Next Article in Journal
Molecular Aspects of the Interactions between Selected Benzodiazepines and Common Adulterants/Diluents: Forensic Application of Theoretical Chemistry Methods
Next Article in Special Issue
Testing Green Tea Extract and Ammonium Salts as Stimulants of Physical Performance in a Forced Swimming Rat Experimental Model
Previous Article in Journal
CD68-Negative Histiocytoses with Cardiac Involvement, Associated with COVID-19
Previous Article in Special Issue
UHPLC-DAD/ESI-TOF-MS Phytochemical Characterization and Evaluation of the Impact of Eleutherococcus senticosus Fruit Intractum on Biochemical, Hepatological, and Blood Parameters in Balb/c Mice
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Genus Ribes: Ribes aureum, Ribes pauciflorum, Ribes triste, and Ribes dikuscha—Comparative Mass Spectrometric Study of Polyphenolic Composition and Other Bioactive Constituents

by
Mayya P. Razgonova
1,2,*,
Muhammad Amjad Nawaz
3,4,*,
Andrey S. Sabitov
1 and
Kirill S. Golokhvast
1,3,5
1
N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia
2
Advanced Engineering School, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia
3
Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
4
Center for Research in the Field of Materials and Technologies, Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
5
Siberian Federal Scientific Centre of Agrobiotechnology RAS, Centralnaya 2b, Presidium, Krasnoobsk 633501, Russia
*
Authors to whom correspondence should be addressed.
Int. J. Mol. Sci. 2024, 25(18), 10085; https://doi.org/10.3390/ijms251810085
Submission received: 22 July 2024 / Revised: 15 September 2024 / Accepted: 16 September 2024 / Published: 19 September 2024

Abstract

:
This study presents the metabolomic profiles of the four Ribes species (Ribes pauciflorum Turcz., Ribes triste Pall., Ribes dicuscha Fisch., and Ribes aureum Purch.). The plant material was collected during two expeditions in the Russian Far East. Tandem mass spectrometry was used to detect target analytes. A total of 205 bioactive compounds (155 compounds from polyphenol group and 50 compounds from other chemical groups) were tentatively identified from the berries and extracts of the four Ribes species. For the first time, 29 chemical constituents from the polyphenol group were tentatively identified in the genus Ribes. The newly identified polyphenols include flavones, flavonols, flavan-3-ols, lignans, coumarins, stilbenes, and others. The other newly detected compounds in Ribes species are the naphthoquinone group (1,8-dihydroxy-anthraquinone, 1,3,6,8-tetrahydroxy-9(10H)-anthracenone, 8,8′-dihydroxy-2,2′-binaphthalene-1,1′,4,4′-tetrone, etc.), polyhydroxycarboxylic acids, omega-3 fatty acids (stearidonic acid, linolenic acid), and others. Our results imply that Ribes species are rich in polyphenols, especially flavanols, anthocyanins, flavones, and flavan-3-ols. These results indicate the utility of Ribes species for the health and pharmaceutical industry.

1. Introduction

A growing body of nutritional and pharmacological evidence links a diet rich in fruits and vegetables to a reduced risk of cardiovascular disease, cancer, diabetes, and other severe chronic diseases [1,2]. The main benefit of such a diet may be the increased intake of antioxidants, including carotenoids, tocopherols, and phenolic compounds [3]. These compounds are present in a wide range in the berries and leaves of the genus Ribes. Blackcurrant berries are an excellent source of these biologically active components (anthocyanins, flavone group, catechins, procyanidins, and phenolic acids). Previous studies have shown that blackcurrant is a good source of bioactive polyphenols (500–1342 mg/100 g total polyphenols), mainly anthocyanins [4]. In general, among the entire phenolic fraction, flavonoids are potent antioxidants in vitro and include compounds such as flavones, isoflavones, flavanones, catechins, and red, blue, and violet pigments known as anthocyanins [4,5,6]. Compounds other than vitamin C have also been shown to be major contributors to the antioxidant capacity of fruits [7]. Various studies have reported that blackcurrant (Ribes nigrum L.) is a rich source of dietary anthocyanins and antioxidants [8,9]. Numerous studies in recent years have shown that anthocyanins exhibit a wide range of biological activity, including both neuroprotective effects and antioxidant, antimicrobial, and anticarcinogenic activity [10,11].
Recently, the attention of the scientific community has been focused on the anti-inflammatory activity of anthocyanins [12]. Anthocyanins are known to act as antioxidants, but, in addition to their main property, they can interrupt or reverse the process of carcinogenesis by affecting intracellular signaling molecules involved in initiating and/or promoting cancer development. The effects of anthocyanin complex exposure appear to be cell type- and dose-dependent. Depending on their specific structure, anthocyanins influence various cellular signaling elements that are critical for the regulation of cell proliferation [13]. For example, the study by Tsuda et al. demonstrated a significant change in the expression of adipocytokines in human adipocytes treated with anthocyanins [14]. Based on the gene expression profile, increased levels of adiponectin and decreased levels of plasminogen activator inhibitor-1 and interleukin-6 were shown. This study showed that anthocyanins can regulate adipocytokine gene expression, improving adipocyte function associated with obesity and diabetes. Some anthocyanins are able to lower blood glucose levels and reverse the decline in pancreatic beta cells more effectively than glimepiride, a known insulin-secretory agent [15]. Thus, the dietary consumption of polyphenol-rich foods may be beneficial in preventing the onset of type 2 diabetes.
About 160 species constitute the genus Ribes within the Grossulariaceae family. Of the many species of Ribes known to exist in Russia, four species are found mostly in the Magadan region: Ribes dikuscha, Ribes pauciflorum, Ribes triste, and Ribes aureum [16]. The majority of uses for Ribes species are in ethnomedicine in China and Russia. Their efficacy in treating a multitude of ailments, such as hepatitis, arthritis, and joint pain, has been shown in numerous research works. This is a result of their beneficial health effects, which include antioxidant and anti-inflammatory qualities [17]. Most research work performed in the metabolomic research on Ribes species is dedicated to Ribes nigrum [18,19,20], whereas other species are less explored. Moreover, given their significance in the food, pharmaceutical, and health industries, it is necessary to further the exploratory biochemical research and find novel compounds. In this regard, four Ribes species were collected during expeditions to the Magadan region (Russian Federation) in 2023 and 2024. This study explores the metabolomic composition—specifically, the composition of the polyphenolic group—of the four Ribes species by mass spectrometry.

2. Results

2.1. Global Metabolome Profile of Berries of Four Ribes Species

The structural identification of each compound was performed on the basis of their accurate mass and MS/MS fragmentation by HPLC–ESI–ion trap–MS/MS. A total of 205 chemical compounds were identified from extracts of the four Ribes species (R. pauciflorum, R. triste, R. dicuscha, R. aureum). All identified polyphenols and other compounds, along with the molecular formulas and MS/MS data, are summarized in Appendix A and Appendix B. The polyphenols detected in our study were further categorized as flavones, flavonols, flavan-3-ols, anthocyanidins, phenolic acids, lignans, coumarins, stilbenes, etc. Overall, the metabolites detected in our study belonged to 54 compound classes. The highest number of polyphenols were flavonols (47), followed by anthocyanins (31), flavones (24), and flavan-3-ols (11) (Figure 1A,B). These numbers indicate that extracts of R. pauciflorum, R. triste, R. dicuscha, and R. aureum are rich in anthocyanins and flavonols. Among the other compound classes are pyranones, quinolines, amino acids, omega-3 fatty acids, terpenoids, and others (Appendix A and Appendix B). These results highlight that Ribes species’ berries are a rich source of a range of compounds.

2.1.1. Flavones

Hydroxy(iso)flavones

Two 7-hydroxyisoflavones, i.e., formononetin and luteolin-O-hexoside, were tentatively identified in the extracts from R. aureum, R. triste, and R. pauciflorum. The collision-induced (CID) spectrum in positive ion mode of formononetin from R. aureum is shown in Figure 2A. These compounds have been previously characterized as components of extracts from several plant species, including Astragali Radix [22], Huolisu oral liquid [23], Dracocephalum jacutense [24], Medicago varia [25], and Maackia amurensis [26]. The [M+H]+ ion produced two fragment ions with m/z 251.16 and m/z 137.27 (Figure 2A). The fragment ion with m/z 251.16 produced one characteristic daughter ion with m/z 233.30. The fragment ion with m/z 233.30 produced one characteristic daughter ion with m/z 150.11.

Dihydroxyflavones

Our results also revealed the presence of the flavones acacetin, dihydroxy-methoxy(iso)flavone, cirsimaritin, dihydroxy-dimethoxy(iso)flavone, chrysoeriol 7-O-neohesperidoside, and chrysoeriol O-rhamnosyl glucoside in all four studied Ribes species. The CID spectrum in positive ion mode of acacetin from extracts of R. triste is shown in Figure 2B. These compounds have been previously characterized in extracts of Rosmarinus officinalis [27], propolis [28], and M. varia [25]. Acacetin has been previously reported in extracts from Triticum aestivum [29] and propolis [28]. The [M+H]+ ion produced three fragment ions with m/z 266.83, m/z 215.27, and m/z 133.08 (Figure 2B). The fragment ion with m/z 266.83 produced two characteristic daughter ions with m/z 241.05 and m/z 149.14.

Trihydroxyflavones

The flavones apigenin, daidzin, vitexin, isovitexin, luteolin 7-O-(6-O-arabinosyl-glucoside), lonicerin, luteolin 7-O-(6-O-rhamnosyl-hexoside), kaempferol 3-O-(6-O-rhamnosyl-glucoside), and kaempferol 3-O-rutinoside have already been characterized as components of Dryopteris ramosa [30], Aspalathus linearis [31], Artemisia annua [32], lemon, passion fruit [33], and Phlomis (Lamiaceae) [34]. Trihydroxyflavones were tentatively identified in extracts from all four species of Ribes. The CID spectrum in negative ion mode of isovitexin from extracts of R. aureum is shown in Figure 2C. The [M-H] ion produced two fragment ions with m/z 283.28 and m/z 145.33 (Figure 2C). The fragment ion with m/z 145.33 produced one characteristic daughter ion with m/z 123.29. The mass spectrometry of isovitexin has been presented for extracts from Rhus coriaria [35], Aspalathus linearis [31], and Chilean currants [36].

Tetrahydroxyflavones

Among the tetrahydroxyflavones, kaempferol, isorhamnetin, rhamnetin II, quercetin 3-O-methyl ether, and quercitrin were tentatively identified in the extracts of all four Ribes species. The CID spectrum in positive ion mode of kaempferol from extracts of R. pauciflorum is shown in Figure 2D. The [M+H]+ ion produced one fragment ion with m/z 241.12 (Figure 2D). The fragment ion with m/z 145.33 produced one characteristic daughter ion with m/z 213.08. Of these compounds, kaempferol, an important compound in flavonoid biosynthesis and related pathways, has been reported in a diverse range of plant species, e.g., Dryopteris ramosa [30], Inula gaveolens [37], Rhus coriaria [29], Juglans mandshurica [38], Lonicera japonica [39], and Ribes meyeri [40]. Similarly, other tetrahydroxyflavones have been previously reported in Inula gaveolens [37], Rhus coriaria L. (Sumac) [29], Spondias purpurea [41], and Polygala sibirica [42].

Pentahydroxyflavones

Among other hydroxyflavones, pentahydroxyflavones such as quercetin, dihydroquercetin, and myricetin-3-O-galactoside were also present in the extracts of the Ribes species. These flavonols have been already characterized as components of Juglans mandshurica [38], Vaccinium macrocarpon [43], cranberry [44], and Vaccinium myrtillus [45]. The CID spectrum in positive ion mode of quercetin from extracts of R. triste is shown in Figure 3A. The [M+H]+ ion produced two fragment ions with m/z 257.12 and m/z 165.09 (Figure 3A). The fragment ion with m/z 257.12 produced two characteristic daughter ions with m/z 229.11 and m/z 201.13. The fragment ion with m/z 229.11 produced two characteristic daughter ions with m/z 201.08 and m/z 145.13.

2.1.2. Flavan-3-ols

The catechins (epi)-catechin, afzelechin, gallocatechin, (epi)-gallocatechin, and (epi)-afzelechin-3-O-gallate have been already characterized as components of Ribes meyeri [42], Ribes magellanicum [36], Vaccinium myrtillus [45], G. linguiforme [46], and Camellia kucha [47]. The flavan-3-ols were tentatively identified in extracts from three species of Ribes (R. dikuscha, R. pauciflorum, R. triste). The CID spectrum in positive ion mode of gallocatechin from extracts of R. triste is shown in Figure 3B. The [M+H]+ ion produced two fragment ions with m/z 287.09 and m/z 153.11 (Figure 3B). The fragment ion with m/z 287.09 produced two characteristic daughter ions with m/z 259.10 and m/z 147.30. The fragment ion with m/z 259.10 produced one characteristic daughter ion with m/z 149.16. Gallocatechin is present in extracts of G. linguiforme [46], Ribes meyeri [42], Vaccinium myrtillus [48], and Embelia [49].

2.1.3. Anthocyanins

The berries of all Ribes species showed unexpected enrichment in anthocyanins; 31 compounds from the anthocyanin group were identified. The berries of Ribes dikuscha were found to be the richest in the presence of anthocyanins. As an example, two mass spectra of the anthocyanin compounds identified in R. dikuscha extracts are presented below. The CID spectrum in negative ion mode of delphinidin 3,5-dihexoside from extracts of R. dikuscha is shown in Figure 3C. The [M–H] ion produced two fragment ions with m/z 299.78 and m/z 475.24 (Figure 3C). The fragment ion with m/z 299.78 produced one characteristic daughter ion with m/z 315.11. The anthocyanin delphinidin 3,5-dihexoside was tentatively identified in the literature in extracts from F. herrerae [46], Berberis microphylla [50], and Andean blueberry [51]. The CID spectrum in positive ion mode of petunidin-3-O-glucoside from extracts of R. dikuscha is shown in Figure 3D. The [M+H]+ ion produced one fragment ion with m/z 317.10 (Figure 3D). The fragment ion with m/z 317.10 produced one characteristic daughter ion with m/z 302.10. The fragment ion with m/z 302.10 produced one characteristic daughter ion with m/z 274.07. The mass spectrometry of petunidin-3-O-glucoside has been presented for extracts from black soybean [52], Berberis ilicifolia and Berberis empetrifolia [53], Berberis microphylla [50], grape [54], vines [55], and Vigna angularis [56].

