gorlin, R.J.; Goltz, R.W. Multiple nevoid basal-cell epithelioma, jaw cysts and bifid rib. A syndrome. N. Engl. J. Med. 1960, 262, 908–912. [Google Scholar] [CrossRef] [PubMed]
- Gorlin, R.J. Nevoid basal cell carcinoma syndrome. Dermatol. Clin. 1995, 13, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Bale, A.E.; Gailani, M.R.; Leffell, D.J. The Gorlin syndrome gene: A tumor suppressor active in basal cell carcinogenesis and embryonic development. Proc. Assoc. Am. Physicians. 1995, 107, 253–257. [Google Scholar] [PubMed]
- Booth, D.R. The hedgehog signalling pathway and its role in basal cell carcinoma. Cancer Metastasis Rev. 1999, 18, 261–284. [Google Scholar] [CrossRef] [PubMed]
- Oldak, M.; Grzela, T.; Lazarczyk, M.; Malejczyk, J.; Skopinski, P. Clinical aspects of disrupted Hedgehog signaling (Review). Int. J. Mol. Med. 2001, 8, 445–452. [Google Scholar] [PubMed]
- Epstein, E.H. Basal cell carcinomas: Attack of the hedgehog. Nat. Rev. Cancer 2008, 8, 743–754. [Google Scholar] [CrossRef]
- Ellis, T.; Smyth, I.; Riley, E.; Bowles, J.; Adolphe, C.; Rothnagel, J.A.; Wicking, C.; Wainwright, B.J. Overexpression of Sonic Hedgehog suppresses embryonic hair follicle morphogenesis. Dev. Biol. 2003, 263, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Callahan, C.A.; Oro, A.E. Monstrous attempts at adnexogenesis: Regulating hair follicle pro-genitors through Sonic hedgehog signaling. Curr. Opin. Genet. Dev. 2001, 11, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Hutchin, M.E.; Kariapper, M.S.; Grachtchouk, M.; Wang, A.; Wei, L.; Cummings, D.; Liu, J.; Michael, L.E.; Glick, A.; Dlugosz, A.A. Sustained Hedgehog sig-naling is required for basal cell carcinoma proliferation and survival: Conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev. 2005, 19, 214–223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grachtchouk, M.; Pero, J.; Yang, S.H.; Ermilov, A.N.; Michael, L.E.; Wang, A.; Wilbert, D.; Patel, R.M.; Ferris, J.; Diener, J.; et al. Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations. J. Clin. Investig. 2011, 121, 1768–1781. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, G.Y.; Wang, J.; Mancianti, M.L.; Epstein, E.H., Jr. Basal cell carcinomas arise from hair follicle stem cells in Ptch1(+/-) mice. Cancer Cell 2011, 19, 114–124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Donovan, J. Review of the hair follicle origin hypothesis for basal cell carcinoma. Dermatol. Surg. 2009, 35, 1311–1323. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.J.; Takebe, N.; Ivy, S.P. Molecular conversations and the development of the hair follicle and basal cell carcinoma. Cancer Prev. Res. 2010, 3, 1217–1221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krahl, D.; Sellheyer, K. Sox9, more than a marker of the outer root sheath: Spatiotemporal expression pattern during human cutaneous embryogenesis. J. Cutan. Pathol. 2010, 37, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Dessinioti, C.; Antoniou, C.; Stratigos, A.J. From basal cell carcinoma morphogenesis to the alopecia induced by hedgehog inhibitors: Connecting the dots. Br. J. Dermatol. 2017, 177, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.Y.; Reiter, J.F. Wounding mobilizes hair follicle stem cells to form tumors. Proc. Natl. Acad. Sci. USA 2011, 108, 4093–4098. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hussein, M.R. Ultraviolet radiation and skin cancer: Molecular mechanisms. J. Cutan. Pathol. 2005, 32, 191–205. [Google Scholar] [CrossRef]
