Organellar Genomes of Sargassum hemiphyllum var. chinense Provide Insight into the Characteristics of Phaeophyceae
Abstract
:1. Introduction
2. Results
2.1. Genomic Characteristics
2.2. Organellar Gene Analysis
2.3. PCGs
2.4. PCG Codon Use
2.5. Identification of Potential RNA Editing Sites in PCGs
2.6. Repeat Sequence Analysis
2.7. SNP Analysis
2.8. Phylogenetic Analysis and Ka/Ks
3. Discussion
3.1. Genomic Characteristics
3.2. Codon Use Preferences
3.3. RNA Editing Sites
3.4. Repeat Sequence
3.5. Phylogenetic Analysis and Ka/Ks
4. Materials and Methods
4.1. Sampling and DNA Extraction
4.2. Organellar DNA Sequencing and Genome Assembly
4.3. Genome Annotation
4.4. Codon Use Analysis
4.5. RNA Editing
4.6. Repeat Sequence Analysis
4.7. Comparative Genome and Phylogenetic Analyses
4.8. Ka/Ks Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guiry, M.D.; Guiry, G.M. AlgaeBase. 2014. Available online: https://www.algaebase.org (accessed on 24 June 2024).
- Davis, T.; Volesky, B.; Vieira, R. Sargassum seaweed as biosorbent for heavy metals. Water Res. 2000, 34, 4270–4278. [Google Scholar] [CrossRef]
- De Zoysa, M.; Nikapitiya, C.; Jeon, Y.-J.; Jee, Y.; Lee, J. Anticoagulant activity of sulfated polysaccharide isolated from fermented brown seaweed Sargassum fulvellum. J. Appl. Phycol. 2008, 20, 67–74. [Google Scholar] [CrossRef]
- Fourest, E.; Volesky, B. Contribution of Sulfonate Groups and Alginate to Heavy Metal Biosorption by the Dry Biomass of Sargassum fluitans. Environ. Sci. Technol. 1996, 30, 277–282. [Google Scholar] [CrossRef]
- Godoy, E.A.S.; Coutinho, R. Can artificial beds of plastic mimics compensate for seasonal absence of natural beds of Sargassum furcatum? ICES J. Mar. Sci. 2002, 59, S111–S115. [Google Scholar] [CrossRef]
- Liu, L.; Heinrich, M.; Myers, S.; Dworjanyn, S.A. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: A phytochemical and pharmacological review. J. Ethnopharmacol. 2012, 142, 591–619. [Google Scholar] [CrossRef]
- Veit, M.T.; da Silva, E.A.; Tavares, C.R.G.; Fagundes-Klen, M.R.; Gonçalves, G.d.C.; Seolatto, A.A.; Vaz, L.G.d.L. Biosorption of nickel (II) ions by using chemically pre-treated Sargassum filipendula biomass in a fixed bed column. World J. Microbiol. Biotechnol. 2009, 25, 1849–1856. [Google Scholar] [CrossRef]
- Wang, R.; Xiao, H.; Zhang, P.; Qu, L.; Cai, H.; Tang, X. Allelopathic effects of Ulva pertusa, Corallina pilulifera and Sargassum thunbergii on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense. J. Appl. Phycol. 2007, 19, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Ajisaka, T.; Nang, H.Q.; Dinh, N.H.; Lu, B.R.; Chiang, Y.M.; Yoshida, T. Sargassum hemiphyllum (Turner) C. Agardh var. chinense J. Agardh from Vietnam, the Chinese mainland, and Taiwan (Fucales, Phacophyta). In Taxonomy of Economic Seaweeds with Reference to Some Pacific Species; Abbott, I.A., Ed.; California Sea Grant College Program, University of California: Los Angeles, CA, USA, 1997; Volume 6, pp. 37–49. [Google Scholar]
- Cheang, C.C.; Chu, K.H.; Ang, P.O., Jr. Morphological and genetic variation in the populations of Sargassum hemiphyllum (Phaeophyceae) in northwestern Pacific. J. Phycol. 2008, 44, 855–865. [Google Scholar] [CrossRef]
- Mattio, L.; Payri, C.E. 190 Years of Sargassum Taxonomy, Facing the Advent of DNA Phylogenies. Bot. Rev. 2011, 77, 31–70. [Google Scholar] [CrossRef]