2.2. Newly Detected Compounds in Genus Ribes

Of the detected metabolites in the four Ribes species, twenty-nine compounds from the polyphenol group and six compounds from other chemical groups were identified for the first time (Appendix A and Appendix B). The newly identified polyphenols include flavones, flavonols, flavan-3-ols, lignans, coumarin, stilbenes, etc. Moreover, some of the compound classes newly detected in Ribes species are the naphthoquinone group (1,8-dihydroxy-anthraquinone, 1,3,6,8-tetrahydroxy-9(10h)-anthracenone, 8,8′-dihydroxy-2,2′-binaphthalene-1,1′,4,4′-tetrone, etc.), polyhydroxycarboxylic acids, omega-3 fatty acids (stearidonic acid, linolenic acid), etc. (Figure 4A,B).
The data obtained using the Venn diagram clearly show that seventeen polyphenolic compounds belonging to the groups of flavones, flavonols, anthocyanins, and phenolic acids are found in all four Ribes species. These include the polyphenols quercetin, 3,4-dihydroxyhydrocinnamic acid, apigenin, formononetin, kaempferol, ellagic acid, hydroxyferulic acid, lonicerin, syringaresinol, acacetin, bioquercetin, etc. (Appendix A; Figure 2B).
Furthermore, to identify the similarities and differences in the bioactive substances in different variations of Ribes, the Jaccard index was used (Table 1). Based on the polyphenolic compounds, the Jaccard index showed that R. triste and R. aureum are more similar, followed by R. aureum and R. dikuscha and by R. triste and R. dikuscha. The least similar species in terms of polyphenols were R. aureum and R. pauciflorum.
Anthocyanins are an important class of flavonoids that give specific colors to berries, fruits, and plants. The four Ribes species also differed in their anthocyanin profiles. Most of these anthocyanins are being reported for the first time in Ribes species, indicating their predominant role in color formation in these species. The results showed that R. triste had the highest number of cyanidins and some delphinidins, corresponding to its bright red color. Meanwhile, the richest Ribes species in terms of anthocyanins was R. dikuscha; the highest number of anthocyanins were delphinidins, followed by petunidins, cyanidins, and malvidin, corresponding to their blackish blue berries. Similarly, R. aureum had delphinidins. However, this species had the lowest number of anthocyanins detected (Figure 4B). R. triste was the least similar to the other species in terms of anthocyanins (Table 2). Nevertheless, further dedicated research focusing on anthocyanins should reveal the detailed compositions of the studied Ribes berries.
Finally, our data show that twelve polyphenolic compounds belonging to the groups flavones and flavonols were found in all four Ribes species. These are the flavonols quercetin, kaempferol, and bioquercetin and the flavones apigenin, formononetin, lonicerin, syringaresinol, acacetin, etc. (Figure 4C; Appendix A). The Jaccard index calculated for the sum of the flavone and flavonol compounds indicated that R. aureum and R. triste were relatively similar in terms of their flavone and flavonol compositions, whereas R. aureum and R. pauciflorum were the least similar (Table 3).

3. Discussion

The genus Ribes (of the family Grossulariaceae) consists of more than 160 species. After strawberry, Ribes berries are preferred by consumers [57]. Among several Ribes species from Russia, four species, i.e., R. dikuscha, R. pauciflorum, R. triste, and R. aureum, are generally found in the Magadan region [16]. Ribes species are generally used for ethnomedical purposes in China and Russia. Several studies have highlighted their utility for the treatment of arthritis, joint pain, tuberculosis, hepatitis, gastrointestinal disorders, etc. This is because of their health-beneficial activity, such as anti-inflammatory, antioxidant, etc. [17]. Considering their increasing economic importance in the medicine, food, and dye industries, continued exploratory biochemical research is needed. To expand the scope of usage of Ribes species in the health and food industries, here, we explored the LC-MS profiles of four Ribes species.
Metabolomic research on Ribes species is limited. Most work in this context has been dedicated to Ribes nigrum L. [58,59,60], whereas some articles also report Ribes stenocarpum Maxim. [61] and Ribes fragrans Pall. [62]. These and related research have highlighted that Ribes species’ berries are rich in polyphenols, which is consistent with our results (Figure 1). Work on R. nigrum has revealed the presence of the glucoside and rutinoside types of flavonols, such as myricetin, quercetin, kaempferol, and isorhamnetin [63]. In the case of the studied four Ribes species, R. dikuscha, followed by R. triste and R. aureum, had mostly rutinoside flavones, flavonols, and anthocyanins, whereas R. pauciflorum had no rutinosides. Similarly, the presence of glucosides (isoflavone, flavone, flavonol, and anthocyanins) indicates that Ribes berries are rich in glucoside and rutinoside polyphenols. Considering the broader role of polyphenols (e.g., quercetin, kaempferol, catechins, resveratrol, rutin), and their glycosides and rutinosides in particular, the use of the Ribes berries, therefore, should help in the prevention of various illnesses, e.g., cancer, cardiovascular diseases, diabetes, obesity, osteoporosis, liver-related diseases, neurodegenerative diseases, and a range of infections [64,65]. Of the four species, based on the number of detected polyphenols, R. dikscha offers a wider range of subclasses of compounds, followed by R. triste, R. pauciflorum, and R. aureum. However, a better conclusion can only be obtained based on further research on the content of each of these polyphenols. The differences observed in the metabolomic compositions of the berries of the four species indicate interspecific variation [66]. Interspecific metabolite composition differences can be due to a range of factors, such as the genetic background, variety [67,68], growing conditions [69], environmental conditions [70], agronomic practices, etc. Of the four Ribes species’ berries, R. pauciflorum’s berries were rich in flavan-3-ols (Appendix A). The rapidly growing body of literature and clinical data reflect their superior health benefits and lower risks [71]. Key benefits include improved blood pressure, sugar, and cholesterol levels [72]. In particular, the catechin, epi-catechin, and derivatives detected in R. pauciflorum berries are useful as these compounds offer therapeutic benefits in inflammatory bowel disease [73], UV protection, and inflammation inhibition, as well as in acne, neurodegeneration, and several other diseases [74]. Based on these results, future research should be conducted on their quantitative determination and their health benefits. Taken together, our results present the compositions of four Ribes species and highlight key similarities and differences.
One of the most bioactive classes of compounds in the Ribes species studied is anthocyanins [60,75]. This class of polyphenols contributes to the color, aroma, taste, and astringency of the fruits and berries [75,76]. Work on R. nigrum has indicated the presence of cyanidins, delphinidins, pelargonidins, peonidins, and cyanidins [75]. Consistent with the fact that it had the highest number of detected polyphenols, the highest number and range of anthocyanins found in R. dikuscha indicate that the berries of this species would be of better use in the food and pharmaceutical industries. Moreover, the fact that glucosides, beta-galactosides, dihexosides, hexosides, hexuronides, rutinosides, etc., were detected is indicative of the presence of diverse anthocyanins (Appendix A). These observations offer opportunities for interspecific hybridization to improve the anthocyanin compositions of other Ribes species.
Ribes species also contain other classes of compounds, including organic acids, flavoring components, essential oils, polysaccharides, and others, e.g., biphenyls, nitrile-containing compounds, lignans, terpenoids, etc. [17]. In this regard, the detection of a range of compounds belonging to classes such as amino acids, quinones, carboxylic acids, omega-3 fatty acids, terpenoids, fatty acids, etc., is an important finding. Notably, the detection of L-theanine in R. aureum suggests that the consumption of its berries might offer anti-anxiety, stress-relieving, and insomnia-reducing effects [77]. Meanwhile, the presence of terpenoids such as cryptotanshinone, pregnane-3,11,17,20-tetrol, lup-2,20(29)-dien-28-ol, and sespendole is consistent with the results reported for R. nigrum [78]. However, their detection in the studied species highlights that terpenoids are prevalent in Ribes berries. These results also imply that continued research on other Ribes species is required to broaden the utility of these species. The number of terpenoids detected in this work is small compared to those reported in R. nigrum because of the different technologies used [18,19,79]. Other techniques, e.g., those based on MS, should be employed, and a complete understanding of the composition of Ribes species’ volatilome should be obtained. Taken together, our results indicate that the studied Ribes species’ metabolome is diverse and compounds other than polyphenols are prevalent in their berries.

4. Materials and Methods

4.1. Materials

The objects of this study were the berries of Ribes species (Ribes pauciflorum Turcz., Ribes triste Pall., Ribes dicuscha Fisch.). The plant material was collected in two expeditions during July 2023 and June 2024 to the Magadan region (Russian Federation). Samples of the collected expedition material and a plant collection map are presented in Figure 5. The species Ribes aureum Purch. was obtained from a plantation at the Far-Eastern Branch of the N.I. Vavilov All-Russian Institute of Plant Genetic Resources.
Triplicate samples were collected for each accession/variety. Care was taken to collect healthy, disease- and insect-free berries. Samples were washed with distilled water and stored at −80 °C until processing. All samples morphologically corresponded to the pharmacopeial standards of the State Pharmacopoeia of the Russian Federation [80].

4.2. Chemicals and Reagents

HPLC-grade acetonitrile was purchased from Fisher Scientific (Kent, UK), and MS-grade formic acid was purchased from Sigma-Aldrich (Steinheim, Germany). Ultrapure water was prepared from a SIEMENS Ultra-Clear system (SIEMENS Water Technologies, Munich, Germany), and all other chemicals were of analytical grade.

4.3. Extraction

The fractional maceration technique was used to obtain highly concentrated extracts. Aqueous ethanol was used for extraction. Here, 50 g of berries of each species was randomly selected for maceration. The total amount of the extractant (aqueous ethanol 95%) was divided into three parts, and the parts of the plant were consistently infused with the first, second, and third parts. The infusion of each part of the extractant lasted seven days at room temperature. Three replicates of the extraction process were carried out on each plant sample. The extract was filtered through Whatman filter paper. The filtrates were diluted with acetonitrile to the final working concentration for analysis.

4.4. Liquid Chromatography

HPLC was performed using a Shimadzu LC-20 Prominence HPLC device (Shimadzu, Kyoto, Japan) equipped with a UV sensor and a C18 silica reverse-phase column (4.6 × 150 mm, particle size: 2.7 μm) to perform the separation of the multicomponent mixtures. The gradient elution program, with two mobile phases (A, deionized water; B, acetonitrile with formic acid 0.1% v/v), was as follows: 0–2 min, 0% B; 2–50 min, 0–100% B; control washing 50–60 min 100% B. The entire HPLC analysis was performed with an ESI detector at a wavelength of 230 nm for the identification of compounds; the temperature was 50 °C, and the total flow rate was 0.25 mL min−1. The injection volume was 10 μL. Additionally, liquid chromatography was combined with a mass-spectrometric ion trap to identify compounds.

4.5. Mass Spectrometry

MS analysis was performed on an ion trap amaZon SL (BRUKER DALTONIKS, Bremen, Germany) equipped with an ESI source in negative ion mode. The optimized parameters were obtained as follows: ionization source temperature, 70 °C; gas flow, 4 L/min; nebulizer gas (atomizer), 7.3 psi; capillary voltage, 4500 V; end plate bend voltage, 1500 V; fragmentary, 280 V; collision energy, 60 eV. An ion trap was used in the scan range m/z 100–1700 for MS and MS/MS. The chemical constituents were identified by comparing their retention indices, mass spectra, and MS fragmentation with an in-house self-built database (Biotechnology, Bioengineering and Food Systems Laboratory, Far-Eastern Federal University, Russia). The in-house self-built database was based on data from other spectroscopic techniques, such as nuclear magnetic resonance, ultraviolet spectroscopy, and MS, as well as data from the literature, and it is continuously updated and revised. The capture rate was one spectrum for MS and two spectra for MS/MS. Data acquisition was controlled by the Metaboscape for BRUKER DALTONIKS. All experiments were repeated three times. A four-stage ion separation mode (MS/MS mode) was implemented.

4.6. Data Analysis and Visualization

Venn diagrams were prepared using an online tool, InteractiVenn [81]. Bar plots for the compound classes and number of compounds in each class were prepared in Microsoft Excel 2021 Professional® (www.microsoft.com). The scatter plot of the detected compounds was prepared in TBtools [21].
To present the similarities and differences in the bioactive substances in different variations of Ribes, the Jaccard index (Jaccard similarity coefficient) [82] was used, which evaluates the similarity and diversity of sets of samples. The Jaccard index measures the similarity between finite sample sets and is defined as the size of the intersection divided by the size of the union of the sample sets:
A , B = | A B | A + B | A B |
Note that, by design, 0 J A , B 1 .

5. Conclusions

Our results reveal that the berries of the Ribes species (R. dikuscha, R. pauciflorum, R. triste, R. aureum) contain a range of polyphenolic and non-polyphenolic constituents; two hundred and five different bioactive components have been identified in Ribes extracts. Several polyphenols were putatively detected for the first time in the studied Ribes species. These findings indicate that R. dikuscha berries are richer in polyphenols and anthocyanins compared to those of the other three species. R. pauciflorum is rich in flavan-3-ols. The polyphenols of the Ribes species also included glucosides and rutinosides. The Ribes berries’ metabolomes also consist of compounds belonging to classes such as amino acids, quinones, carboxylic acids, omega-3 fatty acids, terpenoids, fatty acids, etc. The comparative analysis highlights the presence of interspecific polyphenolic and anthocyanin differences in Ribes species. These results are highly important in expanding the utility of these species in the food and pharmaceutical industries.

Author Contributions

Conceptualization, K.S.G. and M.P.R.; methodology, M.P.R. and M.A.N.; software, M.P.R. and A.S.S.; validation, M.P.R. and K.S.G.; formal analysis, M.P.R. and A.S.S.; investigation, K.S.G. and M.P.R.; resources, K.S.G. and M.P.R.; data curation, A.S.S. and M.A.N.; writing—original draft preparation, M.P.R. and M.A.N.; writing—review and editing, M.P.R. and M.A.N.; visualization, M.P.R.; supervision, M.A.N.; project administration, K.S.G. and M.P.R. All authors have read and agreed to the published version of the manuscript.