- Slominski, R.M.; Chen, J.Y.; Raman, C.; Slominski, A.T. Photo-neuro-immuno-endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system. Proc. Natl. Acad. Sci. USA 2024, 121. [Google Scholar] [CrossRef]
- Slominski, A.T.; Zmijewski, M.A.; Plonka, P.M.; Szaflarski, J.P.; Paus, R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018, 159, 1992–2007. [Google Scholar] [CrossRef] [PubMed]
- Aszterbaum, M.; Beech, J.; Epstein, E.H. Ultraviolet Radiation Mutagenesis of Hedgehog Pathway Genes in Basal Cell Carcinomas. J. Investig. Dermatol. Symp. Proc. 1999, 4, 41–45. [Google Scholar] [CrossRef]
- Bansaccal, N.; Vieugue, P.; Sarate, R.; Song, Y.; Minguijon, E.; Miroshnikova, Y.A.; Zeuschner, D.; Collin, A.; Allard, J.; Engelman, D.; et al. The extracellular matrix dictates regional competence for tumour initiation. Nature 2023, 623, 828–835. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kasper, M.; Jaks, V.; Are, A.; Bergström, Å.; Schwäger, A.; Svärd, J.; Teglund, S.; Barker, N.; Toftgård, R. Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proc. Natl. Acad. Sci. USA 2012, 109, 5548. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lan, Y.; Jiang, R. Sonic hedgehog signaling regulates reciprocal epithelial-mesenchymal interactions controlling palatal outgrowth. Development 2009, 136, 1387–1396. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cobourne, M.T.; Xavier, G.M.; Depew, M.; Hagan, L.; Sealby, J.; Webster, Z.; Sharpe, P.T. Sonic hedgehog signalling inhibits palatogenesis and arrests tooth development in a mouse model of the nevoid basal cell carcinoma syndrome. Dev. Biol. 2009, 331, 38–49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kurosaka, H. The Roles of Hedgehog Signaling in Upper Lip Formation. Biomed. Res. Int. 2015, 2015, 901041. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xavier, G.M.; Seppala, M.; Barrell, W.; Birjandi, A.A.; Geoghegan, F.; Cobourne, M.T. Hedgehog receptor function during craniofacial development. Dev. Biol. 2016, 415, 198–215. [Google Scholar] [CrossRef]
- Dworkin, S.; Boglev, Y.; Owens, H.; Goldie, S.J. The Role of Sonic Hedgehog in Craniofacial Patterning, Morphogenesis and Cranial Neural Crest Survival. J. Dev. Biol. 2016, 4, 24. [Google Scholar] [CrossRef]
- Seppala, M.; Fraser, G.J.; Birjandi, A.A.; Xavier, G.M.; Cobourne, M.T. Sonic Hedgehog Signaling and Development of the Dentition. J. Dev. Biol. 2017, 5, 6. [Google Scholar] [CrossRef]
- Abramyan, J. Hedgehog Signaling and Embryonic Craniofacial Disorders. J. Dev. Biol. 2019, 7, 9. [Google Scholar] [CrossRef] [PubMed Central]
- Ahlgren, S.C.; Bronner-Fraser, M. Inhibition of sonic hedgehog signaling in vivo results in craniofacial neural crest cell death. Curr. Biol. 1999, 9, 1304–1314. [Google Scholar] [CrossRef] [PubMed]
- Pakvasa, M.; Tucker, A.B.; Shen, T.; He, T.C.; Reid, R.R. The Pleiotropic Intricacies of Hedgehog Signaling: From Craniofa-cial Patterning to Carcinogenesis. FACE 2021, 2, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, G.; Tresoldi, M.M.; Gatti, A.M.; Sandano, M.; Agozzino, M.; Villani, L.; Faga, A.; Buonocore, M. Pathological nerve patterns in human basal cell carcinoma. Eur. J. Dermatol. 2021, 31, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Blaschko, A. Die Nervenverteilung in der Haut in ihrer Beziehung zu den Erkrankungen der Haut. In Proceedings of the Beilage zu den Verhandlungen der Deutschen Dermatologischen Gesellschaft VII Congress, Breslau, Germany, 28–30 May 1901; Braumüller: Wien, Austria, 1901. [Google Scholar]
- Nödl, F. Das periphere Nervengewebe in der Histogenese des Basalioms. Arch. Klin. Exp. Derm. 1962, 214, 337–345. [Google Scholar] [CrossRef]