- Cheung-Wong, R.W.; Kotta, J.; Hemraj, D.A.; Russell, B.D. Persistence in a tropical transition zone? Sargassum forests alternate seasonal growth forms to maintain productivity in warming waters at the expense of annual biomass production. Sci. Total. Environ. 2022, 851, 158154. [Google Scholar] [CrossRef]
- Chen, D.J.; Sun, Z.H.; Liu, Z.G.; Liu, Z.G.; Liufu, S.M.; Xie, E.Y. Effects of salinity on the growth and photosynthetic pigment synthesis of Sargassum hemiphyllum seedings. J. Guangdong Ocean Univ. China 2015, 35, 32–35. [Google Scholar] [CrossRef]
- Fu, G.Q.; Han, T.T.; Gong, X.Y.; Huang, H.H. Effect of Cu2+ stress on growth and physiological biochemical characteristics of Sargassum hemiphyllum. South China Fish. Sci. 2015, 11, 34–39. [Google Scholar]
- He, L. Preliminary Study on Physiological and Biochemical Responses, Heat tolerance Mechanism of Sargassum hemiphyllum var. chinense under High temperature Stress. Master’s Thesis, Guangdong Ocean University, Zhanjiang, China, 2017. [Google Scholar]
- Tian, S.X.; Chen, W.D.; Lin, L.; Cai, H.C.; Song, W.H. Morphological observation and structure analysis of Sargassum hemiphyllum (Turn) var. chinense J. Agardh in breeding season. Mar. Fish 2014, 36, 107–115. [Google Scholar]
- Bi, Y.H.; Yuan, X.; Zhou, Z.G. Characterization and phylogenetic analysis of ITS sequences in three geographic populations of Sargassum vachellianum (Fucales, Phaeophyceae). J. Fish China 2014, 38, 1335–1344. [Google Scholar]
- Huang, C.H. A taxonomic revision of the genus Sargassum (Fucales, Phaeophyceae) in the Yellow Sea and the East China Sea. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2017. [Google Scholar]
- Liu, F.; Pang, S. Mitochondrial genome of Sargassum thunbergii: Conservation and variability of mitogenomes within the subgenus Bactrophycus. Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 2016, 27, 3186–3188. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, P.; Zhang, Y.; Wang, T. The complete chloroplast genome of Sargassum hemiphyllum var. Chinense (Sargassaceae, Phaeophyceae) and its phylogenetic analysis. Mitochondrial DNA Part B 2021, 6, 278–279. [Google Scholar] [CrossRef] [PubMed]
- Li, T.-Y.; Qu, J.-Q.; Feng, Y.-J.; Liu, C.; Chi, S.; Liu, T. Complete mitochondrial genome of Undaria pinnatifida (Alariaceae, Laminariales, Phaeophyceae). Mitochondrial DNA 2015, 26, 953–954. [Google Scholar] [CrossRef] [PubMed]
- Yip, Z.T.; Quek, R.Z.B.; Huang, D. Historical biogeography of the widespread macroalga Sargassum (Fucales, Phaeophyceae). J. Phycol. 2020, 56, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Yotsukura, N.; Shimizu, T.; Katayama, T.; Druehl, L.D. Mitochondrial DNA sequence variation of four Saccharina species (Laminariales, Phaeophyceae) growing in Japan. J. Appl. Phycol. 2010, 22, 243–251. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Liu, C.; Jin, Y.; Liu, T. The complete mitochondrial genomes of two brown algae (Laminariales, Phaeophyceae) and phylogenetic analysis within Laminaria. J. Appl. Phycol. 2012, 25, 1247–1253. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, Y.; Zhang, J.; Draisma, S.G.A.; Duan, D. Organellar genome comparisons of Sargassum polycystum and S. plagiophyllum (Fucales, Phaeophyceae) with other Sargassum species. BMC Genom. 2022, 23, 629. [Google Scholar] [CrossRef]
- Peters, A.F.; Burkhardt, E. Systematic position of the kelp endophyte Laminarionema elsbetiae (Ectocarpales sensu lato, Phaeophyceae) inferred from nuclear ribosomal DNA sequences. Phycologia 1998, 37, 114–120. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, Y.D.; Uh, Y.R.; Kim, Y.M.; Seo, T.-H.; Choi, S.-J.; Jang, C.S. Complete organellar genomes of six Sargassum species and development of species-specific markers. Sci. Rep. 2022, 12, 20981. [Google Scholar] [CrossRef]