Funding

The study was carried out at the N.I. Vavilov All-Russian Institute of Plant Genetic Resources at the expense of the Russian Science Foundation, Grant No. 23-74-00044, https://rscf.ru/en/project/23-74-00044/ (accessed on 18 September 2024).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The original contributions presented in the study are included in the article; further inquiries can be directed to the corresponding author/s.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A

Group of polyphenols identified from extracts of berries (R. pauciflorum, R. triste, R. dicuscha, R. aureum) in positive and negative ionization modes by HPLC–ion trap–MS/MS.
Class of CompoundsIdentificationFormulaCalculated MassObserved Mass [M−H]Observed Mass [M+H]+MS/MS Stage 1 FragmentationMS/MS Stage 2 FragmentationMS/MS Stage 3 FragmentationReferences
Polyphenol Compounds
1FlavoneDihydroxyflavoneC15H10O4254.2375 255161133 Chinese herbal formula Jian-Pi-Yi-Shen pill [83]; R. pauciflorum
27-HydroxyisoflavoneFormononetin (Biochanin B; Formononetol)C16H12O4268.2641 269251; 137233150Triticum aestivum [29]; Propolis [28]; R. pauciflorum; R. aureum; R. triste
3FlavoneApigenin (5,7-Dixydroxy-2-(40Hydroxyphenyl)-4H-Chromen-4-One)C15H10O5270.2369 271225179 Inula gaveolens [37]; Lonicera henryi [84]; Ribes meyeri [42]; Lonicera japonica [41]; R. pauciflorum; R. aureum; R. triste
4FlavoneAcacetin (Linarigenin; Buddleoflavonol) *C16H12O5284.2635 285267; 151123 Triticum aestivum [29]; Propolis [28]; R. aureum; R. dikuscha; R. triste
5FlavoneDihydroxy-methoxy(iso)flavoneC16H12O5284.2635 285267; 215; 133241; 149 Propolis [28]; Medicago varia [25]; R. triste
6PentahydroxyflavoneHerbacetin (3,5,7,8-Tetrahydroxy-2-(4-hydro-xyphenyl)-4H-chromen-4-one) *C15H10O7302.2357 303203175 Triticum aestivum [29]; Lonicera caerulea [85]; R. pauciflorum; R. triste
7FlavoneCirsimaritin (Scrophulein; 4′,5-Dihydroxy-6,7-Dimethoxyflavone; 7-Methylcapillarisin) *C17H14O6314.2895 315297; 157271; 199 Rosmarinus officinalis [27]; Medicago varia [25]; R. dikuscha
8FlavoneDihydroxy-dimethoxy(iso)flavoneC17H14O6314.2895 315283; 137255 Rosmarinus officinalis [27]; Propolis [28]; Medicago varia [25]; R. dikuscha
9FlavoneNepetin (6-Methoxyluteolin) *C16H12O7316.2623 317302; 139274; 153153Honey [86]; Inula viscosa [87]; R. pauciflorum
10FlavoneTetrahydroxy-dimethoxyflavoneC17H14O8346.2883345 313298; 254270Artemisia absinthium [88]; Medicago varia [25]; R. dikuscha
11IsoflavoneDaidzin (Daidzoside; Daidzein 7-O-Glucoside; Daidzein 7-O-Beta-D-Glucoside) *C21H20O9416.3781 417255135 Black soybean [52]; Malus toringoides [89]; R. pauciflorum; R. aureum
12FlavoneVitexin (Apigenin 8-C-Glucoside)C21H20O10432.3775 433415; 250215; 135173Dryopteris ramosa [30]; Aspalathus linearis [31]; Artemisia annua [32]; Lemon, Passion fruit [33]; Phlomis (Lamiaceae) [34]; R. aureum
13FlavoneIsovitexin (Saponaretin; Homovitexin; Apigenin-6-C-Glucoside)C21H20O10432.3775431 283; 145265; 123123Rhus coriaria [35]; Aspalathus linearis [31]; Chilean currants [36]; R. aureum
14FlavoneLuteolin 7-O-glucoside (Cynaroside; Luteoloside)C21H20O11448.3769 449287213 Lonicera henryi [84]; Lonicera japonica [41]; Mentha [90]; R. dikuscha
15FlavoneLuteolin-O-hexosideC21H20O11448.3769 449287213 Chamaecrista nictitans [91]; Ribes meyeri [42]; Chilean currants [36]; R. dikuscha
16FlavoneLuteolin 7-O-(6-O-arabinosyl-glucoside)C26H28O15580.4915 581287213185Lonicera henryi [84]; R. triste
17FlavoneLonicerin (Luteolin-7-O-Rhamnoside; Veronicastroside; Scolymoside; Luteolin-7-Rhamnoglucoside)C27H30O15594.5181 595449; 287287287; 153Lonicera japonica [41]; Lonicera caerulea [85]; R. aureum; R. dikuscha; R. triste
18FlavoneLuteolin 7-O-(6-O-rhamnosyl-hexoside)C27H30O15594.5181 595287287; 241 Lonicera henryi [84]; R. triste
19FlavoneChrysoeriol O-xylosylglucoside *C27H30O15594.5181 595303; 287257; 229229Mexican lupine species [92]; Lonicera henryi [84]; R. dikuscha; R. triste
20FlavoneDiosmin (Diosmetin-7-O-rutinoside; Barosmin; Diosimin) *C28H32O15608.5447 609463; 301286258Triticum aestivum [29]; Mentha [93]; Lemon [33]; F. glaucescens [46]; R. dikuscha
21FlavoneChrysoeriol 7-O-neohesperidosideC28H32O15608.5447 609463; 301286258P. aculeata [94]; Citrus sinensis [95]; R. dikuscha
22FlavoneChrysoeriol O-p-coumaroyl hexoside *C28H32O15608.5447 609463; 301286258Triticum aestivum L. [96]; R. dikuscha
23FlavoneChrysoeriol O-rhamnosyl glucosideC28H32O15608.5447 609301; 463286258; 230Mexican lupine species [92]; R. dikuscha
24FlavoneMethoxy-trihydroxy(iso)flavone-O-rhamnosyl hexoside *C28H32O15608.5447 609301; 463286258; 230Propolis [28]; R. dikuscha
25FlavoneTricin 7-O-deoxyhexosyl-O-hexoside *C29H34O16638.5707 609331; 493299; 179281; 225Triticum aestivum L. [97]; R. dikuscha
26FlavoneTricin O-rhamnoside-O-hexoside *C29H34O16638.5707 639331; 493315299Triticum aestivum L. [96]; R. dikuscha
27FlavoneO-hexosyl-O-pentosyl tricin *C29H34O16638.5707 639331; 493315299Triticum aestivum L. [98]; R. dikuscha
28FlavonolKaempferolC15H10O6286.2363 287269; 149239; 181 Dryopteris ramosa [30]; Inula gaveolens [37]; Juglans mandshurica [40]; Rhus coriaria [35]; Lonicera japonica [41]; Ribes meyeri [42]; R. pauciflorum; R. dikuscha; R. triste
29Monomethoxy-flavoneRhamnocitrinC16H12O6300.2629 301283199 Astragali radix [99]; Lonicera caerulea [85]; R. dikuscha
30FlavonolQuercetinC15H10O7302.2357 303257; 146229201; 145Ribes meyeri [42]; Propolis [28]; R. pauciflorum; R. aureum; R. dikuscha; R. triste
31FlavonolDihydroquercetin (Taxifolin; Taxifoliol)C15H12O7304.2516 305277; 215259; 215155Juglans mandshurica [40]; Camellia kucha [47]; R. triste
32FlavonolIsorhamnetin (Isorhamnetol; Quercetin 3′-Methyl Ether; 3-Methylquercetin) *C16H12O7316.2623315 283255; 211227Spondias purpurea [38]; R. dikuscha; R. triste
33FlavonolRhamnetin II *C16H12O7316.2623315 300271; 151137Inula gaveolens [37]; Rhus coriaria L. (Sumac) [35]; Spondias purpurea [38]; Polygala sibirica [39]; R. dikuscha
34FlavonolQuercetin 3-O-methyl etherC16H12O7316.2623315 300271; 151137Propolis [28]; Jatropha [100]; R. dikuscha
35FlavonolMyricetinC15H10O8318.2351 319273; 219191209Juglans mandshurica [40]; Grape [54]; R. pauciflorum; R. dikuscha;
36FlavonolQuercitrin (Quercetin 3-O- rhamnoside; Quercetrin)C21H20O11448.3769447 299269123; 225Honey [86]; Inula viscosa [87]; Juglans mandshurica [40]; Cranberry [44]; R. aureum
37FlavonolQuercetin 3-O-deoxyhexoside *C21H20O11448.3770447 299269123; 226Stevia rebaudiana [101]; Spondias purpurea [38]; R. aureum
38FlavonolQuercetin hexuronideC21H20O11448.3771447 299269123; 227Vaccinium myrtillus [48]; R. aureum
39FlavonolAstragalin (Kaempferol 3-O-Glucoside; Kaempferol-3-Beta-Monoglucoside; Astragaline)C21H20O11448.3769 449287287; 229203Juglans mandshurica [40]; Lonicera japonica [41]; Ribes meyeri [42]; Spondias purpurea [38]; R. pauciflorum; R. dikuscha
40FlavonolKaempferol-3-O-galactosideC21H20O11448.3769447 285241213Triticum aestivum [29]; Actinidia [102]; Ribes nigrum [103]; R. pauciflorum; R. dikuscha
41FlavonolKaempferol-C-hexosideC21H20O11448.3769447 285241213Vaccinium macrocarpon [43]; R. pauciflorum; R. dikuscha
42FlavonolKaempferol-3-O-hexosideC21H20O11448.3769 449287287; 231230; 111Rhus coriaria [35]; Punica granatum [104]; Cuphea ignea [105]; R. pauciflorum; R. dikuscha
43FlavonolQuercetin 3-O-glucoside (Isoquercitrin; Hirsutrin; Quercetin-3-O-Glucopyranoside)C21H20O12464.3763 465303229; 165201; 161Ribes meyeri [42]; Lonicera henryi [84]; Lonicera japonica [41]; R. dikuscha
44FlavonolQuercetin-3-O-hexosideC21H20O12464.3764 465303257229Artemisia absinthium [88]; Cherimoya; Strawberry [33]; Chamaecrista nictitans [91]; Stevia rebaudiana [101]; Punica granatum [104]; R. dikuscha
45FlavonolHyperoside (Quercetin 3-O- galactoside; Hyperin)C21H20O12464.3763463 301151 Triticum aestivum [29]; Inula gaveolens [37]; Juglans mandshurica [40]; Vaccinium macrocarpon [43]; Vaccinium myrtillus [48]; Lonicera japonica [41]; Cranberry [44]; Camelia kucha [47]; Aspalathus linearis [31]; R. dikuscha
46FlavonolQuercetin-3-O-glucuronide (Miquelianin)C21H18O13478.3598 479303257229Vitis vinifera [54]; Cherimoya; Papaya [33]; Rhus coriaria [35]; Rosa canina [103]; Vaccinium myrtillus [45]; R. dikuscha
47FlavonolIsorhamnetin 3-O-glucosideC22H22O12478.4029 479317302274Triticum aestivum [29]; Artemisia annua [32]; Grape [54]; Ribes nigrum [103]; Medicago varia [25]; R. dikuscha
48FlavonolIsorhamnetin 3-O-galactosideC22H22O12478.4029 479317302274Ribes nigrum [103]; Vaccinium myrtillus [45]; Cranberry [44]; R. dikuscha
49FlavonolIsorhamnetin 3-O-hexosideC22H22O12478.4029 479317302274Triticum aestivum [29]; Rhus coriaria [35]; R. dikuscha
50FlavonolMyricetin-3-O-galactosideC21H20O13480.3757479 316; 179271; 179243Juglans mandshurica [40]; Vaccinium macrocarpon [43]; Cranberry [44]; Vaccinium myrtillus [45]; R. dikuscha
51FlavonolMyricetin-3-O-glucosideC21H20O13480.3757479 316; 179271; 179243Grape [55]; Vaccinium myrtillus [45]; Rhus coriaria [35]; Camellia kucha [47]; R. dikuscha
52FlavonolMyricetin 3-O-hexosideC21H20O13480.3757479 316; 179271; 179243Andean blueberry [51]; Cranberry [105]; Chilean currants [36]; R. dikuscha
53FlavonolKaempferol 3-O-(6-O-rhamnosyl-glucoside)C27H30O15594.5181 595287213 Mexican lupine species [92]; Lonicera henryi [84]; R. aureum; R. triste
54FlavonolKaempferol-3-O-coumaroylhexosideC27H30O15594.5181 595287213 Strawberry [33,106]; R. aureum; R. dikuscha; R. triste
55FlavonolKaempferol 3-O-rutinosideC27H30O15594.5181 595449; 287287287Ribes meyeri [42]; Lonicera japonica [41]; Spondias purpurea [38]; R. aureum; R. dikuscha; R. triste
56FlavonolKaempferol 3-O-deoxyhexosylhexosideC27H30O15594.5181 595449; 287287; 213 Stevia rebaudiana [101]; Spondias purpurea [38]; R. dikuscha; R. triste
57FlavonolQuercetin-3-hydroxyl-3-methylglutaroyl(HMG)-glucosideC28H32O15608.5447 609463; 301286258Rubus ulmifolius [107]; Citrus sinensis [95]; R. dikuscha
58FlavonolRutin (Quercetin 3-O-rutinoside)C27H30O16610.5175 611303257; 165229Ribes meyeri [42]; Ribes magellanicum [36]; Lonicera henryi [84]; Lonicera japonica [41]; Spondias purpurea [38]; R. aureum; R. dikuscha; R. triste
59FlavonolQuercetin-O-rhamnosyl-hexosideC27H30O16610.5175 611303257229Papaya [33]; Spondias purpurea [38]; R. aureum; R. dikuscha; R. triste
60FlavonolQuercetin rhamnosyl glucosideC27H30O16610.5175609 301; 257257255; 215Mexican lupine species [92]; Artemisia annua [32]; Tilla tomentosa [103]; R. dikuscha
61FlavonolQuercetin-3-(6-O-rhamnosyl) galactoside *C27H30O16610.5175609 301; 257257255; 215Pear [108]; R. dikuscha
62FlavonolPanasenoside (Kaempferol-3-O-beta-D-glucosylgalactoside)C27H30O16610.5175 611303; 465257229Camellia kucha [47]; Ribes meyeri [42]; R. aureum
63FlavonolQuercetin 3-O-(6”-p-coumaroyl)-beta-galactosideC30H26O14610.5190 611303; 465257229Propolis [28]; Cranberry [44]; R. aureum; R. dikuscha
64FlavonolQuercetin O-p-coumaroyl-O-hexosideC30H26O14610.5190 611303; 465257227Inula viscosa [109]; R. dikuscha; R. triste
65FlavonolQuercetin O-hexoside O-deoxyhexoside *C27H30O16610.5175 611303257229Andean blueberry [51]; R. aureum; R. dikuscha; R. triste
66FlavonolBioquercetin (Quercetin-3-O-robinobioside) *C27H30O16610.5175 611303257229Aspalathus linearis [31]; R. aureum; R. dikuscha; R. triste
67FlavonolIsorhamnetin 3-O-(6″-O-rhamnosyl-hexoside)C28H32O16624.5441 625317302 Lonicera henryi [84]; Bee pollen [110]; R. aureum; R. dikuscha
68FlavonolIsorhamnetin-3-O-rutinoside (Narcissin; Narcissoside)C28H32O16624.5441 625317; 479302274Inula viscosa [109]; Lemon [33]; Embelia [49]; R. aureum; R. dikuscha
69FlavonolIsorhamnetin-p-coumaroyl glucoside *C31H28O14624.5456 625317; 479302274Vitis vinifera [111]; R. aureum; R. dikuscha
70FlavonolIsorhamnetin O-rhamnosyl-hexosideC31H28O14624.5456 625317; 479302274Propolis [28]; Vitis vinifera [111]; R. aureum; R. dikuscha
71FlavonolMethyl quercetin-O-hexoside-deoxyhexosideC28H32O16624.5441 625317; 479302274Ribes meyeri [42]; R. aureum; R. dikuscha
72FlavonolMyricetin deoxyhexosyl hexosideC27H30O17626.5169625 317273255Ribes meyeri [42]; Ribes species [112]; R. dikuscha
73FlavonolMyricetin-3-O-rutinosideC27H30O17626.5169625 317273255Ribes nigrum [103]; Chilean currants [36]; R. dikuscha
74FlavonolMyricetin-dihexosideC27H30O18642.5163641 315; 515300; 149272Vitis vinifera [111]; R. dikuscha