- Iyengar, B. Primitive neuroectodermal patterns in skin adnexal tumours and basal cell epitheliomas. Indian. J. Cancer 1978, 15, 15–18. [Google Scholar] [PubMed]
- Pawlowski, A. Rola elementów nerwowych skóry w przebiegu doświaldczalnej karcinogenezy, oraz nabłoniaków podstawnokomórkowych i raków kolczystokomórkowych u ludzi [The role of nerve elements of the skin in the course of experimental carcinogenesis and of basal cell epithelioma and squamous cell carcinoma in man]. Neuropatol. Pol. 1970, 8, 205–239. [Google Scholar] [PubMed]
- Caro, I.; Low, J.A. The role of the hedgehog signaling pathway in the development of basal cell carcinoma and opportuni-ties for treatment. Clin. Cancer Res. 2010, 16, 3335–3339. [Google Scholar] [CrossRef] [PubMed]
- Sandhiya, S.; Melvin, G.; Kumar, S.S.; Dkhar, S.A. The dawn of hedgehog inhibitors: Vismodegib. J. Pharmacol. Pharmacother. 2013, 4, 4–7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, F.; Zhang, Y.; Sun, B.; McMahon, A.P.; Wang, Y. Hedgehog signaling: From basic biology to cancer therapy. Cell Chem. Biol. 2017, 24, 252–280. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Wang, T.; Song, X.; Gao, J.; Xu, G.; Ma, Y.; Song, G. Current Status of Hedgehog Signaling Inhibitors. Curr. Top. Med. Chem. 2024, 24, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, P.; Kłosińska, M.; Forma, A.; Pelc, Z.; Gęca, K.; Skórzewska, M. Novel Approaches in Non-Melanoma Skin Cancers—A Focus on Hedgehog Pathway in Basal Cell Carcinoma (BCC). Cells 2022, 11, 3210. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, C.; Maturo, M.G.; Di Nardo, L.; Ciciarelli, V.; Gutiérrez García-Rodrigo, C.; Fargnoli, M.C. Understanding the Molecular Genetics of Basal Cell Carcinoma. Int. J. Mol. Sci. 2017, 18, 2485. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rogers, F.B. The development of MEDLARS. Bull. Med. Libr. Assoc. 1964, 52, 150–151. [Google Scholar] [PubMed] [PubMed Central]
- Oliver, J.D.; Turner, E.C.; Halpern, L.R.; Jia, S.; Schneider, P.; D’Souza, R.N. Molecular Diagnostics and In Utero Therapeutics for Orofacial Clefts. J. Dent. Res. 2020, 99, 1221–1227. [Google Scholar] [CrossRef]
- Doudna, J.A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef]
Main Research Domains | References |
---|---|
Correlation between the topographic distribution of BCC and the macroscopic embryology | 5–14, 17, 18, 53–60, 63, 64, 74 |
Correlation between BCC and the microscopic embryology | 19–25, 27–29, 62, 65, 66 |
The genetic BCC | 31–33 |
Correlation between BCC and the hair follicle | 26, 30, 37–46, 52 |
Correlation between BCC and the molecular embryology | 34–36, 61, 67–72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicoletti, G.; Saler, M.; Moro, U.; Faga, A. Dysembryogenetic Pathogenesis of Basal Cell Carcinoma: The Evidence to Date. Int. J. Mol. Sci. 2024, 25, 8452. https://doi.org/10.3390/ijms25158452
Nicoletti G, Saler M, Moro U, Faga A. Dysembryogenetic Pathogenesis of Basal Cell Carcinoma: The Evidence to Date. International Journal of Molecular Sciences. 2024; 25(15):8452. https://doi.org/10.3390/ijms25158452
Chicago/Turabian StyleNicoletti, Giovanni, Marco Saler, Umberto Moro, and Angela Faga. 2024. "Dysembryogenetic Pathogenesis of Basal Cell Carcinoma: The Evidence to Date" International Journal of Molecular Sciences 25, no. 15: 8452. https://doi.org/10.3390/ijms25158452
APA StyleNicoletti, G., Saler, M., Moro, U., & Faga, A. (2024). Dysembryogenetic Pathogenesis of Basal Cell Carcinoma: The Evidence to Date. International Journal of Molecular Sciences, 25(15), 8452. https://doi.org/10.3390/ijms25158452