- Li, R.; Jia, X.; Zhang, J.; Jia, S.; Liu, T.; Qu, J.; Wang, X. The Complete Plastid Genomes of Seven Sargassaceae Species and Their Phylogenetic Analysis. Front. Plant Sci. 2021, 12, 747036. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Pang, S.; Chen, W. Complete mitochondrial genome of the brown alga Sargassum hemiphyllum (Sargassaceae, Phaeophyceae): Comparative analyses. Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 2014, 27, 1468–1470. [Google Scholar] [CrossRef]
- Liu, F.; Pang, S.; Luo, M. Complete mitochondrial genome of the brown alga Sargassum fusiforme (Sargassaceae, Phaeophyceae): Genome architecture and taxonomic consideration. Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 2014, 27, 1158–1160. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, N.; Meinita, M.D.N.; Wang, X.; Tang, X.; Wang, G.; Jin, Y.; Liu, T. The complete plastid genomes of Betaphycus gelatinus, Eucheuma denticulatum, and Kappaphycus striatus (Solieriaceae: Rhodophyta) and their phylogenetic analysis. J. Appl. Phycol. 2020, 32, 3521–3532. [Google Scholar] [CrossRef]
- Jühling, F.; Mörl, M.; Hartmann, R.K.; Sprinzl, M.; Stadler, P.F.; Pütz, J. tRNAdb 2009: Compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 2009, 37, D159–D162. [Google Scholar] [CrossRef] [PubMed]
- Dittami, S.M.; Michel, G.; Collén, J.; Boyen, C.; Tonon, T. Chlorophyll-binding proteins revisited—A multigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evol. Biol. 2010, 10, 365. [Google Scholar] [CrossRef]
- Fujii, G.; Imamura, S.; Era, A.; Miyagishima, S.-Y.; Hanaoka, M.; Tanaka, K. The nuclear-encoded sigma factor SIG4 directly activates transcription of chloroplast psbA and ycf17 genes in the unicellular red alga Cyanidioschyzon merolae. FEMS Microbiol. Lett. 2015, 362, fnv063. [Google Scholar] [CrossRef]
- Graf, L.; Kim, Y.J.; Cho, G.Y.; Miller, K.A.; Yoon, H.S. Plastid and mitochondrial genomes of Coccophora langsdorfii (Fucales, Phaeophyceae) and the utility of molecular markers. PLoS ONE 2017, 12, e0187104. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, E.; Turmel, M. Gene rearrangements in Chlamydomonas chloroplast DNAs are accounted for by inversions and by the expansion/contraction of the inverted repeat. Plant Mol. Biol. 1995, 27, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Bi, D.; Han, S.; Zhou, J.; Zhao, M.; Zhang, S.; Kan, X. Codon Usage Analyses Reveal the Evolutionary Patterns among Plastid Genes of Saxifragales at a Larger-Sampling Scale. Genes 2023, 14, 694. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Guo, J.; Li, M.; Gao, Y.; Wang, S.; Wang, X.; Liu, Y. Comparative genome and phylogenetic analysis revealed the complex mitochondrial genome and phylogenetic position of Conopomorpha sinensis Bradley. Sci. Rep. 2023, 13, 4989. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wan, D.-G.; Murphy, R.W.; Ma, L.; Zhang, X.-S.; Huang, D.-W. Comparison of base composition and codon usage in insect mitochondrial genomes. Genes Genom. 2009, 31, 65–71. [Google Scholar] [CrossRef]
- Wright, F. The ‘effective number of codons’ used in a gene. Gene 1990, 87, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Unseld, M.; Marienfeld, J.R.; Brandt, P.; Brennicke, A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat. Genet. 1997, 15, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Hiesel, R.; Wissinger, B.; Schuster, W.; Brennicke, A. RNA Editing in Plant Mitochondria. Science 1989, 246, 1632–1634. [Google Scholar] [CrossRef]