75FlavonolMyricetin 3,5-di-O-glucosideC27H30O18642.5163641 315; 515300; 149272Rosa rugosa [113]; R. dikuscha
76Flavan7,2′-Dihydroxy-3′,4′-dimethoxyisoflavan (5-Methoxyvestitol)C17H18O5302.3218 303271; 151161; 253133Astragali radix [114]; R. aureum
77Flavan-3-olAfzelechin *C15H14O5274.2687 275245; 175157 Camellia kucha [47]; R. pauciflorum;
78Flavan-3-olEpiafzelechin ((epi)Afzelechin) *C15H14O5274.2687 275245; 219; 175215; 193; 175; 157; 127175; 157; 145Cassia abbreviata [115]; A. cordifolia; F. glaucescens; F. herrerae [46]; R. pauciflorum
79Flavan-3-olCatechinC15H14O6290.2681 291261; 157191173Ribes meyeri [42]; Ribes magellanicum [36]; R. pauciflorum
80Flavan-3-ol(Epi)-catechinC15H14O6290.2681 291273; 137 Vaccinium myrtillus [45]; Andean blueberry [51]; Grape [54]; C. edulis [46]; R. pauciflorum
81Flavan-3-olGallocatechin (+(-)Gallocatechin)C15H14O7306.2675 307287; 153259; 147149G. linguiforme [46]; Ribes meyeri [42]; Vaccinium myrtillus [48]; Embelia [49]; R. triste
82Flavan-3-ol(Epi)-GallocatechinC15H14O7306.2675 307287; 153259; 147149Vaccinium myrtillus [48]; Ribes meyeri [42]; Ribes magellanicum [36]; Vaccinium myrtillus [45]; G. linguiforme [46]; Camellia kucha [47]; R. triste
83Flavan-3-ol(Epi)-catechin derivativeC19H22O8378.3732 379261233151PubChem; R. pauciflorum
84Flavan-3-ol(Epi)-afzelechin derivativeC18H16O10392.3136 393275; 375245; 175157Zostera marina [116]; R. pauciflorum
85Flavan-3-ol(Epi)-catechin derivativeC18H16O11408.3130 409291; 220; 155272; 231; 187; 159243; 213; 185Lonicera caerulea [85]; R. pauciflorum
86Flavan-3-ol(Epi)-catechin derivative 424 425291261; 191191PubChem; R. pauciflorum
87Flavan-3-olEpiafzelechin 3-O-gallate *C22H18O9426.3729 427307289245Camellia kucha [47]; R. dikuscha
88DihydroxyflavanonePinocembrin ((+)-Pinocembrin; Pihyrochrysin; (2S)-Pinocembrin) *C15H12O4256.2534255 148; 213147 Punica granatum [104]; Propolis [28]; R. triste
89FlavanoneNaringenin (Naringetol; Naringenine)C15H12O5272.5228 273151123 Andean blueberry [51]; G. linguiforme [46]; Mexican lupine species [92]; Exocarpium Citri Grandis [117]; R. aureum; R. dikuscha
90FlavonoidPolygalin A (3,5-dihydroxy-7,4′-dimethoxy-flavone-3-O-beta-D-galactopyranoside)C23H24O11476.4301 477335; 249243; 121173; 121Polygala sibirica [118]; R. triste
91FlavonoidTri-galloyl hexosideC27H24O18636.4687 637331299; 179281Rhus coriaria [35]; Carpinus betulus [119]; R. dikuscha
92FlavonoidTri-galloyl glucoseC27H24O18636.4687 637331299; 179281Juglans regia [120]; Terminalia arjuna [121]; R. dikuscha
93ChalconeIsoliquiritigenin (2′,4,4′-Trihydroxychalcone)C15H12O4256.2534 257135 Chinese herbal formula Jian-Pi-Yi-Shen pill [83]; R. pauciflorum
94TanninProanthocyanidin B-typeC30H26O13594.5196 595287; 449287227Actinidia [102]; R. dikuscha
95AnthocyaninDelphinidinC15H11O7303.2436 303257229161A. cordifolia [46]; R. pauciflorum; R. triste
96AnthocyaninCyanidin-3-O-glucoside (Cyanidin 3-O-beta-D-glucoside; Kuromarin; Chrysanthemin)C21H21O11+449.3848447 285241213Ribes magellanicum [36]; Berberis ilicifolia; Berberis empetrifolia; Ribes maellanicum; Ribes cucullatum; Myrteola nummalaria; Gaultheria mucronata; Gaultheria antarctica; Rubus geoides; Fuchsia magellanica [53]; R. pauciflorum; R. dikuscha
97AnthocyaninCyanidin-3-O-hexosideC21H21O11+449.3849 449287213 Myrtle [122]; Andean blueberry [51]; R. pauciflorum; R. dikuscha
98AnthocyaninCyanidin-3-O-beta-galactosideC21H21O11449.3848 449287287; 213185Black soybean [52]; Gaultheria mucronata [53]; R. dikuscha
99AnthocyaninDelphinidin 3-O-glucosideC21H21O12+465.3905 465303257; 165229; 201Ribes magellanicum [36]; Berberis ilicifolia; Berberis empetrifolia; Ribes maellanicum; Ribes cucullatum; Myrteola nummalaria [53]; R. dikuscha
100AnthocyaninDelphinidin 3-O-hexosideC21H21O12+465.3905 465303257; 165229; 201Terminalia arjuna [121]; Myrtel [122]; Andean blueberry [51]; R. dikuscha
101AnthocyaninDelphinidin 3-O-beta-galactosideC21H21O12+465.3905 465303257229Vigna angularis [56]; Gautheria micronata; Gautheria antarctica [53]; R. dikuscha
102AnthocyaninDelphinidin 3-O-hexuronideC21H19O13+479.3678 479303257229Grape vine varieties [123]; R. dikuscha
103AnthocyaninDelphinidin 3-O-glucuronideC21H19O13+479.3678 479303257229Vine [55]; R. dikuscha
104AnthocyaninPetunidin-3-O-glucosideC22H23O12+479.4108 479317302274Black soybean [52]; Berberis ilicifolia; Berberis empetrifolia [53]; Berberis microphylla [50]; Grape [54]; Vines [55]; Vigna angularis [56]; R. dikuscha
105AnthocyaninPetunidin-3-O-galactosideC22H23O12+479.4108 479317302274Vigna angularis [56]; R. dikuscha
106AnthocyaninPetunidin-3-O-hexosideC22H23O12+479.4109 479317302274Myrtle [122]; Grape vine varieties [123]; R. dikuscha
107AnthocyaninCyanidin-3-lathyrosideC26H29O15581.4995 581287213185Gaultheria mucronata [53]; R. triste
108AnthocyaninCyanidin pentosyl hexosideC26H29O15581.4995 581287213185Rubus geoides [53]; F. glaucescens [46]; R. triste
109AnthocyaninCyanidin 3-sambubioside (Cyanidin 3-Xyloglucoside)C26H29O15+581.4995 581287213185Ribes cucullatum; Rubus geoides [53]; Berberis microphylla [50]; R. triste
110AnthocyaninCyanidin 3-O-[2-O-(beta-xylosyl)-beta-galactoside]C26H29O15581.4995 581287213185Red Kiwifruit [124]; R. triste
111AnthocyaninCyanidin 3-O-(2”-xylosyl)glucosideC26H29O15581.4995 581287213185Vines [55]; R. triste
112AnthocyaninCyanidin-3-O-rutinoside (Keracyanin; Antirrhinin; Sambucin)C27H31O15595.526 595287; 449213 Ribes magellanicum [36]; Berberis ilicifolia; Berberis empetrifolia; Ribes maellanicum; Ribes cucullatum [53]; R. dikuscha; R. triste
113AnthocyaninCyanidin 3-O-(6-O-p-coumaroyl)glucosideC30H27O13595.533 595287287; 241 Grape [54]; Vines [55]; Blackcurrant, Gooseberry [125]; R. triste
114AnthocyaninCyanidin 3-O-coumaroyl hexosideC30H27O13595.533 595287287; 241 Grape vine varieties [123]; R. triste
115AnthocyaninDelphinidin 3-O-Beta-D-sambubiosideC26H29O16597.4989 597303; 465; 229229; 165201; 172Wheat [126]; Berberis microphylla [50]; Red currant [125]; R. dikuscha
116AnthocyaninDelphinidin 3-O-[2-O-(Beta-xylosyl)-beta-galactoside]C26H29O16597.4989 597303257; 165229Red Kiwifruit [124]; R. dikuscha
117AnthocyaninPeonidin 3-O-rutinosideC28H33O15609.5526 609463; 301286 Gaultheria mucronata; Gaultheria antarctica [53]; Blackcurrant, Gooseberry [125]; R. dikuscha
118AnthocyaninDelphinidin 3-O-rutinoside (Tulipanin; Delphinidin 3-Rhamnosyl-Glucoside)C27H31O16611.5254 611303257; 165229Blackcurrant [125]; Berberis ilicifolia; Berberis empetrifolia; Ribes maellanicum; Ribes cucullatum [53]; R. aureum; R. dikuscha; R. triste
119AnthocyaninDelphinidin 3-O-(6-O-p-coumaroyl) glucosideC27H31O17611.5255 611303303; 257227Vigna angularis [56]; Grape [54]; Vines [55]; Grape vine varieties [123]; R. aureum; R. dikuscha; R. triste
120AnthocyaninPetunidin 3-O-(6-O-p-coumaroyl) glucosideC31H29O14625.553 625479; 317302274Vigna angularis [56]; Grape [54]; R. dikuscha
121AnthocyaninPetunidin 3-O-p-coymaroyl hexosideC28H33O16625.5520 625479; 317302274C. edulis [46]; Grape vine varieties [123]; R. dikuscha
122AnthocyaninDelphinidin 3,5-dihexosideC27H31O17627.5248626 299255255F. herrerae [46]; Berberis microphylla [50]; Andean blueberry [51]; R. dikuscha
123AnthocyaninMalvidin 3-O-rutinosideC29H35O16639.5786 639331; 493315299Gaultheria mucronata; Gaultheria antarctica [53]; Berberis microphylla [50]; Triticum aestivum [126]; R. dikuscha
124AnthocyaninCyanidin-3-(2G-xylosylrutinoside) (Cyanidin-3-xylosylrutinoside)C32H39O19727.6503 727287; 581287; 213141Triticum aestivum [126]; Red currant [125]; R. triste
125AnthocyaninCyanidin-rhamnosyl hexoside pentosideC32H39O19727.6503 727287; 581287; 213141Ribes magellanicum [36]; R. triste
126Hydroxycinnamic acidCinnamic acid (Trans-cinnamic acid; Phenylacrylic acid)C9H8O2148.1586 149131 Honey [86]; R. triste
127Hydroxybenzoic acid (Phenolic acid)Protocatechuic acidC7H6O4154.1201 155127 Ribes meyeri [42]; Lonicera japonica [41]; R. pauciflorum
128Hydroxycinnamic acidCaffeic acid ((2E)-3-(3,4-Dihydroxyphenyl)acrylic acid) C9H8O4180.1574 181135119 Ribes meyeri [42]; Lonicera japonica [41]; Vaccinium myrtillus [45]; R. pauciflorum; R. aureum; R. triste
129Hydroxycinnamic acid3,4-Dihydroxyhydrocinnamic acid (Dihydrocaffeic acid)C9H10O4182.1733 183155127145Chilean currants [36]; R. pauciflorum; R. aureum; R. dikuscha; R. triste
130Methylbenzoic acidMethylgallic acid (Methyl gallate)C8H8O5184.1461 185139111 Andean blueberry [51]; Lonicera caerulea [85]; Grape [54]; Cuphea ignea [105]; R. triste
131Phenolic acid2,3,4,5,6-pentahydroxybenzoic acidC7H6O7202.1183 203156129 Jatropha [100]; R. triste
132Phenolic acidIbuprofenC13H18O2206.2808 207161143129Juglans mandshurica [40]; R. triste
133Phenolic acidEthyl caffeate (Ethyl 3,4-Dihydroxycinnamate)C11H12O4208.2106 209191173; 117 Ribes nigrum [103]; R. aureum
134Hydroxycinnamic acidHydroxyferulic acidC10H10O5210.1834 211193175157; 129Andean blueberry [51]; Rosa davurica [127]; R. pauciflorum; R. dikuscha; R. triste
135Hydroxycinnamic acidSinapic acid (trans-Sinapic acid) *C11H12O5224.21 225207161143Andean blueberry [51]; R. triste
136 Caffeic acid isoprenyl esterC14H16O4248.2744 249203157129Lonicera caerulea [85]; R. dikuscha
137Hydroxybenzoic acid (Phenolic acid)p-Hydroxybenzoic acid hexosideC13H16O8300.2613 301283199 Cranberry [44]; Ribes meyeri [42]; Ribes species [103]; Andean blueberry [51]; Punica granatum [104]; Embelia [49]; R. dikuscha
138Hydroxybenzoic acid (Phenolic acid)Ellagic acid (Benzoaric acid; Elagostasine; Lagistase; Eleagic acid)C14H6O8302.1926301 257229201Ribes meyeri [42]; Strawberry [106]; Grape [54]; Punica granatum [104]; R. pauciflorum; R. dikuscha; R. triste
139Hydroxycinnamic acidp-Coumaric acid-O-hexoside (Trans-p-Coumaric acid 4-glucoside)C15H18O8326.2986 327309264 Carpinus betulus [119]; Inula viscosa [87]; Ribes meyeri [42]; Cranberry [128]; Ribes species [112]; Ribes magellanicum [36]; Vaccinium myrtillus [48]; Andean blueberry [51]; strawberry [106]; lemon, strawberry [33]; R. dikuscha
140Phenolic acidSalvianolic acid GC18H12O7340.2837 341323; 151151133Mentha [93]; R. aureum; R. dikuscha
141Phenolic acidCaffeic acid-O-hexoside (Caffeoyl-O-hexoside)C15H18O9342.298341 161143 Ribes species [112]; Cranberry [128]; Ribes magellanicum [36]; Vaccinium myrtillus [39,42]; Andean blueberry [51]; R. aureum
142Phenolic acid1-Caffeoyl-beta-D-glucose (Caffeic acid-3-O-beta-D-glucoside)C15H18O9342.298341 161143 Cranberry [44]; R. aureum
143Hydroxybenzoic acid (Phenolic acid)Salvianolic acid DC20H18O10418.3509417 373347303Lonicera caerulea [85]; Rosa rugosa [127]; Chinese herbal formula Jian-Pi-Yi-Shen pill [83]; R. dikuscha; R. triste
144Phenolic acidEllagic acid-O-hexoside *C20H16O13464.3332 465303257229Carpinus betulus [119]; Myrtle [122]; Terminalia arjuna; Punica granatum [104]; R. dikuscha
145Phenolic acidEllagic acid-O-glucuronideC22H22O12478.4029 479303257229Rubus ulmifolius [107]; R. dikuscha
146Stilbene3-Hydroxyresveratrol (Piceatannol)C14H12O4244.2427 245220; 128220 G. linguiforme [46]; Grape [54]; R. dikuscha
147StilbeneResveratrol (trans-Resveratrol; 3,4′,5-Trihydroxystilbene; Stilbentriol) *C14H12O3228.2433 229209; 135139; 192122Embelia [49]; Grape [54]; A. cordifolia; F. glaucescens; F. herrerae [46]; R. triste
148StilbeneCis-Resveratrol ((Z)-Resveratrol; Cis-3,4′,5-Trihydroxystilbene; Stilbentriol) *C14H12O3228.2433 229209; 135139; 192122Grape [54]; R. triste
149CoumarinCoumarinC9H6O2146.1427 147129111 Inula gaveolens [37]; Jatropha [100]; Grape [54]; Cranberry [128]; R. triste
150HydroxycoumarinUmbelliferone (Skimmetin; Hydragin)C9H6O3162.1421 163131113 F. glaucescens [46]; Actinidia [102]; Zostera marina [116]; Lonicera caerulea [85]; R. triste
151CoumarinFraxetin *C10H8O5208.1675 209191117 Embelia [49]; Actinidia [102]; Jatropha [100]; R. dikuscha; R. triste
152Coumarin glucosideFraxin (Fraxetin-8-O-glucoside) *C16H18O10370.3081 Actinidia deliciosa [129]; Actinidia [102]; Rosa rugosa [127]; R. triste
153LignanHinokinin *C20H18O6354.3533 355335319; 121201Triticum aestivum L. [130]; Piper cubeba [131]; Sesame [132]; R. dikuscha
154LignanDimethyl-secoisolariciresinol *C22H30O6390.4700 391372; 243; 149120 Sesame [132]; R. triste
155LignanSyringaresinol *C22H26O8418.4436 419255239211Triticum aestivum L. [130]; Lonicera caerulea [85]; Medicago varia [25]; R. aureum; R. dikuscha; R. triste
* Polyphenols identified for the first time in genus Ribes.