- Dong, S.; Zhao, C.; Chen, F.; Liu, Y.; Zhang, S.; Wu, H.; Zhang, L.; Liu, Y. The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination. BMC Genom. 2018, 19, 614. [Google Scholar] [CrossRef]
- Iorizzo, M.; Senalik, D.; Szklarczyk, M.; Grzebelus, D.; Spooner, D.; Simon, P. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome. BMC Plant Biol. 2012, 12, 61. [Google Scholar] [CrossRef]
- Sugiyama, Y.; Watase, Y.; Nagase, M.; Makita, N.; Yagura, S.; Hirai, A.; Sugiura, M. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: Comparative analysis of mitochondrial genomes in higher plants. Mol. Genet. Genom. 2005, 272, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Mattio, L.; Zubia, M.; Loveday, B.; Crochelet, E.; Duong, N.; Payri, C.E.; Bhagooli, R.; Bolton, J.J. Sargassum (Fucales, Phaeophyceae) in Mauritius and Réunion, western Indian Ocean: Taxonomic revision and biogeography using hydrodynamic dispersal models. Phycologia 2013, 52, 578–594. [Google Scholar] [CrossRef]
- Mattio, L.; Anderson, R.; Bolton, J. A revision of the genus Sargassum (Fucales, Phaeophyceae) in South Africa. S. Afr. J. Bot. 2015, 98, 95–107. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Borgström, E.; Lundin, S.; Lundeberg, J. Large Scale Library Generation for High Throughput Sequencing. PLoS ONE 2011, 6, e19119. [Google Scholar] [CrossRef] [PubMed]
- Cronn, R.; Liston, A.; Parks, M.; Gernandt, D.S.; Shen, R.; Mockler, T. Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res. 2008, 36, e122. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. GigaScience 2012, 1, 18. [Google Scholar] [CrossRef]
- Haas, B.J.; Salzberg, S.L.; Zhu, W.; Pertea, M.; Allen, J.E.; Orvis, J.; White, O.; Buell, C.R.; Wortman, J.R. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008, 9, R7. [Google Scholar] [CrossRef] [PubMed]
- Lagesen, K.; Hallin, P.; Rødland, E.A.; Staerfeldt, H.-H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S.; Hattori, M.; Aoki-Kinoshita, K.F.; Itoh, M.; Kawashima, S.; Katayama, T.; Araki, M.; Hirakawa, M. From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Res. 2006, 34, D354–D357. [Google Scholar] [CrossRef] [PubMed]
- Magrane, M. Consortium UniProt Knowledgebase: A hub of integrated protein data. Database 2011, 2011, bar009. [Google Scholar] [CrossRef] [PubMed]
- Tatusov, R.L.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Kiryutin, B.; Koonin, E.V.; Krylov, D.M.; Mazumder, R.; Mekhedov, S.L.; Nikolskaya, A.N.; et al. The COG database: An updated version includes eukaryotes. BMC Bioinform. 2003, 4, 41. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.; Drechsel, O.; Bock, R. OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 2007, 52, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zhou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2019, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple Alignment of Conserved Genomic Sequence With Rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef]
- Castresana, J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed]
- Posada, D.; Crandall, K.A. MODELTEST: Testing the model of DNA substitution. Bioinformatics 1998, 14, 817–818. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A. FigTree v1.3.1. 2009. Available online: http://tree.bio.ed.ac (accessed on 29 November 2012).
Order | Species | Accession No. | Length | GC | PCG | Overlap | Spacer | Genes | PCG | tRNA | rRNA | ORFs | Note |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bp | % | % | bp | bp | Number | Number | Number | Number | Number | ||||
Fucales | Sargassum hemiphyllum var. chinense * | MT873582 | 34,686 | 36.60 | 75.98 | 188 | 1597 | 65 | 35 | 25 | 3 | 2 | mtDNA |
Sargassum hemiphyllum var. chinense * | MT873582 | 124,323 | 30.60 | 75.34 | 75 | 19,859 | 173 | 137 | 28 | 6 | 2 | cpDNA | |
Sargassum confusum | MG459430 | 34,721 | 36.60 | 76.05 | 180 | 1596 | 65 | 35 | 25 | 3 | 2 | mtDNA | |
Sargassum confusum | MG459429 | 124,375 | 30.40 | 75.30 | 77 | 17,439 | 173 | 137 | 28 | 6 | 2 | cpDNA | |
Sargassum muticum | NC024614 | 34,720 | 36.60 | 76.01 | 171 | 1614 | 65 | 35 | 25 | 3 | 2 | mtDNA | |
Sargassum thunbergii | NC026700 | 34,748 | 36.60 | 76.04 | 168 | 1600 | 65 | 35 | 25 | 3 | 2 | mtDNA | |
Sargassum thunbergii | NC029134 | 124,592 | 30.40 | 75.00 | 75 | 17,848 | 173 | 137 | 28 | 6 | 2 | cpDNA | |
Sargassum fusiforme | MN883537 | 34,696 | 37.50 | 76.07 | 211 | 1570 | 65 | 35 | 25 | 3 | 2 | mtDNA | |
Sargassum fusiforme | MN794016 | 124,298 | 30.40 | 75.05 | 75 | 17,349 | 173 | 137 | 28 | 6 | 2 | cpDNA | |
Sargassum horneri | NC024613 | 34,606 | 36.20 | 76.30 | 164 | 1464 | 65 | 35 | 25 | 3 | 2 | mtDNA | |
Sargassum horneri | MN265366 | 124,075 | 30.60 | 75.45 | 75 | 17,365 | 173 | 137 | 28 | 6 | 2 | cpDNA | |
Sargassum yezoense | NC038156 | 34,767 | 36.60 | 75.90 | 81 | 1686 | 65 | 35 | 25 | 3 | 2 | mtDNA | |
Sargassum fluitans | NC033385 | 34,727 | 36.20 | 75.88 | 170 | 1643 | 65 | 35 | 25 | 3 | 2 | mtDNA | |
Sargassum natans | NC033384 | 34,727 | 36.20 | 75.90 | 161 | 1640 | 65 | 35 | 25 | 3 | 2 | mtDNA | |
Sargassum vachellianum | NC027508 | 34,877 | 36.20 | 75.57 | 158 | 1787 | 65 | 35 | 25 | 3 | 2 | mtDNA | |
Sargassum spinuligerum | NC034272 | 34,891 | 36.20 | 75.41 | 207 | 1835 | 65 | 35 | 25 | 3 | 2 | mtDNA | |
Sargassum ilicifolium | KT272403 | 34,925 | 35.60 | 75.49 | 160 | 1822 | 65 | 35 | 25 | 3 | 2 | mtDNA | |
Sargassum polycystum | KT280278 | 34,862 | 35.70 | 75.57 | 150 | 1598 | 65 | 35 | 25 | 3 | 2 | mtDNA | |
Sargassum aquifolium | NC033408 | 34,761 | 36.20 | 75.89 | 161 | 1701 | 64 | 35 | 24 | 3 | 2 | mtDNA | |
Fucus vesiculosus | NC007683 | 36,392 | 34.40 | 72.62 | 121 | 2086 | 66 | 35 | 25 | 3 | 3 | mtDNA | |