Appendix B

Compounds of other chemical groups identified from extracts of berries (R. pauciflorum, R. triste, R. dicuscha, R. aureum) in positive and negative ionization modes by HPLC–ion trap–MS/MS.
Class of CompoundsIdentificationFormulaCalculated MassObserved Mass [M−H]Observed Mass [M+H]+MS/MS Stage 1 FragmentationMS/MS Stage 2 FragmentationMS/MS Stage 3 FragmentationReferences
1Non-proteinogenic L-alpha-amino acidL-Pyroglutamic acid (Pidolic acid; 5-Oxo-L-Proline)C5H7NO3129.1140 130111 Lonicera caerulea [85]; Huolisu Oral Liquid [17]; R. dikuscha; R. triste
2Organic acidMalic acid (DL-Malic acid)C4H6O5134.0874 135117 Inula graveolens [37]; Strawberry, Cherimoya, Papaya [33]; Rhus coriaria [35]; Punica granatum [104]; Ribes meyeri [42]; R. pauciflorum
3Pyranone5-HydroxymaltolC6H4O5142.1094 143115 Polygonum multiflorum [133]; R. triste
4Quinoline6-MethylquinolineC10H9N143.1852 144116 Honey [86]; R. triste
5 2,3-Dihydro-3,5-dihydroxy-6-methyl-4(H)- pyran-4-one (DDMP)C6H8O4144.1253 145129112 Polygonum multiflorum [133]; R. aureum
6 3-(4-Methylphenyl)-2-propenalC10H10O146.1858 147129111 Honey [86]; R. dikuscha
7 4-Phenyl-2-butenalC10H10O146.1858 147129111 Honey [86]; R. dikuscha
8Amino acidL-HistidineC6H9N3O2155.1546 156129110 Lonicera japonica [41]; Camellia kucha [47]; Actinidia deliciosa [129]; R. pauciflorum; R. dikuscha; R. triste
9 Indole-3-acetonitrileC10H8N2156.1839 157129111 Honey [86]; R. pauciflorum; R. dikuscha; R. triste
10Quinone8-Isoquinoline methanamineC11H11N157.2117 158130 Honey [86]; R. aureum
11AminoalkylindoleTryptamineC10H12N2160.2157 161142119 Hylocereus polyrhizus [134]; R. triste
12Cyclohexenecarboxylic acidShikimic acid (L-Schikimic acid)C7H10O5174.1513 175158140 Inula viscosa [67]; A. cordifolia [46]; Camellia kucha [47]; Ribes meyeri [42]; R. pauciflorum; R. aureum; R. dikuscha
13Amino acidL-theanine (Theanine; Theanin; N-Ethyl-L-glutamine)C7H14N2O3174.1977 175158140 Camellia kucha [47]; Medicago varia [25]; R. aureum; R. dikuscha
14Naphthoquinone2,5-Dihydroxy-1,4-naphthalenedioneC10H6O4190.1522 191145117 Juglans mandshurica [40]; R. aureum; R. triste
15Naphthoquinone3,5-Dihydroxy-1,4-naphthalenedioneC10H6O4190.1522 191145117 Juglans mandshurica [40]; R. aureum; R. triste
16Tricarboxylic acidCitric acid (Anhydrous; Citrate)C6H8O7192.1235191 111; 173 Strawberry, Lemon, Cherimoya, Papaya, Passion fruit [33]; Mentha [89]; Stevia rebaudiana [101]; Punica granatum [104]; R. pauciflorum; R. dikuscha; R. triste
17Polyhydroxycarboxylic acidQuinic acidC7H12O6192.1666191 111; 173111 Inula graveolens [37]; Artemisia [88]; Ribes meyeri [42]; Lonicera japonica [41]; Andean blueberry [51]; Strawberry, Lemon, Cherimoya, Papaya [33]; C.edulis [46]; Pear [108]; Mentha [80]; Rhus coriaria [35]; Camellia kucha [47]; R. pauciflorum; R. dikuscha; R. triste
18Alpha, omega dicarboxylic acidSebacic acid (Decanedioic acid)C10H18O4202.2475 203157129111Jatropha [100]; R. triste
19Carboxylic acidMyristoleic acid (Cis-9-Tetradecanoic acid)C14H26O2226.3550 227209; 165121 F. glaucescens [46]; Maackia amurensis [20]; R. pauciflorum; R. aureum; R. dikuscha; R. triste
20Naphthoquinone1,8-Dihydroxy-anthraquinone (Chrysazin)C14H8O4240.2109 241213; 141195 Juglans mandshurica [40]; R. pauciflorum
21Medium-chain fatty acidHydroxy dodecanoic acidC12H22O5246.3001 247229201173; 131F. glaucescens [46]; R. dikuscha; R. triste
22 Caffeic acid isoprenyl esterC14H16O4248.2744 249203157129Lonicera caerulea [85]; R. dikuscha; R. triste
23Naphthoquinone1,4-Dihydroxy-2,3-naphthalenedicarboxylic acid/6-Acetyl-2,5,8-trihydroxynaphthoquinoneC12H8O6248.1883 249203157128Juglans mandshurica [40]; R. triste
24Naphthoquinone1,3,6,8-Tetrahydroxy-9(10H)-anthracenoneC14H10O5258.2262 259242; 158 Juglans mandshurica [40]; R. pauciflorum
25Aporphine alkaloidAnonaineC17H15NO2265.3065 266249203157Rosa rugosa [127]; Dracocephalum jacutense [18]; Lonicera caerulea [85]; R. dikuscha
26Omega-3 fatty acidStearidonic acid (6,9,12,15-Octadecatetraenoic acid; Moroctic acid)C18H28O2276.4137 278261; 173; 115215; 115129G. linguiforme [46]; Rhus coriaria [35]; Jatropha [100]; R. triste
27Omega-3 fatty acidLinolenic acid (Alpha-linolenic acid; Linolenate)C18H30O2278.4296 279261219163Jatropha [100]; Maackia amurensis [20]; R. pauciflorum; R. dikuscha; R. triste
28Fatty amideOleamideC18H35NO281.4766 282247173145Propolis [28]; R. pauciflorum
29DiterpenoidCryptotanshinoneC19H20O3296.3603 297251; 203236; 158208Huolisu Oral Liquid [17]; R. pauciflorum
30Alpha-omega dicarboxylic acidOctadecanedioic acid (1,16-Hexadecanedicarboxylic acid)C18H34O4314.4602313 279; 213; 113173171F. glaucescens [46]; R. triste
31Omega-hydroxy-long-chain fatty acid19-Hydroxy nonadecanoic acid (Omega-hydroxynonadecanoic acid)C19H38O3314.5032313 285; 203217175A. cordifolia [46]; R. dikuscha
32Unsaturated essential fatty acidOxo-eicosatetraenoic acidC20H30O3318.4504 319299; 219282; 199266; 210; 151F. potsii [46]; R. pauciflorum
33Cyclohexenecarboxylic acidCaffeoyl shikimic acidC16H16O8336.2934 337273; 173129 Ribes meyeri [42]; R. pauciflorum; R. aureum
34Polyunsaturated fatty acidDihydroxy eicosatrienoic acidC20H34O4338.4816 339321; 247; 135303; 163225G. linguiforme; A. cordifolia; C. edulis [46]; R. dikuscha
35Naphthoquinone8,8′-Dihydroxy-2,2′-binaphthalene-1,1′,4,4′-tetroneC20H10O6346.2898 347319; 185291261Juglans mandshurica [40]; R. aureum; R. triste
36TerpenoidGibberellin A29C19H24O6348.3903347 303259243; 155Euphorbia hirta [135]; R. pauciflorum
37TriterpenoidPregnane-3,11,17,20-tetrolC21H36O4352.5081 353261; 137149 Juglans mandshurica [40]; R. pauciflorum
38NaphthoquinoneBisjugloneC20H12O7364.3057 365347; 328; 303259; 231; 173228; 191; 173Juglans mandshurica [40]; R. pauciflorum
39Naphthoquinone6,7-Dihydroxy-5,8,13,14-pentaphenetetroneC22H10O6370.3112 371315; 149285 Juglans mandshurica [40]; R. dikuscha
40QuassinoidYadanziolide CC20H26O9410.4150 411393; 291375; 171 Actinidia [102]; R. pauciflorum; R. dikuscha
41SterolBeta-Sitostenone (Stigmast-4-En-3-One; Sitostenone)C29H48O412.6908 413353; 267; 175293 Terminalia laxiflora [136]; F. herrerae [46]; R. dikuscha
42SterolStigmasterol (Stigmasterin; Beta-Stigmasterol)C29H48O412.6908 413383; 159353237Salvia hypargeia [137]; A. cordifolia; F. pottsii [46]; R. dikuscha
43TriterpenoidLupa-2,20(29)-dien-28-olC30H48O424.7015 425406; 328317; 125 Juglans mandshurica [40]; R. dikuscha
44Anabolic steroidVebonolC30H44O3452.6686 453435; 210226; 336210Rhus coriaria [35]; Hylosereus polyrhizus [134]; R. pauciflorum; R. aureum; R. dikuscha; R. triste
45Thromboxane receptor antagonistVapiprostC30H39NO4477.6350 478337; 460263137Rhus coriaria [35]; Hylosereus polyrhizus [134]; R. pauciflorum; R. aureum; R. dikuscha
46Indole sesquiterpene alkaloidSespendoleC33H45NO4519.7147 520184125 Rhus coriaria [35]; R. pauciflorum; R. aureum; R. dikuscha; R. triste
47Polyhydroxycarboxylic acid C26H26O12530.4774 531353; 261261; 173; 123243; 159Lonicera henryi [84]; Artemisia annua [32]; R. pauciflorum
48Iridoidp-Coumaroyl monotropeinC25H28O13536.4820 537501; 481; 429; 337482; 429; 337; 289 Cranberry [44]; Vaccinium myrtillus [48]; Vaccinium myrtillus [45]; R. pauciflorum
49 Liquiritin apiosideC26H30O13550.5086 551255; 533; 406; 323135 Chinese herbal formula Jian-Pi-Yi-Shen pill [83]; R. pauciflorum
50Iridoidp-Coumaroyl monotropein hexoside 698.8810 699537; 365375; 331; 259; 203 Vaccinium myrtillus [48]; R. pauciflorum