Fucus vesiculosus | NC016735 | 124,986 | 28.90 | 74.99 | 77 | 17,912 | 172 | 137 | 27 | 6 | 2 | cpDNA | |
Fucus vesiculosus var. spiralis | MG922856 | 36,396 | 34.40 | 72.69 | 121 | 3196 | 65 | 35 | 25 | 3 | 2 | mtDNA | |
Fucus vesiculosus var. spiralis | MG922855 | 125,066 | 28.90 | 75.02 | 75 | 17,919 | 173 | 137 | 28 | 6 | 2 | cpDNA | |
Fucus distichus | NC034672 | 36,400 | 34.30 | 72.65 | 129 | 2220 | 64 | 35 | 23 | 3 | 3 | mtDNA | |
Coccophora langsdorfii | NC032287 | 35,660 | 36.40 | 74.08 | 194 | 2512 | 65 | 35 | 25 | 3 | 2 | mtDNA | |
Coccophora langsdorfii | NC032288 | 124,450 | 28.90 | 75.10 | 75 | 17,846 | 172 | 137 | 27 | 6 | 2 | cpDNA | |
Ectocarpales | Colpomenia peregrina | NC025302 | 36,025 | 32.00 | 75.30 | 123 | 1499 | 66 | 35 | 25 | 3 | 3 | mtDNA |
Scytosiphon lomentaria | NC025240 | 36,918 | 34.10 | 73.40 | 110 | 2221 | 67 | 35 | 25 | 3 | 4 | mtDNA | |
Scytosiphon promiscuus | MK107985 | 134,366 | 31.30 | 71.91 | 65 | 23,496 | 178 | 140 | 28 | 6 | 3 | cpDNA | |
Endarachne binghamiae | NC036747 | 37,460 | 34.40 | 72.26 | 153 | 2723 | 67 | 35 | 24 | 3 | 5 | mtDNA | |
Endarachne binghamiae | NC038231 | 136,274 | 31.20 | 70.80 | 65 | 26,270 | 177 | 140 | 28 | 6 | 2 | cpDNA | |
Ectocarpus siliculosus | NC030223 | 37,189 | 33.50 | 72.85 | 199 | 3153 | 66 | 35 | 25 | 3 | 5 | mtDNA | |
Ectocarpus siliculosus | NC013498 | 139,954 | 30.70 | 70.13 | 65 | 27,538 | 185 | 142 | 31 | 6 | 6 | cpDNA | |
Pleurocladia lacustris | NC032046 | 37,814 | 32.90 | 65.17 | 226 | 4134 | 69 | 35 | 24 | 3 | 7 | mtDNA | |
Pleurocladia lacustris | NC032045 | 138,815 | 29.80 | 69.62 | 65 | 26,578 | 180 | 139 | 30 | 6 | 5 | cpDNA | |
Cladosiphon okamuranus | NC040224 | 38,419 | 34.30 | 70.88 | 128 | 3628 | 64 | 35 | 24 | 3 | 2 | mtDNA | |
Cladosiphon okamuranus | NC046005 | 137,324 | 30.20 | 70.71 | 65 | 26,354 | 178 | 140 | 29 | 6 | 2 | cpDNA | |
Pylaiella littoralis | NC003055 | 58,507 | 38.00 | 54.35 | 135 | 8030 | 79 | 36 | 24 | 3 | 16 | mtDNA | |
Laminariales | Saccharina japonica rongfu | KX073815 | 37,638 | 35.30 | 72.43 | 95 | 2426 | 66 | 35 | 25 | 3 | 3 | mtDNA |
Saccharina japonica rongfu | MK058525 | 130,584 | 31.10 | 73.17 | 71 | 21,514 | 173 | 138 | 29 | 6 | 2 | cpDNA | |
Saccharina japonica | NC013476 | 37,657 | 35.30 | 72.40 | 95 | 2445 | 66 | 35 | 25 | 3 | 3 | mtDNA | |
Saccharina japonica | NC018523 | 130,585 | 31.10 | 73.17 | 71 | 21,516 | 173 | 138 | 29 | 6 | 2 | cpDNA | |
Saccharina latissima | NC026108 | 37,659 | 35.40 | 72.38 | 95 | 2519 | 66 | 35 | 24 | 3 | 3 | mtDNA | |
Saccharina latissima | NC049039 | 130,619 | 31.10 | 73.15 | 71 | 21,638 | 172 | 138 | 28 | 6 | 2 | cpDNA | |
Saccharina sculpera | NC029206 | 37,627 | 35.20 | 72.40 | 95 | 2624 | 64 | 35 | 24 | 2 | 3 | mtDNA | |
Saccharina longissima | NC021640 | 37,628 | 35.30 | 72.39 | 127 | 2519 | 65 | 35 | 24 | 3 | 3 | mtDNA | |
Laminaria solidungula | NC044690 | 130,784 | 31.00 | 72.67 | 71 | 22,118 | 173 | 138 | 29 | 6 | 2 | cpDNA | |
Laminaria hyperborea | NC021639 | 37,976 | 35.20 | 71.66 | 92 | 2969 | 64 | 35 | 23 | 3 | 3 | mtDNA | |
Laminaria digitata | NC004024 | 38,007 | 35.10 | 71.63 | 148 | 2405 | 67 | 35 | 25 | 3 | 4 | mtDNA | |
Laminaria digitata | NC044689 | 130,377 | 31.00 | 72.69 | 26 | 21,920 | 173 | 138 | 29 | 6 | 2 | cpDNA | |
Lessonia spicata | NC044181 | 37,097 | 32.70 | 73.21 | 166 | 1861 | 66 | 35 | 25 | 3 | 3 | mtDNA | |
Lessonia spicata | NC044182 | 130,305 | 30.90 | 73.31 | 71 | 21,426 | 173 | 138 | 27 | 6 | 2 | cpDNA | |
Costaria costata | NC023506 | 37,461 | 34.90 | 72.76 | 150 | 2134 | 66 | 35 | 25 | 3 | 3 | mtDNA | |
Costaria costata | NC028502 | 129,947 | 30.90 | 73.50 | 71 | 21,064 | 171 | 138 | 27 | 6 | 2 | cpDNA | |
Undaria pinnatifida | NC023354 | 37,402 | 32.50 | 72.70 | 160 | 2107 | 65 | 35 | 24 | 3 | 3 | mtDNA | |
Undaria pinnatifida | NC028503 | 130,383 | 30.60 | 73.24 | 71 | 21,449 | 172 | 138 | 28 | 6 | 2 | cpDNA | |
Macrocystis integrifolia | NC042669 | 37,366 | 32.00 | 72.93 | 128 | 2253 | 64 | 35 | 24 | 3 | 2 | mtDNA | |
Nereocystis luetkeana | NC042395 | 37,399 | 35.30 | 72.85 | 129 | 2403 | 63 | 35 | 24 | 2 | 2 | mtDNA | |
Dictyotales | Dictyopteris divaricata | NC043845 | 32,021 | 38.30 | 74.67 | 160 | 1370 | 65 | 35 | 24 | 3 | 3 | mtDNA |
Dictyopteris divaricata | NC036804 | 126,099 | 31.20 | 75.64 | 97 | 17,191 | 172 | 137 | 27 | 6 | 2 | cpDNA |
Total Value of Shared CDS (mtDNA) | Total Value of Shared CDS (cpDNA) | |
---|---|---|
GCall | 35.68% a/32.44% b/34.59% c | 31.13% a/31.59% b/31.74% c |
GC1 | 41.79% a/42.41% b/43.13% c | 41.93% a/42.83% b/42.95% c |
GC2 | 36.63% a/36.28% b/37.18% c | 34.27% a/34.74% b/34.98% c |