References

  1. Hertog, M.G.; Hollman, P.C.; Katan, M.B. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J. Agric. Food Chem. 1992, 40, 2379–2383. [Google Scholar] [CrossRef]
  2. Hertog, M.G.; Kromhout, D.; Aravanis, C.; Blackburn, H.; Buzina, R.; Fidanza, F.; Giampaoli, S.; Jansen, A.; Menotti, A.; Nedeljkovic, S. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med. 1995, 155, 381–386. [Google Scholar] [CrossRef]
  3. Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 1993, 90, 7915–7922. [Google Scholar] [CrossRef] [PubMed]
  4. Moyer, R.A.; Hummer, K.E.; Finn, C.E.; Frei, B.; Wrolstad, R.E. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 2002, 50, 519–525. [Google Scholar] [CrossRef] [PubMed]
  5. Cao, G.; Sofic, E.; Prior, R.L. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radic. Biol. Med. 1997, 22, 749–760. [Google Scholar] [CrossRef]
  6. Wang, H.; Cao, G.; Prior, R.L. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 1997, 45, 304–309. [Google Scholar] [CrossRef]
  7. Wang, H.; Cao, G.; Prior, R.L. Total antioxidant capacity of fruits. J. Agric. Food Chem. 1996, 44, 701–705. [Google Scholar] [CrossRef]
  8. Deighton, N.; Brennan, R.; Finn, C.; Davies, H.V. Antioxidant properties of domesticated and wild Rubus species. J. Sci. Food Agric. 2000, 80, 1307–1313. [Google Scholar] [CrossRef]
  9. Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef]
  10. Ramos, S. Cancer chemoprevention and chemotherapy: Dietary polyphenols and signalling pathways. Mol. Nutr. Food Res. 2008, 52, 507–526. [Google Scholar] [CrossRef]
  11. Soobrattee, M.A.; Bahorun, T.; Aruoma, O.I. Chemopreventive actions of polyphenolic compounds in cancer. Biofactors 2006, 27, 19–35. [Google Scholar] [CrossRef] [PubMed]
  12. Seeram, N.P.; Momin, R.A.; Nair, M.G.; Bourquin, L.D. Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 2001, 8, 362–369. [Google Scholar] [CrossRef] [PubMed]
  13. Jing, P.; Bomser, J.A.; Schwartz, S.J.; He, J.; Magnuson, B.A.; Giusti, M.M.N. Structure−function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth. J. Agric. Food Chem. 2008, 56, 9391–9398. [Google Scholar] [CrossRef]
  14. Tsuda, T.; Ueno, Y.; Yoshikawa, T.; Kojo, H.; Osawa, T. Microarray profiling of gene expression in human adipocytes in response to anthocyanins. Biochem. Pharmacol. 2006, 71, 1184–1197. [Google Scholar] [CrossRef]
  15. Hong, S.H.; Heo, J.-I.; Kim, J.-H.; Kwon, S.-O.; Yeo, K.-M.; Bakowska-Barczak, A.M.; Kolodziejczyk, P.; Ryu, O.-H.; Choi, M.-K.; Kang, Y.-H. Antidiabetic and beta cell-protection activities of purple corn anthocyanins. Biomol. Ther. 2013, 21, 284. [Google Scholar] [CrossRef]
  16. Sabitov, A.S.; Vvedenskaya, I.; Hummer, K. Ribes from the Russian far East: Perspectives for breeding. In Proceedings of the VIII International Rubus and Ribes Symposium 585, Dundee, Scotland, 9–11 July 2001; pp. 161–165. [Google Scholar]
  17. Sun, Q.; Wang, N.; Xu, W.; Zhou, H. Genus Ribes Linn.(Grossulariaceae): A comprehensive review of traditional uses, phytochemistry, pharmacology and clinical applications. J. Ethnopharmacol. 2021, 276, 114166. [Google Scholar] [CrossRef]
  18. Mackėla, I.; Kraujalis, P.; Baranauskienė, R.; Venskutonis, P.R. Biorefining of blackcurrant (Ribes nigrum L.) buds into high value aroma and antioxidant fractions by supercritical carbon dioxide and pressurized liquid extraction. J. Supercrit. Fluids 2015, 104, 291–300. [Google Scholar] [CrossRef]
  19. Oprea, E.; Rădulescu, V.; Balotescu, C.; Lazar, V.; Bucur, M.; Mladin, P.; Farcasanu, I.C. Chemical and biological studies of Ribes nigrum L. buds essential oil. Biofactors 2008, 34, 3–12. [Google Scholar] [CrossRef]
  20. Shelenga, T.; Popov, V.; Konarev, A.; Tikhonova, N.; Tikhonova, O.; Kerv, Y.A.; Smolenskaya, A.; Malyshev, L. Metabolomic prof iles of Ribes nigrum L. and Lonicera caerulea L. from the collection of the NI Vavilov Institute in the setting of Northwest Russia. Vavilov J. Genet. Breed. 2022, 26, 630. [Google Scholar] [CrossRef]
  21. Chen, C.; Chen, H.; He, Y.; Xia, R. TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface. Mol. Plant 2018, 13, 9. [Google Scholar] [CrossRef]
  22. Huang, Y.; Kwan, K.K.L.; Leung, K.W.; Wang, H.; Kong, X.P.; Dong, T.T.X.; Tsim, K.W.K. The extracts and major compounds derived from Astragali radix alter mitochondrial bioenergetics in cultured cardiomyocytes: Comparison of various polar solvents and compounds. Int. J. Mol. Sci. 2018, 19, 1574. [Google Scholar] [CrossRef] [PubMed]
  23. Yin, Y.; Zhang, K.; Wei, L.; Chen, D.; Chen, Q.; Jiao, M.; Li, X.; Huang, J.; Gong, Z.; Kang, N. The molecular mechanism of antioxidation of huolisu oral liquid based on serum analysis and network analysis. Front. Pharmacol. 2021, 12, 710976. [Google Scholar] [CrossRef] [PubMed]
  24. Okhlopkova, Z.M.; Razgonova, M.P.; Rozhina, Z.G.; Egorova, P.S.; Golokhvast, K.S. Dracocephalum jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds. Molecules 2023, 28, 4402. [Google Scholar] [CrossRef] [PubMed]
  25. Razgonova, M.P.; Nawaz, M.A.; Ivanova, E.P.; Cherevach, E.I.; Golokhvast, K.S. Supercritical CO2-Based Extraction and Detection of Phenolic Compounds and Saponins from the Leaves of Three Medicago varia Mart. Varieties by Tandem Mass Spectrometry. Processes 2024, 12, 1041. [Google Scholar] [CrossRef]
  26. Razgonova, M.P.; Cherevach, E.I.; Tekutyeva, L.A.; Fedoreyev, S.A.; Mishchenko, N.P.; Tarbeeva, D.V.; Demidova, E.N.; Kirilenko, N.S.; Golokhvast, K. Maackia amurensis Rupr. et Maxim.: Supercritical CO2 Extraction and Mass Spectrometric Characterization of Chemical Constituents. Molecules 2023, 28, 2026. [Google Scholar] [CrossRef]
  27. Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules 2016, 21, 1576. [Google Scholar] [CrossRef]
  28. Belmehdi, O.; Bouyahya, A.; Jekő, J.; Cziáky, Z.; Zengin, G.; Sotkó, G.; El Baaboua, A.; Senhaji, N.S.; Abrini, J. Synergistic interaction between propolis extract, essential oils, and antibiotics against Staphylococcus epidermidis and methicillin resistant Staphylococcus aureus. Int. J. Second. Metab. 2021, 8, 195–213. [Google Scholar] [CrossRef]
  29. Wang, X.; Zhang, X.; Hou, H.; Ma, X.; Sun, S.; Wang, H.; Kong, L. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Res. Int. 2020, 138, 109711. [Google Scholar] [CrossRef]
  30. Rasheed, H.M.; Bashir, K.; Gurgul, A.; Wahid, F.; Che, C.-T.; Shahzadi, I.; Khan, T. UHPLC-MS/MS-GNPS based phytochemical investigation of Dryopteris ramosa (Hope) C. Chr. and evaluation of cytotoxicity against liver and prostate cancer cell lines. Heliyon 2022, 8, e11286. [Google Scholar]
  31. Fantoukh, O.I.; Wang, Y.-H.; Parveen, A.; Hawwal, M.F.; Ali, Z.; Al-Hamoud, G.A.; Chittiboyina, A.G.; Joubert, E.; Viljoen, A.; Khan, I.A. Chemical fingerprinting profile and targeted quantitative analysis of phenolic compounds from Rooibos Tea (Aspalathus linearis) and dietary supplements using UHPLC-PDA-MS. Separations 2022, 9, 159. [Google Scholar] [CrossRef]
  32. Han, J.; Ye, M.; Qiao, X.; Xu, M.; Wang, B.-r.; Guo, D.-A. Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal. 2008, 47, 516–525. [Google Scholar] [CrossRef] [PubMed]
  33. Spínola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD–ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef] [PubMed]
  34. Aghakhani, F.; Kharazian, N.; Lori Gooini, Z. Flavonoid constituents of Phlomis (Lamiaceae) species using liquid chromatography mass spectrometry. Phytochem. Anal. 2018, 29, 180–195. [Google Scholar] [CrossRef] [PubMed]
  35. Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arráez-Román, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L.(Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [PubMed]
  36. Burgos-Edwards, A.; Jiménez-Aspee, F.; Theoduloz, C.; Schmeda-Hirschmann, G. Colonic fermentation of polyphenols from Chilean currants (Ribes spp.) and its effect on antioxidant capacity and metabolic syndrome-associated enzymes. Food Chem. 2018, 258, 144–155. [Google Scholar] [CrossRef]
  37. Silinsin, M.; Bursal, E. UHPLC-MS/MS phenolic profiling and in vitro antioxidant activities of Inula graveolens (L.) Desf. Nat. Prod. Res. 2018, 32, 1467–1471. [Google Scholar] [CrossRef]
  38. Jin-Hai, H.; Xiao-Wei, D.; Guo-Dong, S.; Wen-Ting, D.; Wei-Ming, W. Identification and characterization of major constituents in Juglans mandshurica using ultra performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-ESI-Q-TOF/MS). Chin. J. Nat. Med. 2018, 16, 525–545. [Google Scholar]
  39. Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of multiple bioactive constituents in the flower and the caulis of Lonicera japonica based on UFLC-QTRAP-MS/MS combined with multivariate statistical analysis. Molecules 2019, 24, 1936. [Google Scholar] [CrossRef]
  40. Zhao, Y.; Lu, H.; Wang, Q.; Liu, H.; Shen, H.; Xu, W.; Ge, J.; He, D. Rapid qualitative profiling and quantitative analysis of phenolics in Ribes meyeri leaves and their antioxidant and antidiabetic activities by HPLC-QTOF-MS/MS and UHPLC-MS/MS. J. Sep. Sci. 2021, 44, 1404–1420. [Google Scholar] [CrossRef]
  41. Engels, C.; Gräter, D.; Esquivel, P.; Jiménez, V.M.; Gänzle, M.G.; Schieber, A. Characterization of phenolic compounds in jocote (Spondias purpurea L.) peels by ultra high-performance liquid chromatography/electrospray ionization mass spectrometry. Food Res. Int. 2012, 46, 557–562. [Google Scholar] [CrossRef]
  42. Okhlopkova, Z.M.; Razgonova, M.; Kucharova, E.; Egorova, P.; Golokhvast, K. Rare Plant of Central Yakutia Polygala sibirica L.: Phytochemical Profile and In Vitro Morphogenic Culture. Russ. J. Plant Physiol. 2023, 70, 176. [Google Scholar] [CrossRef]
  43. Abeywickrama, G.; Debnath, S.C.; Ambigaipalan, P.; Shahidi, F. Phenolics of selected cranberry genotypes (Vaccinium macrocarpon Ait.) and their antioxidant efficacy. J. Agric. Food Chem. 2016, 64, 9342–9351. [Google Scholar] [CrossRef] [PubMed]
  44. Wang, Y.; Vorsa, N.; Harrington, P.d.B.; Chen, P. Nontargeted metabolomic study on variation of phenolics in different cranberry cultivars using uplc-im–hrms. J. Agric. Food Chem. 2018, 66, 12206–12216. [Google Scholar] [CrossRef] [PubMed]
  45. Liu, P.; Lindstedt, A.; Markkinen, N.; Sinkkonen, J.; Suomela, J.-P.; Yang, B. Characterization of metabolite profiles of leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.). J. Agric. Food Chem. 2014, 62, 12015–12026. [Google Scholar] [CrossRef] [PubMed]
  46. Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of chemopreventive components from halophytes belonging to Aizoaceae and Cactaceae through LC/MS—Bioassay guided approach. J. Chromatogr. Sci. 2021, 59, 618–626. [Google Scholar] [CrossRef]
  47. Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non-targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Camellia kucha (Chang et Wang) Chang]. Food Res. Int. 2020, 138, 109789. [Google Scholar]
  48. Ștefănescu, B.E.; Szabo, K.; Mocan, A.; Crişan, G. Phenolic compounds from five Ericaceae species leaves and their related bioavailability and health benefits. Molecules 2019, 24, 2046. [Google Scholar] [CrossRef]
  49. Rini Vijayan, K.P.; Raghu, A. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett. 2019, 52, 653–670. [Google Scholar] [CrossRef]
  50. Ruiz, A.; Hermosin-Gutierrez, I.; Mardones, C.; Vergara, C.; Herlitz, E.; Vega, M.; Dorau, C.; Winterhalter, P.; von Baer, D. Polyphenols and antioxidant activity of calafate (Berberis microphylla) fruits and other native berries from Southern Chile. J. Agric. Food Chem. 2010, 58, 6081–6089. [Google Scholar] [CrossRef]
  51. Aita, S.E.; Capriotti, A.L.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.M.; Piovesana, S.; Laganà, A. Andean blueberry of the genus disterigma: A high-resolution mass spectrometric approach for the comprehensive characterization of phenolic compounds. Separations 2021, 8, 58. [Google Scholar] [CrossRef]
  52. Xu, J.L.; Shin, J.-S.; Park, S.-K.; Kang, S.; Jeong, S.-C.; Moon, J.-K.; Choi, Y. Differences in the metabolic profiles and antioxidant activities of wild and cultivated black soybeans evaluated by correlation analysis. Food Res. Int. 2017, 100, 166–174. [Google Scholar] [CrossRef]
  53. Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
  54. Flamini, R. Recent applications of mass spectrometry in the study of grape and wine polyphenols. Int. Sch. Res. Not. 2013, 2013, 813563. [Google Scholar] [CrossRef]
  55. Fermo, P.; Comite, V.; Sredojević, M.; Ćirić, I.; Gašić, U.; Mutić, J.; Baošić, R.; Tešić, Ž. Elemental analysis and phenolic profiles of selected italian wines. Foods 2021, 10, 158. [Google Scholar] [CrossRef]
  56. Ha, T.J.; Park, J.E.; Lee, K.-S.; Seo, W.D.; Song, S.-B.; Lee, M.-H.; Kim, S.; Kim, J.-I.; Oh, E.; Pae, S.-B. Identification of anthocyanin compositions in black seed coated Korean adzuki bean (Vigna angularis) by NMR and UPLC-Q-Orbitrap-MS/MS and screening for their antioxidant properties using different solvent systems. Food Chem. 2021, 346, 128882. [Google Scholar] [CrossRef] [PubMed]
  57. Djordjević, B.; Šavikin, K.; Zdunić, G.; Janković, T.; Vulić, T.; Oparnica, Č.; Radivojević, D. Biochemical properties of red currant varieties in relation to storage. Plant Foods Hum. Nutr. 2010, 65, 326–332. [Google Scholar] [CrossRef] [PubMed]