GC3 | 28.62% a/18.83% b/23.47% c | 17.20% a/17.21% b/17.30% c |
ENC | 47.12 a/39.41 b/42.77 c | 39.44 a/38.87 b/38.28 c |
Type | Effect | a mtPCGs | b cpPCGs | Percentage/% |
---|---|---|---|---|
Hydrophilic | CAT(H)→TAT(Y) | 3 | a 6.25/b 5.00 | |
Hydrophilic | CAC(H)→TAC(Y) | 1 | 1 | |
Hydrophilic | CGC(R)→TGC(C) | 1 | ||
Hydrophobic | CTC(L)→TTC(F) | 1 | a 56.25/b 30.00 | |
Hydrophobic | CTT(L)→TTT(F) | 12 | ||
Hydrophobic | CGG(R)→TGG(W) | 1 | ||
Hydrophobic | CCC(P)→CTC(L) | 1 | ||
Hydrophobic | CCT(P)→CTT(L) | 8 | ||
Hydrophobic | GCT(A)→GTT(V) | 12 | 3 | |
Hydrophobic | GCG(A)→GTG(V) | 5 | 1 | |
Hydrophobic | GCC(A)→GTC(V) | 4 | ||
Hydrophobic | GCA(A)→GTA(V) | 1 | 2 | |
Hydrophilic–hydrophobic | ACG(T)→ATG(M) | 1 | a 21.25/b 50.00 | |
Hydrophilic–hydrophobic | TCA(S)→TTA(L) | 5 | 3 | |
Hydrophilic–hydrophobic | TCG(S)→TTG(L) | 1 | ||
Hydrophilic–hydrophobic | TCT(S)→TTT(F) | 3 | ||
Hydrophilic–hydrophobic | ACA(T)→ATA(I) | 2 | 4 | |
Hydrophilic–hydrophobic | ACT(T)→ATT(I) | 3 | 3 | |
Hydrophilic–hydrophobic | ACC(T)→ATC(I) | 2 | ||
Hydrophilic–hydrophobic | CCA(P)→TCA(S) | 2 | a 16.25/b 15.00 | |
Hydrophilic–hydrophobic | CCG(P)→TCG(S) | 4 | ||
Hydrophilic–hydrophobic | CCC(P)→TCC(S) | 4 | 1 | |
Hydrophilic–hydrophobic | CCT(P)→TCT(S) | 3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, X.; Chen, W.; Liu, T.; Chen, Z. Organellar Genomes of Sargassum hemiphyllum var. chinense Provide Insight into the Characteristics of Phaeophyceae. Int. J. Mol. Sci. 2024, 25, 8584. https://doi.org/10.3390/ijms25168584
Jia X, Chen W, Liu T, Chen Z. Organellar Genomes of Sargassum hemiphyllum var. chinense Provide Insight into the Characteristics of Phaeophyceae. International Journal of Molecular Sciences. 2024; 25(16):8584. https://doi.org/10.3390/ijms25168584
Chicago/Turabian StyleJia, Xuli, Weizhou Chen, Tao Liu, and Zepan Chen. 2024. "Organellar Genomes of Sargassum hemiphyllum var. chinense Provide Insight into the Characteristics of Phaeophyceae" International Journal of Molecular Sciences 25, no. 16: 8584. https://doi.org/10.3390/ijms25168584
APA StyleJia, X., Chen, W., Liu, T., & Chen, Z. (2024). Organellar Genomes of Sargassum hemiphyllum var. chinense Provide Insight into the Characteristics of Phaeophyceae. International Journal of Molecular Sciences, 25(16), 8584. https://doi.org/10.3390/ijms25168584