  58. Karaklajic-Stajic, Z.; Tomic, J.; Pesakovic, M.; Paunovic, S.M.; Stampar, F.; Mikulic-Petkovsek, M.; Grohar, M.C.; Hudina, M.; Jakopic, J. Black queens of fruits: Chemical composition of blackberry (Rubus subg. rubus Watson) and black currant (Ribes nigrum L.) cultivars selected in Serbia. Foods 2023, 12, 2775. [Google Scholar] [CrossRef]
  59. Abreu, I.N.; Brennan, R.M.; Kanichukattu, E.N.; Stewart, D.; Hancock, R.D.; McDougall, G.J.; Hackett, C.A. Quantitative trait loci mapping of polyphenol metabolites in blackcurrant (Ribes nigrum L.). Metabolomics 2020, 16, 25. [Google Scholar] [CrossRef]
  60. Cao, L.; Park, Y.; Lee, S.; Kim, D.-O. Extraction, identification, and health benefits of anthocyanins in blackcurrants (Ribes nigrum L.). Appl. Sci. 2021, 11, 1863. [Google Scholar] [CrossRef]
  61. Jiang, S.; Zhao, X.; Liu, C.; Dong, Q.; Mei, L.; Chen, C.; Shao, Y.; Tao, Y.; Yue, H. Identification of phenolic compounds in fruits of Ribes stenocarpum Maxim. By UHPLC-QTOF/MS and their hypoglycemic effects in vitro and in vivo. Food Chem. 2021, 344, 128568. [Google Scholar] [CrossRef]
  62. Razgonova, M.P.; Sabitov, A.S.; Senotrusova, T.A.; Lee, N.G.; Vitomskova, E.A.; Golokhvast, K. Ribes fragrans Pall.: Supercritical CO2-extraction and complete plant metabolome. Bot. Pacifica 2024, 13, 1–12. [Google Scholar]
  63. Mattila, P.H.; Hellström, J.; McDougall, G.; Dobson, G.; Pihlava, J.-M.; Tiirikka, T.; Stewart, D.; Karjalainen, R. Polyphenol and vitamin C contents in European commercial blackcurrant juice products. Food Chem. 2011, 127, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
  64. Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop. 2017, 20, 1700–1741. [Google Scholar] [CrossRef]
  65. Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
  66. Mengist, M.F.; Grace, M.H.; Xiong, J.; Kay, C.D.; Bassil, N.; Hummer, K.; Ferruzzi, M.G.; Lila, M.A.; Iorizzo, M. Diversity in metabolites and fruit quality traits in blueberry enables ploidy and species differentiation and establishes a strategy for future genetic studies. Front. Plant Sci. 2020, 11, 370. [Google Scholar] [CrossRef]
  67. Yeo, H.J.; Ki, W.Y.; Lee, S.; Kim, C.Y.; Kim, J.K.; Park, S.U.; Park, C.H. Metabolite profiles and biological activities of different phenotypes of Chinese cabbage (Brassica rapa ssp. Pekinensis). Food Res. Int. 2023, 174, 113619. [Google Scholar] [CrossRef] [PubMed]
  68. Harrigan, G.G.; Martino-Catt, S.; Glenn, K.C. Metabolomics, metabolic diversity and genetic variation in crops. Metabolomics 2007, 3, 259–272. [Google Scholar] [CrossRef]
  69. Medina-Meza, I.G.; VanderWeide, J.; Torres-Palacios, C.; Sabbatini, P. Quantitative metabolomics unveils the impact of agricultural practices in the grape metabolome. ACS Agric. Sci. Technol. 2021, 1, 253–261. [Google Scholar] [CrossRef]
  70. Salam, U.; Ullah, S.; Tang, Z.-H.; Elateeq, A.A.; Khan, Y.; Khan, J.; Khan, A.; Ali, S. Plant metabolomics: An overview of the role of primary and secondary metabolites against different environmental stress factors. Life 2023, 13, 706. [Google Scholar] [CrossRef]
  71. Crowe-White, K.M.; Evans, L.W.; Kuhnle, G.G.; Milenkovic, D.; Stote, K.; Wallace, T.; Handu, D.; Senkus, K.E. Flavan-3-ols and cardiometabolic health: First ever dietary bioactive guideline. Adv. Nutr. 2022, 13, 2070–2083. [Google Scholar] [CrossRef]
  72. Godos, J.; Romano, G.L.; Laudani, S.; Gozzo, L.; Guerrera, I.; Dominguez Azpíroz, I.; Martínez Diaz, R.; Quiles, J.L.; Battino, M.; Drago, F. Flavan-3-ols and Vascular Health: Clinical Evidence and Mechanisms of Action. Nutrients 2024, 16, 2471. [Google Scholar] [CrossRef] [PubMed]
  73. Fan, F.-Y.; Sang, L.-X.; Jiang, M. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 2017, 22, 484. [Google Scholar] [CrossRef] [PubMed]
  74. Mita, S.R.; Husni, P.; Putriana, N.A.; Maharani, R.; Hendrawan, R.P.; Dewi, D.A. A Recent Update on the Potential Use of Catechins in Cosmeceuticals. Cosmetics 2024, 11, 23. [Google Scholar] [CrossRef]
  75. González, M.J.A.; Carrera, C.; Barbero, G.F.; Palma, M. A comparison study between ultrasound–assisted and enzyme–assisted extraction of anthocyanins from blackcurrant (Ribes nigrum L.). Food Chem. X 2022, 13, 100192. [Google Scholar] [CrossRef]
  76. Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
  77. Baba, Y.; Inagaki, S.; Nakagawa, S.; Kaneko, T.; Kobayashi, M.; Takihara, T. Effects of l-theanine on cognitive function in middle-aged and older subjects: A randomized placebo-controlled study. J. Med. Food 2021, 24, 333–341. [Google Scholar] [CrossRef]
  78. Dvaranauskaite, A.; Venskutonis, P.R.; Raynaud, C.; Talou, T.; Viškelis, P.; Dambrauskiene, E. Characterization of steam volatiles in the essential oil of black currant buds and the antioxidant properties of different bud extracts. J. Agric. Food Chem. 2008, 56, 3279–3286. [Google Scholar] [CrossRef]
  79. Ðorđević, B.S.; Pljevljakušić, D.S.; Šavikin, K.P.; Stević, T.R.; Bigović, D.J. Essential oil from blackcurrant buds as chemotaxonomy marker and antimicrobial agent. Chem. Biodivers. 2014, 11, 1228–1240. [Google Scholar] [CrossRef]
  80. Commission, B.o.t.E.E. Pharmacopoeia of the Eurasian Economic Union; 100; Eurasian Economic Comission: Moscow, Russia, 2020. [Google Scholar]
  81. Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef]
  82. Chung, N.C.; Miasojedow, B.; Startek, M.; Gambin, A. Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinform. 2019, 20, 644. [Google Scholar] [CrossRef]
  83. Wang, F.; Huang, S.; Chen, Q.; Hu, Z.; Li, Z.; Zheng, P.; Liu, X.; Li, S.; Zhang, S.; Chen, J. Chemical characterisation and quantification of the major constituents in the Chinese herbal formula Jian-Pi-Yi-Shen pill by UPLC-Q-TOF-MS/MS and HPLC-QQQ-MS/MS. Phytochem. Anal. 2020, 31, 915–929. [Google Scholar] [CrossRef] [PubMed]
  84. Jaiswal, R.; Müller, H.; Müller, A.; Karar, M.G.E.; Kuhnert, N. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L.(Caprifoliaceae) leaves by LC–MSn. Phytochemistry 2014, 108, 252–263. [Google Scholar] [CrossRef] [PubMed]
  85. Razgonova, M.P.; Navaz, M.A.; Sabitov, A.S.; Zinchenko, Y.N.; Rusakova, E.A.; Petrusha, E.N.; Golokhvast, K.S.; Tikhonova, N.G. The Global metabolome profiles of four varieties of Lonicera caerulea, established via tandem mass spectrometry. Horticulturae 2023, 9, 1188. [Google Scholar] [CrossRef]
  86. Chuah, W.C.; Lee, H.H.; Ng, D.H.; Ho, A.L.; Sulaiman, M.R.; Chye, F.Y. Antioxidants Discovery for Differentiation of Monofloral Stingless Bee Honeys Using Ambient Mass Spectrometry and Metabolomics Approaches. Foods 2023, 12, 2404. [Google Scholar] [CrossRef] [PubMed]
  87. Kheyar-Kraouche, N.; da Silva, A.B.; Serra, A.T.; Bedjou, F.; Bronze, M.R. Characterization by liquid chromatography–mass spectrometry and antioxidant activity of an ethanolic extract of Inula viscosa leaves. J. Pharm. Biomed. Anal. 2018, 156, 297–306. [Google Scholar] [CrossRef] [PubMed]
  88. Trifan, A.; Zengin, G.; Sinan, K.I.; Sieniawska, E.; Sawicki, R.; Maciejewska-Turska, M.; Skalikca-Woźniak, K.; Luca, S.V. Unveiling the phytochemical profile and biological potential of five Artemisia species. Antioxidants 2022, 11, 1017. [Google Scholar] [CrossRef]
  89. Fan, Z.; Wang, Y.; Yang, M.; Cao, J.; Khan, A.; Cheng, G. UHPLC-ESI-HRMS/MS analysis on phenolic compositions of different E Se tea extracts and their antioxidant and cytoprotective activities. Food Chem. 2020, 318, 126512. [Google Scholar] [CrossRef]
  90. Marzouk, M.M.; Hussein, S.R.; Elkhateeb, A.; El-Shabrawy, M.; Abdel-Hameed, E.-S.S.; Kawashty, S.A. Comparative study of Mentha species growing wild in Egypt: LC-ESI-MS analysis and chemosystematic significance. J. Appl. Pharm. Sci. 2018, 8, 116–122. [Google Scholar]
  91. Mateos-Martín, M.L.; Fuguet, E.; Jiménez-Ardón, A.; Herrero-Uribe, L.; Tamayo-Castillo, G.; Torres, J.L. Identification of polyphenols from antiviral Chamaecrista nictitans extract using high-resolution LC–ESI–MS/MS. Anal. Bioanal. Chem. 2014, 406, 5501–5506. [Google Scholar] [CrossRef]
  92. Wojakowska, A.; Piasecka, A.; García-López, P.M.; Zamora-Natera, F.; Krajewski, P.; Marczak, Ł.; Kachlicki, P.; Stobiecki, M. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC–MS techniques. Phytochemistry 2013, 92, 71–86. [Google Scholar] [CrossRef]
  93. Xu, L.-L.; Xu, J.-J.; Zhong, K.-R.; Shang, Z.-P.; Wang, F.; Wang, R.-F.; Zhang, L.; Zhang, J.-Y.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography-high resolution mass spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [CrossRef] [PubMed]
  94. Hassan, W.H.; Abdelaziz, S.; Al Yousef, H.M. Chemical composition and biological activities of the aqueous fraction of Parkinsonea aculeata L. growing in Saudi Arabia. Arab. J. Chem. 2019, 12, 377–387. [Google Scholar] [CrossRef]
  95. Barreca, D.; Bellocco, E.; Leuzzi, U.; Gattuso, G. First evidence of C-and O-glycosyl flavone in blood orange (Citrus sinensis (L.) Osbeck) juice and their influence on antioxidant properties. Food Chem. 2014, 149, 244–252. [Google Scholar] [CrossRef] [PubMed]
  96. Cavaliere, C.; Foglia, P.; Pastorini, E.; Samperi, R.; Laganà, A. Identification and mass spectrometric characterization of glycosylated flavonoids in Triticum durum plants by high-performance liquid chromatography with tandem mass spectrometry. Rapid Commun. Mass Spectrom. Int. J. Devoted Rapid Dissem. Up-Minute Res. Mass Spectrom. 2005, 19, 3143–3158. [Google Scholar] [CrossRef]
  97. Wojakowska, A.; Perkowski, J.; Góral, T.; Stobiecki, M. Structural characterization of flavonoid glycosides from leaves of wheat (Triticum aestivum L.) using LC/MS/MS profiling of the target compounds. J. Mass Spectrom. 2013, 48, 329–339. [Google Scholar] [CrossRef]
  98. Ioset, J.-R.; Urbaniak, B.; Ndjoko-Ioset, K.; Wirth, J.; Martin, F.; Gruissem, W.; Hostettmann, K.; Sautter, C. Flavonoid profiling among wild type and related GM wheat varieties. Plant Mol. Biol. 2007, 65, 645–654. [Google Scholar] [CrossRef]
  99. Zhang, J.; Xu, X.-J.; Xu, W.; Huang, J.; Zhu, D.-y.; Qiu, X.-H. Rapid characterization and identification of flavonoids in Radix Astragali by ultra-high-pressure liquid chromatography coupled with linear ion trap-orbitrap mass spectrometry. J. Chromatogr. Sci. 2015, 53, 945–952. [Google Scholar] [CrossRef]
  100. Zengin, G.; Mahomoodally, M.F.; Sinan, K.I.; Ak, G.; Etienne, O.K.; Sharmeen, J.B.; Brunetti, L.; Leone, S.; Di Simone, S.C.; Recinella, L. Chemical composition and biological properties of two Jatropha species: Different parts and different extraction methods. Antioxidants 2021, 10, 792. [Google Scholar] [CrossRef]
  101. Lee, S.Y.; Shaari, K. LC–MS metabolomics analysis of Stevia rebaudiana Bertoni leaves cultivated in Malaysia in relation to different developmental stages. Phytochem. Anal. 2022, 33, 249–261. [Google Scholar] [CrossRef]
  102. Chen, Y.; Cai, X.; Li, G.; He, X.; Yu, X.; Yu, X.; Xiao, Q.; Xiang, Z.; Wang, C. Chemical constituents of radix Actinidia chinensis planch by UPLC–QTOF–MS. Biomed. Chromatogr. 2021, 35, e5103. [Google Scholar] [CrossRef]
  103. Ieri, F.; Innocenti, M.; Possieri, L.; Gallori, S.; Mulinacci, N. Phenolic composition of “bud extracts” of Ribes nigrum L., Rosa canina L. and Tilia tomentosa M. J. Pharm. Biomed. Anal. 2015, 115, 1–9. [Google Scholar] [CrossRef] [PubMed]
  104. Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; García-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and comprehensive evaluation of (poly) phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. [Google Scholar] [CrossRef] [PubMed]
  105. Ismail, W.M.; Ezzat, S.M.; El-Mosallamy, A.E.; El Deeb, K.S.; El-Fishawy, A.M. In Vivo Antihypertensive Activity and UHPLC-Orbitrap-HRMS Profiling of Cuphea ignea A. DC. ACS Omega 2022, 7, 46524–46535. [Google Scholar] [CrossRef] [PubMed]
  106. Aaby, K.; Mazur, S.; Nes, A.; Skrede, G. Phenolic compounds in strawberry (Fragaria × ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem. 2012, 132, 86–97. [Google Scholar] [CrossRef]
  107. Da Silva, L.P.; Pereira, E.; Pires, T.C.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef]
  108. Sun, L.; Tao, S.; Zhang, S. Characterization and quantification of polyphenols and triterpenoids in thinned young fruits of ten pear varieties by UPLC-Q TRAP-MS/MS. Molecules 2019, 24, 159. [Google Scholar] [CrossRef]
  109. Brahmi-Chendouh, N.; Piccolella, S.; Crescente, G.; Pacifico, F.; Boulekbache, L.; Hamri-Zeghichi, S.; Akkal, S.; Madani, K.; Pacifico, S. A nutraceutical extract from Inula viscosa leaves: UHPLC-HR-MS/MS based polyphenol profile, and antioxidant and cytotoxic activities. J. Food Drug Anal. 2019, 27, 692–702. [Google Scholar] [CrossRef]
  110. Mosić, M.; Trifković, J.; Vovk, I.; Gašić, U.; Tešić, Ž.; Šikoparija, B.; Milojković-Opsenica, D. Phenolic composition influences the health-promoting potential of bee-pollen. Biomolecules 2019, 9, 783. [Google Scholar] [CrossRef]
  111. De Rosso, M.; Tonidandel, L.; Larcher, R.; Nicolini, G.; Dalla Vedova, A.; De Marchi, F.; Gardiman, M.; Giust, M.; Flamini, R. Identification of new flavonols in hybrid grapes by combined liquid chromatography–mass spectrometry approaches. Food Chem. 2014, 163, 244–251. [Google Scholar] [CrossRef]
  112. Määttä, K.R.; Kamal-Eldin, A.; Törrönen, A.R. High-performance liquid chromatography (HPLC) analysis of phenolic compounds in berries with diode array and electrospray ionization mass spectrometric (MS) detection: Ribes species. J. Agric. Food Chem. 2003, 51, 6736–6744. [Google Scholar] [CrossRef]
  113. Cendrowski, A.; Ścibisz, I.; Kieliszek, M.; Kolniak-Ostek, J.; Mitek, M. UPLC-PDA-Q/TOF-MS profile of polyphenolic compounds of liqueurs from Rose petals (Rosa rugosa). Molecules 2017, 22, 1832. [Google Scholar] [CrossRef] [PubMed]
  114. Huang, X.; Liu, Y.; Song, F.; Liu, Z.; Liu, S. Studies on principal components and antioxidant activity of different Radix Astragali samples using high-performance liquid chromatography/electrospray ionization multiple-stage tandem mass spectrometry. Talanta 2009, 78, 1090–1101. [Google Scholar] [CrossRef] [PubMed]
  115. Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.; Cheng, H.; El-Shazly, A.M.; Wink, M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. J. Ethnopharmacol. 2018, 213, 38–47. [Google Scholar] [CrossRef] [PubMed]
  116. Razgonova, M.P.; Tekutyeva, L.A.; Podvolotskaya, A.B.; Stepochkina, V.D.; Zakharenko, A.M.; Golokhvast, K. Zostera marina L.: Supercritical CO2-extraction and mass spectrometric characterization of chemical constituents recovered from seagrass. Separations 2022, 9, 182. [Google Scholar] [CrossRef]
  117. Zeng, X.; Su, W.; Zheng, Y.; Liu, H.; Li, P.; Zhang, W.; Liang, Y.; Bai, Y.; Peng, W.; Yao, H. Uflc-q-tof-ms/ms-based screening and identification of flavonoids and derived metabolites in human urine after oral administration of exocarpium citri grandis extract. Molecules 2018, 23, 895. [Google Scholar] [CrossRef]
  118. Song, Y.-L.; Zhou, G.-S.; Zhou, S.-X.; Jiang, Y.; Tu, P.-F. Polygalins D–G, four new flavonol glycosides from the aerial parts of Polygala sibirica L.(Polygalaceae). Nat. Prod. Res. 2013, 27, 1220–1227. [Google Scholar] [CrossRef]
  119. Felegyi-Tóth, C.A.; Garádi, Z.; Darcsi, A.; Csernák, O.; Boldizsár, I.; Béni, S.; Alberti, Á. Isolation and quantification of diarylheptanoids from European hornbeam (Carpinus betulus L.) and HPLC-ESI-MS/MS characterization of its antioxidative phenolics. J. Pharm. Biomed. Anal. 2022, 210, 114554. [Google Scholar] [CrossRef]
  120. Medic, A.; Jakopic, J.; Hudina, M.; Solar, A.; Veberic, R. Identification and quantification of the major phenolic constituents in Juglans regia L. peeled kernels and pellicles, using HPLC–MS/MS. Food Chem. 2021, 352, 129404. [Google Scholar] [CrossRef]
  121. Singh, J.; Kumar, S.; Rathi, B.; Bhrara, K.; Chhikara, B.S. Therapeutic analysis of Terminalia arjuna plant extracts in combinations with different metal nanoparticles. J. Mater. NanoSci. 2015, 2, 1–7. [Google Scholar]
  122. D’Urso, G.; Sarais, G.; Lai, C.; Pizza, C.; Montoro, P. LC-MS based metabolomics study of different parts of myrtle berry from Sardinia (Italy). J. Berry Res. 2017, 7, 217–229. [Google Scholar] [CrossRef]
  123. Pantelić, M.M.; Zagorac, D.Č.D.; Davidović, S.M.; Todić, S.R.; Bešlić, Z.S.; Gašić, U.M.; Tešić, Ž.L.; Natić, M.M. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food Chem. 2016, 211, 243–252. [Google Scholar] [CrossRef] [PubMed]
  124. Comeskey, D.J.; Montefiori, M.; Edwards, P.J.; McGhie, T.K. Isolation and structural identification of the anthocyanin components of red kiwifruit. J. Agric. Food Chem. 2009, 57, 2035–2039. [Google Scholar] [CrossRef] [PubMed]
  125. Wu, X.; Gu, L.; Prior, R.L.; McKay, S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J. Agric. Food Chem. 2004, 52, 7846–7856. [Google Scholar] [CrossRef]
  126. Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
  127. Razgonova, M.P.; Bazhenova, B.A.; Zabalueva, Y.Y.; Burkhanova, A.G.; Zakharenko, A.M.; Kupriyanov, A.N.; Sabitov, A.S.; Ercisli, S.; Golokhvast, K.S. Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. originating from Far Eastern Russia: Screening of 146 chemical constituents in three species of the genus Rosa. Appl. Sci. 2022, 12, 9401. [Google Scholar] [CrossRef]
  128. Iswaldi, I.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Uberos, J.; Lardón, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Characterization by high-performance liquid chromatography with diode-array detection coupled to time-of-flight mass spectrometry of the phenolic fraction in a cranberry syrup used to prevent urinary tract diseases, together with a study of its antibacterial activity. J. Pharm. Biomed. Anal. 2012, 58, 34–41. [Google Scholar] [PubMed]
  129. Razgonova, M.; Boyko, A.; Zinchenko, Y.; Tikhonova, N.; Sabitov, A.; Zakharenko, A.M.; Golokhvast, K. Actinidia deliciosa: A high-resolution mass spectrometric approach for the comprehensive characterization of bioactive compounds. Turk. J. Agric. For. 2023, 47, 155–169. [Google Scholar] [CrossRef]
  130. Sharma, M.; Sandhir, R.; Singh, A.; Kumar, P.; Mishra, A.; Jachak, S.; Singh, S.P.; Singh, J.; Roy, J. Comparative analysis of phenolic compound characterization and their biosynthesis genes between two diverse bread wheat (Triticum aestivum) varieties differing for chapatti (unleavened flat bread) quality. Front. Plant Sci. 2016, 7, 1870. [Google Scholar] [CrossRef]
  131. Haribabu, K.; Ajitha, M.; Mallavadhani, U.V. Quantitative estimation of (–)-hinokinin, a trypanosomicidal marker in Piper cubeba, and some of its commercial formulations using HPLC-PDA. J. Pharm. Anal. 2015, 5, 130–136. [Google Scholar] [CrossRef]
  132. Eklund, P.C.; Backman, M.J.; Kronberg, L.Å.; Smeds, A.I.; Sjöholm, R.E. Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. J. Mass Spectrom. 2008, 43, 97–107. [Google Scholar] [CrossRef]
  133. Liu, Z.; Liu, Y.; Wang, C.; Guo, N.; Song, Z.; Wang, C.; Xia, L.; Lu, A. Comparative analyses of chromatographic fingerprints of the roots of Polygonum multiflorum Thunb. and their processed products using RRLC/DAD/ESI-MSn. Planta Medica 2011, 77, 1855–1860. [Google Scholar] [CrossRef] [PubMed]
  134. Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic profiling of pitaya (Hylocereus polyrhizus) during fruit development and maturation. Molecules 2019, 24, 1114. [Google Scholar] [CrossRef] [PubMed]
  135. Mekam, P.N.; Martini, S.; Nguefack, J.; Tagliazucchi, D.; Stefani, E. Phenolic compounds profile of water and ethanol extracts of Euphorbia hirta L. leaves showing antioxidant and antifungal properties. S. Afr. J. Bot. 2019, 127, 319–332. [Google Scholar] [CrossRef]
  136. Salih, E.Y.; Julkunen-Tiitto, R.; Lampi, A.-M.; Kanninen, M.; Luukkanen, O.; Sipi, M.; Lehtonen, M.; Vuorela, H.; Fyhrquist, P. Terminalia laxiflora and Terminalia brownii contain a broad spectrum of antimycobacterial compounds including ellagitannins, ellagic acid derivatives, triterpenes, fatty acids and fatty alcohols. J. Ethnopharmacol. 2018, 227, 82–96. [Google Scholar] [CrossRef]
  137. Bakir, D.; Akdeniz, M.; Ertas, A.; Yilmaz, M.A.; Yener, I.; Firat, M.; Kolak, U. A GC–MS method validation for quantitative investigation of some chemical markers in Salvia hypargeia Fisch. & CA Mey. of Turkey: Enzyme inhibitory potential of ferruginol. J. Food Biochem. 2020, 44, e13350. [Google Scholar]
Figure 1. Global metabolome profile of Ribes species. (A) No. of compounds detected in each compound class in all species. (B) No. of compounds detected in each Ribes species. The circle size indicates the number of compounds. (B) was prepared in TBtools [21].
Figure 1. Global metabolome profile of Ribes species. (A) No. of compounds detected in each compound class in all species. (B) No. of compounds detected in each Ribes species. The circle size indicates the number of compounds. (B) was prepared in TBtools [21].
Ijms 25 10085 g001
Figure 2. (A) CID spectrum of formononetin from R. aureum, m/z 269.18. The chemical structures correspond to panel A of the figure. The formulas were obtained from the PubChem database of the National Library of Medicine, National Center for Biotechnology Information. (B) CID spectrum of acacetin from R. triste, m/z 285.31. (C) CID spectrum of isovitexin from extract of R. aureum, m/z 431.42. (D) CID spectrum of kaempferol from extract of R. pauciflorum, m/z 287.12.
Figure 2. (A) CID spectrum of formononetin from R. aureum, m/z 269.18. The chemical structures correspond to panel A of the figure. The formulas were obtained from the PubChem database of the National Library of Medicine, National Center for Biotechnology Information. (B) CID spectrum of acacetin from R. triste, m/z 285.31. (C) CID spectrum of isovitexin from extract of R. aureum, m/z 431.42. (D) CID spectrum of kaempferol from extract of R. pauciflorum, m/z 287.12.
Ijms 25 10085 g002
Figure 3. (A) CID spectrum of quercetin from extract of R. triste, m/z 303.17. (B) CID spectrum of gallocatechin from extracts of R. triste, m/z 307.12. (C) CID spectrum of anthocyanin delphinidin 3,5-dihexoside from berries of R. dikuscha, m/z 626.69. (D) CID spectrum of anthocyanin petunidin-3-O-glucoside from berries of R. dikuscha, m/z 479.16.
Figure 3. (A) CID spectrum of quercetin from extract of R. triste, m/z 303.17. (B) CID spectrum of gallocatechin from extracts of R. triste, m/z 307.12. (C) CID spectrum of anthocyanin delphinidin 3,5-dihexoside from berries of R. dikuscha, m/z 626.69. (D) CID spectrum of anthocyanin petunidin-3-O-glucoside from berries of R. dikuscha, m/z 479.16.
Ijms 25 10085 g003
Figure 4. (A) Venn diagram showing similarities and differences in the presence of the polyphenol group, (B) anthocyanins, and (C) flavones and flavonols in Ribes species. Bi-iv panels (x-axis) indicate the type of anthocyanins detected in each Ribes species.
Figure 4. (A) Venn diagram showing similarities and differences in the presence of the polyphenol group, (B) anthocyanins, and (C) flavones and flavonols in Ribes species. Bi-iv panels (x-axis) indicate the type of anthocyanins detected in each Ribes species.
Ijms 25 10085 g004
Figure 5. Plant samples used in this study. (A) Ribes dicuscha (the vicinity of the Kolyma River, N = 59°4141′960 E = 151°16′17.620). (B) Ribes pauciflorum, (C) Ribes triste, (D) Ribes aureum (Seymchansky District, the vicinity of the Kolyma River, N = 62°55′51.017 E = 151°16′17.620. (E) Map of the route and collection of plant material in the Magadan region, Russian Federation (N 58–61°, E 150–153°).
Figure 5. Plant samples used in this study. (A) Ribes dicuscha (the vicinity of the Kolyma River, N = 59°4141′960 E = 151°16′17.620). (B) Ribes pauciflorum, (C) Ribes triste, (D) Ribes aureum (Seymchansky District, the vicinity of the Kolyma River, N = 62°55′51.017 E = 151°16′17.620. (E) Map of the route and collection of plant material in the Magadan region, Russian Federation (N 58–61°, E 150–153°).
Ijms 25 10085 g005
Table 1. Jaccard index for four Ribes species and the polyphenol group (R. pauciflorum, R. aureum, R. triste, R. dikuscha).
Table 1. Jaccard index for four Ribes species and the polyphenol group (R. pauciflorum, R. aureum, R. triste, R. dikuscha).
R. pauciflorum
−30
R. aureum
−37
R. triste
−58
R. dikuscha
−99
R. pauciflorum
−30
6
0.0984
10
0.1282
12
0.1026
R. aureum
−37
6
0.0984
17
0.2179
22
0.193
R. triste
−58
10
0.1282
17
0.2179
24
0.1805
R. dikuscha
−99
12
0.1026
22
0.193
24
0.1805
Table 2. Jaccard index for four species of Ribes (anthocyanin group).
Table 2. Jaccard index for four species of Ribes (anthocyanin group).
R. pauciflorum
−3
R. aureum
−13
R. triste
−2
R. dikuscha
−21
R. pauciflorum
−3
1
0.0667
0
0
2
0.0909
R. aureum
−13
1
0.0667
2
0.1538
3
0.0968
R. triste
−2
0
0
2
0.1538
2
0.0952
R. dikuscha
−21
2
0.0909
3
0.0968
2
0.0952
Table 3. Jaccard index for four species of Ribes (flavones and flavonols).
Table 3. Jaccard index for four species of Ribes (flavones and flavonols).
R. pauciflorum
−13
R. aureum
−26
R. triste
−22
R. dikuscha
−59
R. pauciflorum
−13
4
0.1143
5
0.1667
7
0.1077
R. aureum
−26
4
0.1143
12
0.3333
16
0.2319
R. triste
−22
5
0.1667
12
0.3333
14
0.209
R. dikuscha
−59
7
0.1077
16
0.2319
14
0.209
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Razgonova, M.P.; Nawaz, M.A.; Sabitov, A.S.; Golokhvast, K.S. Genus Ribes: Ribes aureum, Ribes pauciflorum, Ribes triste, and Ribes dikuscha—Comparative Mass Spectrometric Study of Polyphenolic Composition and Other Bioactive Constituents. Int. J. Mol. Sci. 2024, 25, 10085. https://doi.org/10.3390/ijms251810085

AMA Style

Razgonova MP, Nawaz MA, Sabitov AS, Golokhvast KS. Genus Ribes: Ribes aureum, Ribes pauciflorum, Ribes triste, and Ribes dikuscha—Comparative Mass Spectrometric Study of Polyphenolic Composition and Other Bioactive Constituents. International Journal of Molecular Sciences. 2024; 25(18):10085. https://doi.org/10.3390/ijms251810085

Chicago/Turabian Style

Razgonova, Mayya P., Muhammad Amjad Nawaz, Andrey S. Sabitov, and Kirill S. Golokhvast. 2024. "Genus Ribes: Ribes aureum, Ribes pauciflorum, Ribes triste, and Ribes dikuscha—Comparative Mass Spectrometric Study of Polyphenolic Composition and Other Bioactive Constituents" International Journal of Molecular Sciences 25, no. 18: 10085. https://doi.org/10.3390/ijms251810085

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop