Mathematical Modeling and Inference of Epidermal Growth Factor-Induced Mitogen-Activated Protein Kinase Cell Signaling Pathways
Abstract
:1. Introduction
2. Modeling of MAP Kinase Modules
3. EGFR-Induced MAPK Pathway
4. Crosstalk within MAPK and AKT Pathways
5. Data-Driven Modeling of Signaling Pathways
- Non-parametric approaches, which include signaling Petri net-based simulations [158].
- Discrete dynamic modeling, which does not require kinetic parameters [159].
- The BowTieBuilder pipeline, which is used to infer signal transduction pathways [164].
- Information theory-based methods, which analyze signaling pathways [165].
- Extended Boolean network models, which incorporate stochastic processes [169].
- cSTAR (Cell-State Transition Assessment and Regulation), which transforms omics data into input for mechanistic models [170].
- Non-Markovian signaling processes, which account for signaling intermediates with random time delays [171].
6. Stochastic Models for Cell Signaling Pathways
7. Parameter Inference
8. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MAPK | mitogen-activated protein kinase |
JNK | c-Jun N-terminal kinase |
PI3K | phosphoinositide 3-kinase |
mTOR | mammalian target of rapamycin |
EGFR | epidermal growth factor receptor |
MEK | MAP/ERK kinase |
ERK | extracellular signal-regulated kinase |
AKT | protein kinase B |
ODE | ordinary differential equation |
SDE | stochastic differential equation |
NLMEM | nonlinear mixed-effect model |
ABC | approximate Bayesian computation |
References
- Marshall, C. Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation. Cell 1995, 80, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Karin, M. Mammalian MAP kinase signalling cascades. Nature 2001, 410, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; López, J.M. Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci. 2020, 21, 2346. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, W.Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. 2015, 35, 600–604. [Google Scholar] [CrossRef]
- Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; et al. A comprehensive review on MAPK: A promising therapeutic target in cancer. Cancers 2019, 11, 1618. [Google Scholar] [CrossRef]
- Dong, C.; Davis, R.J.; Flavell, R.A. MAP kinases in the immune response. Annu. Rev. Immunol. 2002, 20, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Lake, D.; Corrêa, S.A.; Müller, J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life Sci. 2016, 73, 4397–4413. [Google Scholar] [CrossRef]
- Sommariva, S.; Caviglia, G.; Ravera, S.; Frassoni, F.; Benvenuto, F.; Tortolina, L.; Castagnino, N.; Parodi, S.; Piana, M. Computational quantification of global effects induced by mutations and drugs in signaling networks of colorectal cancer cells. Sci. Rep. 2021, 11, 19602. [Google Scholar] [CrossRef]
- Bahar, M.E.; Kim, H.J.; Kim, D.R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical studies. Signal Transduct. Target. Ther. 2023, 8, 455. [Google Scholar] [CrossRef]
- Kestler, H.A.; Wawra, C.; Kracher, B.; Kühl, M. Network modeling of signal transduction: Establishing the global view. Bioessays 2008, 30, 1110–1125. [Google Scholar] [CrossRef]
- Oda, K.; Matsuoka, Y.; Funahashi, A.; Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol. 2005, 1, 2005-0010. [Google Scholar] [CrossRef] [PubMed]
- Kholodenko, B.N.; Hancock, J.F.; Kolch, W. Signalling ballet in space and time. Nat. Rev. Mol. Cell Biol. 2010, 11, 414–426. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.F. Ras proteins: Different signals from different locations. Nat. Rev. Mol. Cell Biol. 2003, 4, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Kolch, W.; Berta, D.; Rosta, E. Dynamic regulation of RAS and RAS signaling. Biochem. J. 2023, 480, 1–23. [Google Scholar] [CrossRef]
- Kholodenko, B.N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 2006, 7, 165–176. [Google Scholar] [CrossRef]
- Ram, A.; Murphy, D.; DeCuzzi, N.; Patankar, M.; Hu, J.; Pargett, M.; Albeck, J.G. A guide to ERK dynamics, part 1: Mechanisms and models. Biochem. J. 2023, 480, 1887–1907. [Google Scholar] [CrossRef]
- Atay, O.; Skotheim, J.M. Spatial and temporal signal processing and decision making by MAPK pathways. J. Cell Biol. 2017, 216, 317–330. [Google Scholar] [CrossRef]
- Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2010, 141, 1117–1134. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.F.; Nebreda, A.R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 2009, 9, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.C.; Er, E.E.; Blenis, J. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem. Sci. 2011, 36, 320–328. [Google Scholar] [CrossRef]
- Cuesta, C.; Arévalo-Alameda, C.; Castellano, E. The importance of being PI3K in the RAS signaling network. Genes 2021, 12, 1094. [Google Scholar] [CrossRef] [PubMed]
- Shorning, B.Y.; Dass, M.S.; Smalley, M.J.; Pearson, H.B. The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroads of AR, MAPK, and WNT signaling. Int. J. Mol. Sci. 2020, 21, 4507. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Li, S.; Chepeha, D.B.; Giordano, T.J.; Li, J.; Zhang, H.; Polverini, P.J.; Nor, J.; Kitajewski, J.; Wang, C.Y. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 2005, 8, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Hlavacek, W.S.; Faeder, J.R.; Blinov, M.L.; Perelson, A.S.; Goldstein, B. The complexity of complexes in signal transduction. Biotechnol. Bioeng. 2003, 84, 783–794. [Google Scholar] [CrossRef]
- Gilbert, D.; Fuss, H.; Gu, X.; Orton, R.; Robinson, S.; Vyshemirsky, V.; Kurth, M.J.; Downes, C.S.; Dubitzky, W. Computational methodologies for modelling, analysis and simulation of signalling networks. Briefings Bioinform. 2006, 7, 339–353. [Google Scholar] [CrossRef]
- Le Novere, N. Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet. 2015, 16, 146–158. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Tian, T. Bayesian inference of stochastic dynamic models using early-rejection methods based on sequential stochastic simulations. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 19, 1484–1494. [Google Scholar] [CrossRef]
- Wang, S.; Wu, R.; Lu, J.; Jiang, Y.; Huang, T.; Cai, Y.D. Protein-protein interaction networks as miners of biological discovery. Proteomics 2022, 22, 2100190. [Google Scholar] [CrossRef] [PubMed]
- Casadio, R.; Martelli, P.L.; Savojardo, C. Machine learning solutions for predicting protein–protein interactions. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1618. [Google Scholar] [CrossRef]
- Robin, V.; Bodein, A.; Scott-Boyer, M.P.; Leclercq, M.; Périn, O.; Droit, A. Overview of methods for characterization and visualization of a protein–protein interaction network in a multi-omics integration context. Front. Mol. Biosci. 2022, 9, 962799. [Google Scholar] [CrossRef]
- Kolch, W.; Halasz, M.; Granovskaya, M.; Kholodenko, B.N. The dynamic control of signal transduction networks in cancer cells. Nat. Rev. Cancer 2015, 15, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Sommariva, S.; Berra, S.; Biddau, G.; Caviglia, G.; Benvenuto, F.; Piana, M. In-silico modelling of the mitogen-activated protein kinase (MAPK) pathway in colorectal cancer: Mutations and targeted therapy. Front. Syst. Biol. 2023, 3, 1207898. [Google Scholar] [CrossRef]
- Aldridge, B.B.; Burke, J.M.; Lauffenburger, D.A.; Sorger, P.K. Physicochemical modelling of cell signalling pathways. Nat. Cell Biol. 2006, 8, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Ying, T.; Alexander, H. Quantifying information of intracellular signaling: Progress with machine learning. Rep. Prog. Physics. Phys. Soc. (Great Britain) 2022, 85, 086602. [Google Scholar]
- Azeloglu, E.U.; Iyengar, R. Signaling networks: Information flow, computation, and decision making. Cold Spring Harb. Perspect. Biol. 2015, 7, a005934. [Google Scholar] [CrossRef]
- Choudhary, C.; Mann, M. Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol. 2010, 11, 427–439. [Google Scholar] [CrossRef]
- Lun, X.K.; Bodenmiller, B. Profiling cell signaling networks at single-cell resolution. Mol. Cell. Proteom. 2020, 19, 744–756. [Google Scholar] [CrossRef]
- Rosenberger, F.A.; Thielert, M.; Mann, M. Making single-cell proteomics biologically relevant. Nat. Methods 2023, 20, 320–323. [Google Scholar] [CrossRef]
- Lähnemann, D.; Köster, J.; Szczurek, E.; McCarthy, D.J.; Hicks, S.C.; Robinson, M.D.; Vallejos, C.A.; Campbell, K.R.; Beerenwinkel, N.; Mahfouz, A.; et al. Eleven grand challenges in single-cell data science. Genome Biol. 2020, 21, 31. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, W.; Jin, H.; Chen, X. A review of single-cell rna-seq annotation, integration, and cell–cell communication. Cells 2023, 12, 1970. [Google Scholar] [CrossRef]
- Madsen, R.R.; Toker, A. PI3K signaling through a biochemical systems lens. J. Biol. Chem. 2023, 299, 105224. [Google Scholar] [CrossRef] [PubMed]
- Leduc, A.; Harens, H.; Slavov, N. Modeling and interpretation of single-cell proteogenomic data. arXiv 2023, arXiv:2308.07465v2. [Google Scholar]
- Pillai, M.; Hojel, E.; Jolly, M.K.; Goyal, Y. Unraveling non-genetic heterogeneity in cancer with dynamical models and computational tools. Nat. Comput. Sci. 2023, 3, 301–313. [Google Scholar] [CrossRef] [PubMed]
- AlMusawi, S.; Ahmed, M.; Nateri, A.S. Understanding cell-cell communication and signaling in the colorectal cancer microenvironment. Clin. Transl. Med. 2021, 11, e308. [Google Scholar] [CrossRef]
- Bijman, E.Y.; Kaltenbach, H.M.; Stelling, J. Experimental analysis and modeling of single-cell time-course data. Curr. Opin. Syst. Biol. 2021, 28, 100359. [Google Scholar] [CrossRef]
- Zhao, M.; He, W.; Tang, J.; Zou, Q.; Guo, F. A comprehensive overview and critical evaluation of gene regulatory network inference technologies. Briefings Bioinform. 2021, 22, bbab009. [Google Scholar] [CrossRef]
- Chen, A.; Zhou, T.; Tian, T. Integrated Pipelines for Inferring Gene Regulatory Networks from Single-Cell Data. Curr. Bioinform. 2022, 17, 559–564. [Google Scholar] [CrossRef]
- Elowitz, M.B.; Levine, A.J.; Siggia, E.D.; Swain, P.S. Stochastic gene expression in a single cell. Science 2002, 297, 1183–1186. [Google Scholar] [CrossRef]
- Raj, A.; Van Oudenaarden, A. Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell 2008, 135, 216–226. [Google Scholar] [CrossRef]
- Tian, T.; Burrage, K. Stochastic models for regulatory networks of the genetic toggle switch. Proc. Natl. Acad. Sci. USA 2006, 103, 8372–8377. [Google Scholar] [CrossRef]
- Lei, X.; Tian, W.; Zhu, H.; Chen, T.; Ao, P. Biological sources of intrinsic and extrinsic noise in cI expression of lysogenic phage lambda. Sci. Rep. 2015, 5, 13597. [Google Scholar] [CrossRef] [PubMed]
- Ladbury, J.E.; Arold, S.T. Noise in cellular signaling pathways: Causes and effects. Trends Biochem. Sci. 2012, 37, 173–178. [Google Scholar] [CrossRef]
- Albeck, J.G.; Mills, G.B.; Brugge, J.S. Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals. Mol. Cell 2013, 49, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Kunz, M.; Vera, J. Modelling of protein kinase signaling pathways in melanoma and other cancers. Cancers 2019, 11, 465. [Google Scholar] [CrossRef] [PubMed]
- Myers, P.J.; Lee, S.H.; Lazzara, M.J. Mechanistic and data-driven models of cell signaling: Tools for fundamental discovery and rational design of therapy. Curr. Opin. Syst. Biol. 2021, 28, 100349. [Google Scholar] [CrossRef]
- Valls, P.O.; Esposito, A. Signalling dynamics, cell decisions, and homeostatic control in health and disease. Curr. Opin. Cell Biol. 2022, 75, 102066. [Google Scholar] [CrossRef]
- Loos, C.; Hasenauer, J. Mathematical modeling of variability in intracellular signaling. Curr. Opin. Syst. Biol. 2019, 16, 17–24. [Google Scholar] [CrossRef]
- Huang, C.Y.; Ferrell, J.E., Jr. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 1996, 93, 10078–10083. [Google Scholar] [CrossRef]
- Kholodenko, B.N. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 2000, 267, 1583–1588. [Google Scholar] [CrossRef]
- Markevich, N.I.; Hoek, J.B.; Kholodenko, B.N. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol. 2004, 164, 353–359. [Google Scholar] [CrossRef]
- Ferrell, J.E.; Ha, S.H. Ultrasensitivity part III: Cascades, bistable switches, and oscillators. Trends Biochem. Sci. 2014, 39, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Pryciak, P.M. Membrane localization of scaffold proteins promotes graded signaling in the yeast MAP kinase cascade. Curr. Biol. 2008, 18, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Dyjack, N.; Azeredo-Tseng, C.; Yildirim, N. Mathematical modeling reveals differential regulation of MAPK activity by phosphatase proteins in the yeast pheromone response pathway. Mol. BioSyst. 2017, 13, 1323–1335. [Google Scholar] [CrossRef] [PubMed]
- Levchenko, A.; Bruck, J.; Sternberg, P.W. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl. Acad. Sci. USA 2000, 97, 5818–5823. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, R.; Neel, B.G.; Rapoport, T.A. Mathematical models of protein kinase signal transduction. Mol. Cell 2002, 9, 957–970. [Google Scholar] [CrossRef]
- Tian, T.; Harding, A. How MAP kinase modules function as robust, yet adaptable, circuits. Cell Cycle 2014, 13, 2379–2390. [Google Scholar] [CrossRef]
- Sturm, O.E.; Orton, R.; Grindlay, J.; Birtwistle, M.; Vyshemirsky, V.; Gilbert, D.; Calder, M.; Pitt, A.; Kholodenko, B.; Kolch, W. The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Sci. Signal. 2010, 3, ra90. [Google Scholar] [CrossRef]
- Aoki, K.; Yamada, M.; Kunida, K.; Yasuda, S.; Matsuda, M. Processive phosphorylation of ERK MAP kinase in mammalian cells. Proc. Natl. Acad. Sci. USA 2011, 108, 12675–12680. [Google Scholar] [CrossRef]
- Qiao, L.; Nachbar, R.B.; Kevrekidis, I.G.; Shvartsman, S.Y. Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. PLoS Comput. Biol. 2007, 3, e184. [Google Scholar] [CrossRef]
- Yeung, E.; McFann, S.; Marsh, L.; Dufresne, E.; Filippi, S.; Harrington, H.A.; Shvartsman, S.Y.; Wühr, M. Inference of multisite phosphorylation rate constants and their modulation by pathogenic mutations. Curr. Biol. 2020, 30, 877–882. [Google Scholar] [CrossRef]
- Qi, M.; Elion, E.A. MAP kinase pathways. J. Cell Sci. 2005, 118, 3569–3572. [Google Scholar] [CrossRef] [PubMed]
- Haugh, J.M. A unified model for signal transduction reactions in cellular membranes. Biophys. J. 2002, 82, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Harding, A.; Tian, T.; Westbury, E.; Frische, E.; Hancock, J.F. Subcellular localization determines MAP kinase signal output. Curr. Biol. 2005, 15, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Harding, A.; Inder, K.; Plowman, S.; Parton, R.G.; Hancock, J.F. Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nat. Cell Biol. 2007, 9, 905–914. [Google Scholar] [CrossRef]
- Tian, T.; Plowman, S.J.; Parton, R.G.; Kloog, Y.; Hancock, J.F. Mathematical modeling of K-Ras nanocluster formation on the plasma membrane. Biophys. J. 2010, 99, 534–543. [Google Scholar] [CrossRef]
- Yue, T.; Zhang, X. Signal transduction across cellular membranes can be mediated by coupling of the clustering of anchored proteins in both leaflets. Phys. Rev. E 2012, 85, 011917. [Google Scholar] [CrossRef]
- Kozer, N.; Barua, D.; Orchard, S.; Nice, E.C.; Burgess, A.W.; Hlavacek, W.S.; Clayton, A.H. Exploring higher-order EGFR oligomerisation and phosphorylation—a combined experimental and theoretical approach. Mol. BioSyst. 2013, 9, 1849–1863. [Google Scholar] [CrossRef]
- Ryu, H.; Chung, M.; Dobrzyński, M.; Fey, D.; Blum, Y.; Lee, S.S.; Peter, M.; Kholodenko, B.N.; Jeon, N.L.; Pertz, O. Frequency modulation of ERK activation dynamics rewires cell fate. Mol. Syst. Biol. 2015, 11, 838. [Google Scholar] [CrossRef]
- Shankaran, H.; Ippolito, D.L.; Chrisler, W.B.; Resat, H.; Bollinger, N.; Opresko, L.K.; Wiley, H.S. Rapid and sustained nuclear–cytoplasmic ERK oscillations induced by epidermal growth factor. Mol. Syst. Biol. 2009, 5, 332. [Google Scholar] [CrossRef]
- Regot, S.; Hughey, J.J.; Bajar, B.T.; Carrasco, S.; Covert, M.W. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 2014, 157, 1724–1734. [Google Scholar] [CrossRef]
- Hadač, O.; Muzika, F.; Nevoral, V.; Přibyl, M.; Schreiber, I. Minimal oscillating subnetwork in the Huang-Ferrell model of the MAPK cascade. PLoS ONE 2017, 12, e0178457. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, A.; Terai, K.; Itoh, R.E.; Aoki, K.; Nakamura, T.; Kuroda, S.; Nishida, E.; Matsuda, M. Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. J. Biol. Chem. 2006, 281, 8917–8926. [Google Scholar] [CrossRef] [PubMed]
- Shindo, Y.; Iwamoto, K.; Mouri, K.; Hibino, K.; Tomita, M.; Kosako, H.; Sako, Y.; Takahashi, K. Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling. Nat. Commun. 2016, 7, 10485. [Google Scholar] [CrossRef]
- Gerosa, L.; Chidley, C.; Fröhlich, F.; Sanchez, G.; Lim, S.K.; Muhlich, J.; Chen, J.Y.; Vallabhaneni, S.; Baker, G.J.; Schapiro, D.; et al. Receptor-driven ERK pulses reconfigure MAPK signaling and enable persistence of drug-adapted BRAF-mutant melanoma cells. Cell Syst. 2020, 11, 478–494. [Google Scholar] [CrossRef] [PubMed]
- Jorissen, R.N.; Walker, F.; Pouliot, N.; Garrett, T.P.; Ward, C.W.; Burgess, A.W. Epidermal growth factor receptor: Mechanisms of activation and signalling. EGF Recept. Fam. 2003, 33–55. [Google Scholar] [CrossRef] [PubMed]
- Kiyatkin, A.; van Alderwerelt van Rosenburgh, I.K.; Klein, D.E.; Lemmon, M.A. Kinetics of receptor tyrosine kinase activation define ERK signaling dynamics. Sci. Signal. 2020, 13, eaaz5267. [Google Scholar] [CrossRef]
- Avraham, R.; Yarden, Y. Feedback regulation of EGFR signalling: Decision making by early and delayed loops. Nat. Rev. Mol. Cell Biol. 2011, 12, 104–117. [Google Scholar] [CrossRef]
- Bhalla, U.S.; Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 1999, 283, 381–387. [Google Scholar] [CrossRef]
- Bhalla, U.S.; Ram, P.T.; Iyengar, R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 2002, 297, 1018–1023. [Google Scholar] [CrossRef]
- Kholodenko, B.N.; Demin, O.V.; Moehren, G.; Hoek, J.B. Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 1999, 274, 30169–30181. [Google Scholar] [CrossRef]
- Schoeberl, B.; Eichler-Jonsson, C.; Gilles, E.D.; Müller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 2002, 20, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Freed, D.M.; Bessman, N.J.; Kiyatkin, A.; Salazar-Cavazos, E.; Byrne, P.O.; Moore, J.O.; Valley, C.C.; Ferguson, K.M.; Leahy, D.J.; Lidke, D.S.; et al. EGFR ligands differentially stabilize receptor dimers to specify signaling kinetics. Cell 2017, 171, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Blum, Y.; Mikelson, J.; Dobrzyński, M.; Ryu, H.; Jacques, M.A.; Jeon, N.L.; Khammash, M.; Pertz, O. Temporal perturbation of ERK dynamics reveals network architecture of FGF2/MAPK signaling. Mol. Syst. Biol. 2019, 15, e8947. [Google Scholar] [CrossRef] [PubMed]
- Oyarzún, D.A.; Bramhall, J.L.; López-Caamal, F.; Richards, F.M.; Jodrell, D.I.; Krippendorff, B.F. The EGFR demonstrates linear signal transmission. Integr. Biol. 2014, 6, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Bardwell, L.; Zou, X.; Nie, Q.; Komarova, N.L. Mathematical models of specificity in cell signaling. Biophys. J. 2007, 92, 3425–3441. [Google Scholar] [CrossRef]
- Zou, X.; Peng, T.; Pan, Z. Modeling specificity in the yeast MAPK signaling networks. J. Theor. Biol. 2008, 250, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Niepel, M.; McDermott, J.E.; Gao, Y.; Nicora, C.D.; Chrisler, W.B.; Markillie, L.M.; Petyuk, V.A.; Smith, R.D.; Rodland, K.D.; et al. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway. Sci. Signal. 2016, 9, rs6. [Google Scholar] [CrossRef]
- Yi, L.; Shi, T.; Gritsenko, M.A.; X’avia Chan, C.Y.; Fillmore, T.L.; Hess, B.M.; Swensen, A.C.; Liu, T.; Smith, R.D.; Wiley, H.S.; et al. Targeted quantification of phosphorylation dynamics in the context of EGFR-MAPK pathway. Anal. Chem. 2018, 90, 5256–5263. [Google Scholar] [CrossRef]
- Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 2002, 110, 669–672. [Google Scholar] [CrossRef]
- Klein, P.; Mattoon, D.; Lemmon, M.A.; Schlessinger, J. A structure-based model for ligand binding and dimerization of EGF receptors. Proc. Natl. Acad. Sci. USA 2004, 101, 929–934. [Google Scholar] [CrossRef]
- Hajdu, T.; Váradi, T.; Rebenku, I.; Kovács, T.; Szöllösi, J.; Nagy, P. Comprehensive model for epidermal growth factor receptor ligand binding involving conformational states of the extracellular and the kinase domains. Front. Cell Dev. Biol. 2020, 8, 776. [Google Scholar] [CrossRef] [PubMed]
- Mac Gabhann, F.; Popel, A.S. Dimerization of VEGF receptors and implications for signal transduction: A computational study. Biophys. Chem. 2007, 128, 125–139. [Google Scholar] [CrossRef]
- Mayawala, K.; Vlachos, D.G.; Edwards, J.S. Computational modeling reveals molecular details of epidermal growth factor binding. BMC Cell Biol. 2005, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Claas, A.M.; Atta, L.; Gordonov, S.; Meyer, A.S.; Lauffenburger, D.A. Systems modeling identifies divergent receptor tyrosine kinase reprogramming to MAPK pathway inhibition. Cell. Mol. Bioeng. 2018, 11, 451–469. [Google Scholar] [CrossRef] [PubMed]
- Resat, H.; Ewald, J.A.; Dixon, D.A.; Wiley, H.S. An integrated model of epidermal growth factor receptor trafficking and signal transduction. Biophys. J. 2003, 85, 730–743. [Google Scholar] [CrossRef] [PubMed]
- Monast, C.S.; Furcht, C.M.; Lazzara, M.J. Computational analysis of the regulation of EGFR by protein tyrosine phosphatases. Biophys. J. 2012, 102. [Google Scholar] [CrossRef]
- Hendriks, B.S.; Orr, G.; Wells, A.; Wiley, H.S.; Lauffenburger, D.A. Parsing ERK activation reveals quantitatively equivalent contributions from epidermal growth factor receptor and HER2 in human mammary epithelial cells. J. Biol. Chem. 2005, 280, 6157–6169. [Google Scholar] [CrossRef]
- Barua, D.; Faeder, J.R.; Haugh, J.M. Structure-based kinetic models of modular signaling protein function: Focus on Shp2. Biophys. J. 2007, 92, 2290–2300. [Google Scholar] [CrossRef]
- Li, H.; Ung, C.Y.; Ma, X.H.; Li, B.W.; Low, B.C.; Cao, Z.W.; Chen, Y.Z. Simulation of crosstalk between small GTPase RhoA and EGFR-ERK signaling pathway via MEKK1. Bioinformatics 2009, 25, 358–364. [Google Scholar] [CrossRef]
- Gagliardi, P.A.; Pertz, O. The mitogen-activated protein kinase network, wired to dynamically function at multiple scales. Curr. Opin. Cell Biol. 2024, 88, 102368. [Google Scholar] [CrossRef]
- Kamioka, Y.; Yasuda, S.; Fujita, Y.; Aoki, K.; Matsuda, M. Multiple decisive phosphorylation sites for the negative feedback regulation of SOS1 via ERK. J. Biol. Chem. 2010, 285, 33540–33548. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Cardelli, L.; Phillips, A.; Piterman, N.; Fisher, J. Computational modeling of the EGFR network elucidates control mechanisms regulating signal dynamics. BMC Syst. Biol. 2009, 3, 118. [Google Scholar] [CrossRef] [PubMed]
- Ogura, Y.; Wen, F.L.; Sami, M.M.; Shibata, T.; Hayashi, S. A switch-like activation relay of EGFR-ERK signaling regulates a wave of cellular contractility for epithelial invagination. Dev. Cell 2018, 46, 162–172. [Google Scholar] [CrossRef] [PubMed]
- De Simone, A.; Evanitsky, M.N.; Hayden, L.; Cox, B.D.; Wang, J.; Tornini, V.A.; Ou, J.; Chao, A.; Poss, K.D.; Di Talia, S. Control of osteoblast regeneration by a train of Erk activity waves. Nature 2021, 590, 129–133. [Google Scholar] [CrossRef]
- Arkun, Y.; Yasemi, M. Dynamics and control of the ERK signaling pathway: Sensitivity, bistability, and oscillations. PLoS ONE 2018, 13, e0195513. [Google Scholar] [CrossRef]
- Fritsche-Guenther, R.; Witzel, F.; Sieber, A.; Herr, R.; Schmidt, N.; Braun, S.; Brummer, T.; Sers, C.; Blüthgen, N. Strong negative feedback from Erk to Raf confers robustness to MAPK signalling. Mol. Syst. Biol. 2011, 7, 489. [Google Scholar] [CrossRef]
- Manning, B.D.; Toker, A. AKT/PKB signaling: Navigating the network. Cell 2017, 169, 381–405. [Google Scholar] [CrossRef]
- Aksamitiene, E.; Kiyatkin, A.; Kholodenko, B.N. Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: A fine balance. Biochem. Soc. Trans. 2012, 40, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Sulaimanov, N.; Klose, M.; Busch, H.; Boerries, M. Understanding the mTOR signaling pathway via mathematical modeling. Wiley Interdiscip. Rev. Syst. Biol. Med. 2017, 9, e1379. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.; Lam, H.Y.; Yap, K.C.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- Hatakeyama, M.; Kimura, S.; Naka, T.; Kawasaki, T.; Yumoto, N.; Ichikawa, M.; Kim, J.H.; Saito, K.; Saeki, M.; Shirouzu, M.; et al. A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem. J. 2003, 373, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Yuan, J.M. Time-dependent sensitivity analysis of biological networks: Coupled MAPK and PI3K signal transduction pathways. J. Phys. Chem. A 2006, 110, 5361–5370. [Google Scholar] [CrossRef] [PubMed]
- Lebedeva, G.; Sorokin, A.; Faratian, D.; Mullen, P.; Goltsov, A.; Langdon, S.P.; Harrison, D.J.; Goryanin, I. Model-based global sensitivity analysis as applied to identification of anti-cancer drug targets and biomarkers of drug resistance in the ErbB2/3 network. Eur. J. Pharm. Sci. 2012, 46, 244–258. [Google Scholar] [CrossRef] [PubMed]
- Koh, G.; Teong, H.F.C.; Clement, M.V.; Hsu, D.; Thiagarajan, P. A decompositional approach to parameter estimation in pathway modeling: A case study of the Akt and MAPK pathways and their crosstalk. Bioinformatics 2006, 22, e271–e280. [Google Scholar] [CrossRef]
- Babu, C.; Babar, S.M.E.; Song, E.J.; Oh, E.; Yoo, Y.S. Kinetic analysis of the MAPK and PI3K/Akt signaling pathways. Mol. Cells (Springer Sci. Bus. Media BV) 2008, 25, 397–406. [Google Scholar]
- Kiyatkin, A.; Aksamitiene, E.; Markevich, N.I.; Borisov, N.M.; Hoek, J.B.; Kholodenko, B.N. Scaffolding protein Grb2-associated binder 1 sustains epidermal growth factor-induced mitogenic and survival signaling by multiple positive feedback loops. J. Biol. Chem. 2006, 281, 19925–19938. [Google Scholar] [CrossRef]
- Chen, W.W.; Schoeberl, B.; Jasper, P.J.; Niepel, M.; Nielsen, U.B.; Lauffenburger, D.A.; Sorger, P.K. Input–output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol. Syst. Biol. 2009, 5, 239. [Google Scholar] [CrossRef]
- Arkun, Y. Dynamic modeling and analysis of the cross-talk between insulin/AKT and MAPK/ERK signaling pathways. PLoS ONE 2016, 11, e0149684. [Google Scholar] [CrossRef]
- Hu, H.; Goltsov, A.; Bown, J.L.; Sims, A.H.; Langdon, S.P.; Harrison, D.J.; Faratian, D. Feedforward and feedback regulation of the MAPK and PI3K oscillatory circuit in breast cancer. Cell. Signal. 2013, 25, 26–32. [Google Scholar] [CrossRef]
- Tasaki, S.; Nagasaki, M.; Kozuka-Hata, H.; Semba, K.; Gotoh, N.; Hattori, S.; Inoue, J.i.; Yamamoto, T.; Miyano, S.; Sugano, S.; et al. Phosphoproteomics-based modeling defines the regulatory mechanism underlying aberrant EGFR signaling. PLoS ONE 2010, 5, e13926. [Google Scholar] [CrossRef]
- Birtwistle, M.R.; Hatakeyama, M.; Yumoto, N.; Ogunnaike, B.A.; Hoek, J.B.; Kholodenko, B.N. Ligand-dependent responses of the ErbB signaling network: Experimental and modeling analyses. Mol. Syst. Biol. 2007, 3, 144. [Google Scholar] [CrossRef] [PubMed]
- Borisov, N.; Aksamitiene, E.; Kiyatkin, A.; Legewie, S.; Berkhout, J.; Maiwald, T.; Kaimachnikov, N.P.; Timmer, J.; Hoek, J.B.; Kholodenko, B.N. Systems-level interactions between insulin–EGF networks amplify mitogenic signaling. Mol. Syst. Biol. 2009, 5, 256. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Cirit, M.; Haugh, J.M. PI3K-dependent cross-talk interactions converge with Ras as quantifiable inputs integrated by Erk. Mol. Syst. Biol. 2009, 5, 246. [Google Scholar] [CrossRef]
- Padala, R.R.; Karnawat, R.; Viswanathan, S.B.; Thakkar, A.V.; Das, A.B. Cancerous perturbations within the ERK, PI3K/Akt, and Wnt/β-catenin signaling network constitutively activate inter-pathway positive feedback loops. Mol. BioSyst. 2017, 13, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Samaga, R.; Saez-Rodriguez, J.; Alexopoulos, L.G.; Sorger, P.K.; Klamt, S. The logic of EGFR/ErbB signaling: Theoretical properties and analysis of high-throughput data. PLoS Comput. Biol. 2009, 5, e1000438. [Google Scholar] [CrossRef]
- Han, J.; Lin, K.; Zhang, X.; Yan, L.; Liu, J.; Liu, J. PTEN-mediated AKT/β-catenin signaling enhances the proliferation and expansion of Lgr5+ hepatocytes. Int. J. Biol. Sci. 2021, 17, 861. [Google Scholar] [CrossRef]
- He, J.; Han, J.; Lin, K.; Wang, J.; Li, G.; Li, X.; Gao, Y. PTEN/AKT and Wnt/β-catenin signaling pathways regulate the proliferation of Lgr5+ cells in liver cancer. Biochem. Biophys. Res. Commun. 2023, 683, 149117. [Google Scholar] [CrossRef]
- Han, J.; Lin, K.; Choo, H.; Chen, Y.; Zhang, X.; Xu, R.H.; Wang, X.; Wu, Y. Distinct bulge stem cell populations maintain the pilosebaceous unit in a β-catenin-dependent manner. IScience 2023, 26, 105805. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Tian, R.; Zhang, Y.; Drutskaya, M.S.; Wang, C.; Ge, J.; Fan, Z.; Kong, D.; Wang, X.; et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat. Commun. 2017, 8, 14091. [Google Scholar] [CrossRef]
- Olsen, J.V.; Blagoev, B.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 2006, 127, 635–648. [Google Scholar] [CrossRef]
- Tian, T.; Song, J. Mathematical Modelling of the MAP Kinase Pathway Using Proteomic Datasets. PLoS ONE 2012, 7, e42230. [Google Scholar] [CrossRef] [PubMed]
- Kulak, N.A.; Pichler, G.; Paron, I.; Nagaraj, N.; Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 2014, 11, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Geiger, T.; Wehner, A.; Schaab, C.; Cox, J.; Mann, M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol. Cell. Proteom. 2012, 11, M111.014050. [Google Scholar] [CrossRef] [PubMed]
- Stites, E.C.; Aziz, M.; Creamer, M.S.; Von Hoff, D.D.; Posner, R.G.; Hlavacek, W.S. Use of mechanistic models to integrate and analyze multiple proteomic datasets. Biophys. J. 2015, 108, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, F.; Gerosa, L.; Muhlich, J.; Sorger, P.K. Mechanistic model of MAPK signaling reveals how allostery and rewiring contribute to drug resistance. Mol. Syst. Biol. 2023, 19, e10988. [Google Scholar] [CrossRef] [PubMed]
- Bessette, D.C.; Tilch, E.; Seidens, T.; Quinn, M.C.; Wiegmans, A.P.; Shi, W.; Cocciardi, S.; McCart-Reed, A.; Saunus, J.M.; Simpson, P.T.; et al. Using the MCF10A/MCF10CA1a breast cancer progression cell line model to investigate the effect of active, mutant forms of EGFR in breast cancer development and treatment using gefitinib. PLoS ONE 2015, 10, e0125232. [Google Scholar] [CrossRef]
- Bouhaddou, M.; Barrette, A.M.; Stern, A.D.; Koch, R.J.; DiStefano, M.S.; Riesel, E.A.; Santos, L.C.; Tan, A.L.; Mertz, A.E.; Birtwistle, M.R. A mechanistic pan-cancer pathway model informed by multi-omics data interprets stochastic cell fate responses to drugs and mitogens. PLoS Comput. Biol. 2018, 14, e1005985. [Google Scholar] [CrossRef]
- Erdem, C.; Mutsuddy, A.; Bensman, E.M.; Dodd, W.B.; Saint-Antoine, M.M.; Bouhaddou, M.; Blake, R.C.; Gross, S.M.; Heiser, L.M.; Feltus, F.A.; et al. A scalable, open-source implementation of a large-scale mechanistic model for single cell proliferation and death signaling. Nat. Commun. 2022, 13, 3555. [Google Scholar] [CrossRef]
- Zhao, C.; Medeiros, T.X.; Sové, R.J.; Annex, B.H.; Popel, A.S. A data-driven computational model enables integrative and mechanistic characterization of dynamic macrophage polarization. Iscience 2021, 24, 102112. [Google Scholar] [CrossRef]
- Lee, D.; Jayaraman, A.; Kwon, J.S. Development of a hybrid model for a partially known intracellular signaling pathway through correction term estimation and neural network modeling. PLoS Comput. Biol. 2020, 16, e1008472. [Google Scholar] [CrossRef]
- Liu, F.; Heiner, M.; Gilbert, D. Hybrid modelling of biological systems: Current progress and future prospects. Briefings Bioinform. 2022, 23, bbac081. [Google Scholar] [CrossRef] [PubMed]
- Cruz, D.A.; Kemp, M.L. Hybrid computational modeling methods for systems biology. Prog. Biomed. Eng. 2021, 4, 012002. [Google Scholar] [CrossRef]
- Walpole, J.; Papin, J.A.; Peirce, S.M. Multiscale computational models of complex biological systems. Annu. Rev. Biomed. Eng. 2013, 15, 137–154. [Google Scholar] [CrossRef] [PubMed]
- Schweidtmann, A.M.; Zhang, D.; von Stosch, M. A review and perspective on hybrid modelling methodologies. Digit. Chem. Eng. 2023, 10, 100136. [Google Scholar] [CrossRef]
- Mahanty, B. Hybrid modeling in bioprocess dynamics: Structural variabilities, implementation strategies, and practical challenges. Biotechnol. Bioeng. 2023, 120, 2072–2091. [Google Scholar] [CrossRef]
- Erdem, C.; Birtwistle, M.R. MEMMAL: A tool for expanding large-scale mechanistic models with machine learned associations and big datasets. Front. Syst. Biol. 2023, 3, 1099413. [Google Scholar] [CrossRef]
- Myers, P.; Lee, S.H.; Lazzara, M. An integrated mechanistic and data-driven computational model predicts cell responses to high-and low-affinity EGFR ligands. bioRxiv 2023, 2023-06. [Google Scholar] [CrossRef]
- Ruths, D.; Muller, M.; Tseng, J.T.; Nakhleh, L.; Ram, P.T. The signaling petri net-based simulator: A non-parametric strategy for characterizing the dynamics of cell-specific signaling networks. PLoS Comput. Biol. 2008, 4, e1000005. [Google Scholar] [CrossRef]
- Albert, R.; Wang, R.S. Discrete dynamic modeling of cellular signaling networks. Methods Enzymol. 2009, 467, 281–306. [Google Scholar]
- Henriques, D.; Villaverde, A.F.; Rocha, M.; Saez-Rodriguez, J.; Banga, J.R. Data-driven reverse engineering of signaling pathways using ensembles of dynamic models. PLoS Comput. Biol. 2017, 13, e1005379. [Google Scholar] [CrossRef]
- Grieco, L.; Calzone, L.; Bernard-Pierrot, I.; Radvanyi, F.; Kahn-Perles, B.; Thieffry, D. Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput. Biol. 2013, 9, e1003286. [Google Scholar] [CrossRef]
- Aldridge, B.B.; Saez-Rodriguez, J.; Muhlich, J.L.; Sorger, P.K.; Lauffenburger, D.A. Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. PLoS Comput. Biol. 2009, 5, e1000340. [Google Scholar] [CrossRef] [PubMed]
- Bernardo-Faura, M.; Massen, S.; Falk, C.S.; Brady, N.R.; Eils, R. Data-derived modeling characterizes plasticity of MAPK signaling in melanoma. PLoS Comput. Biol. 2014, 10, e1003795. [Google Scholar] [CrossRef] [PubMed]
- Supper, J.; Spangenberg, L.; Planatscher, H.; Dräger, A.; Schröder, A.; Zell, A. BowTieBuilder: Modeling signal transduction pathways. BMC Syst. Biol. 2009, 3, 67. [Google Scholar] [CrossRef]
- Waltermann, C.; Klipp, E. Information theory based approaches to cellular signaling. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2011, 1810, 924–932. [Google Scholar] [CrossRef]
- Krantz, M.; Ahmadpour, D.; Ottosson, L.G.; Warringer, J.; Waltermann, C.; Nordlander, B.; Klipp, E.; Blomberg, A.; Hohmann, S.; Kitano, H. Robustness and fragility in the yeast high osmolarity glycerol (HOG) signal-transduction pathway. Mol. Syst. Biol. 2009, 5, 281. [Google Scholar] [CrossRef] [PubMed]
- Blüthgen, N.; Legewie, S. Robustness of signal transduction pathways. Cell. Mol. Life Sci. 2013, 70, 2259–2269. [Google Scholar] [CrossRef]
- Kardynska, M.; Smieja, J.; Paszek, P.; Puszynski, K. Application of sensitivity analysis to discover potential molecular drug targets. Int. J. Mol. Sci. 2022, 23, 6604. [Google Scholar] [CrossRef]
- Kim, M.; Kim, E. Mathematical model of the cell signaling pathway based on the extended Boolean network model with a stochastic process. BMC Bioinform. 2022, 23, 515. [Google Scholar] [CrossRef]
- Rukhlenko, O.S.; Halasz, M.; Rauch, N.; Zhernovkov, V.; Prince, T.; Wynne, K.; Maher, S.; Kashdan, E.; MacLeod, K.; Carragher, N.O.; et al. Control of cell state transitions. Nature 2022, 609, 975–985. [Google Scholar] [CrossRef]
- Kim, D.W.; Hong, H.; Kim, J.K. Systematic inference identifies a major source of heterogeneity in cell signaling dynamics: The rate-limiting step number. Sci. Adv. 2022, 8, eabl4598. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977, 81, 2340–2361. [Google Scholar] [CrossRef]
- Tian, T.; Burrage, K. Binomial leap methods for simulating stochastic chemical kinetics. J. Chem. Phys. 2004, 121, 10356–10364. [Google Scholar] [CrossRef]
- Chen, A.; Ren, Q.; Zhou, T.; Burrage, P.; Tian, T.; Burrage, K. Balanced implicit Patankar–Euler methods for positive solutions of stochastic differential equations of biological regulatory systems. J. Chem. Phys. 2024, 160, 064117. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, K.; Shindo, Y.; Takahashi, K. Modeling cellular noise underlying heterogeneous cell responses in the epidermal growth factor signaling pathway. PLoS Comput. Biol. 2016, 12, e1005222. [Google Scholar] [CrossRef]
- Filippi, S.; Barnes, C.P.; Kirk, P.D.; Kudo, T.; Kunida, K.; McMahon, S.S.; Tsuchiya, T.; Wada, T.; Kuroda, S.; Stumpf, M.P. Robustness of MEK-ERK dynamics and origins of cell-to-cell variability in MAPK signaling. Cell Rep. 2016, 15, 2524–2535. [Google Scholar] [CrossRef]
- Aoki, K.; Kumagai, Y.; Sakurai, A.; Komatsu, N.; Fujita, Y.; Shionyu, C.; Matsuda, M. Stochastic ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation. Mol. Cell 2013, 52, 529–540. [Google Scholar] [CrossRef]
- Jurado, M.; Castaño, Ó.; Zorzano, A. Stochastic modulation evidences a transitory EGF-Ras-ERK MAPK activity induced by PRMT5. Comput. Biol. Med. 2021, 133, 104339. [Google Scholar] [CrossRef]
- Jeschke, M.; Baumgärtner, S.; Legewie, S. Determinants of cell-to-cell variability in protein kinase signaling. PLoS Comput. Biol. 2013, 9, e1003357. [Google Scholar] [CrossRef]
- Marquez-Lago, T.T.; Steinberg, S. Stochastic model of ERK-mediated progesterone receptor translocation, clustering and transcriptional activity. Sci. Rep. 2022, 12, 11791. [Google Scholar] [CrossRef]
- Kolbe, N.; Hexemer, L.; Bammert, L.M.; Loewer, A.; Lukáčová-Medvid’ová, M.; Legewie, S. Data-based stochastic modeling reveals sources of activity bursts in single-cell TGF-β signaling. PLoS Comput. Biol. 2022, 18, e1010266. [Google Scholar] [CrossRef] [PubMed]
- Strasen, J.; Sarma, U.; Jentsch, M.; Bohn, S.; Sheng, C.; Horbelt, D.; Knaus, P.; Legewie, S.; Loewer, A. Cell-specific responses to the cytokine TGF β are determined by variability in protein levels. Mol. Syst. Biol. 2018, 14, e7733. [Google Scholar] [CrossRef] [PubMed]
- Bajikar, S.S.; Janes, K.A. Multiscale models of cell signaling. Ann. Biomed. Eng. 2012, 40, 2319–2327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, H.; Oliveira, R.H.M.; Zhao, C.; Popel, A.S. Systems biology of angiogenesis signaling: Computational models and omics. WIREs Mech. Dis. 2022, 14, e1550. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.C.; Georgopoulos, N.T.; Southgate, J. From pathway to population—A multiscale model of juxtacrine EGFR-MAPK signalling. BMC Syst. Biol. 2008, 2, 102. [Google Scholar] [CrossRef]
- Hsieh, M.y.; Yang, S.; Raymond-Stinz, M.A.; Edwards, J.S.; Wilson, B.S. Spatio-temporal modeling of signaling protein recruitment to EGFR. BMC Syst. Biol. 2010, 4, 57. [Google Scholar] [CrossRef]
- Shalom-Feuerstein, R.; Plowman, S.J.; Rotblat, B.; Ariotti, N.; Tian, T.; Hancock, J.F.; Kloog, Y. K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Res. 2008, 68, 6608–6616. [Google Scholar] [CrossRef]
- Lindstrom, M.J.; Bates, D.M. Nonlinear mixed effects models for repeated measures data. Biometrics 1990, 46, 673–687. [Google Scholar] [CrossRef]
- Davidian, M.; Giltinan, D.M. Nonlinear models for repeated measurement data: An overview and update. J. Agric. Biol. Environ. Stat. 2003, 8, 387–419. [Google Scholar] [CrossRef]
- Lee, S.Y. Bayesian nonlinear models for repeated measurement data: An overview, implementation, and applications. Mathematics 2022, 10, 898. [Google Scholar] [CrossRef]
- Karlsson, M.; Janzén, D.L.; Durrieu, L.; Colman-Lerner, A.; Kjellsson, M.C.; Cedersund, G. Nonlinear mixed-effects modelling for single cell estimation: When, why, and how to use it. BMC Syst. Biol. 2015, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Almquist, J.; Bendrioua, L.; Adiels, C.B.; Goksör, M.; Hohmann, S.; Jirstrand, M. A nonlinear mixed effects approach for modeling the cell-to-cell variability of Mig1 dynamics in yeast. PLoS ONE 2015, 10, e0124050. [Google Scholar] [CrossRef]
- Straube, J.; Gorse, A.D.; PROOF Centre of Excellence Team; Huang, B.E.; Lê Cao, K.A. A linear mixed model spline framework for analysing time course ‘omics’ data. PLoS ONE 2015, 10, e0134540. [Google Scholar] [CrossRef]
- Wade, J.D.; Lun, X.K.; Bodenmiller, B.; Voit, E.O. Multidimensional single-cell modeling of cellular signaling. bioRxiv 2020, 2020-11. [Google Scholar] [CrossRef]
- Hasenauer, J.; Hasenauer, C.; Hucho, T.; Theis, F.J. ODE constrained mixture modelling: A method for unraveling subpopulation structures and dynamics. PLoS Comput. Biol. 2014, 10, e1003686. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, F.; Reiser, A.; Fink, L.; Woschée, D.; Ligon, T.; Theis, F.J.; Rädler, J.O.; Hasenauer, J. Multi-experiment nonlinear mixed effect modeling of single-cell translation kinetics after transfection. NPJ Syst. Biol. Appl. 2018, 4, 42. [Google Scholar] [CrossRef]
- Alamoudi, E.; Schälte, Y.; Müller, R.; Starruss, J.; Bundgaard, N.; Graw, F.; Brusch, L.; Hasenauer, J. FitMultiCell: Simulating and parameterizing computational models of multi-scale and multi-cellular processes. bioRxiv 2023, 2023-02. [Google Scholar] [CrossRef]
- Starruß, J.; De Back, W.; Brusch, L.; Deutsch, A. Morpheus: A user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics 2014, 30, 1331–1332. [Google Scholar] [CrossRef]
- Klinger, E.; Rickert, D.; Hasenauer, J. pyABC: Distributed, likelihood-free inference. Bioinformatics 2018, 34, 3591–3593. [Google Scholar] [CrossRef]
- Erdem, C.; Bensman, E.M.; Mutsuddy, A.; Saint-Antoine, M.M.; Bouhaddou, M.; Blake, R.C.; Dodd, W.; Gross, S.M.; Heiser, L.M.; Feltus, F.A.; et al. A Simple and Efficient Pipeline for Construction, Merging, Expansion, and Simulation of Large-Scale, Single-Cell Mechanistic Models. bioRxiv 2020. [Google Scholar] [CrossRef]
- Tejero-Cantero, A.; Boelts, J.; Deistler, M.; Lueckmann, J.M.; Durkan, C.; Gonçalves, P.J.; Greenberg, D.S.; Macke, J.H. SBI–A toolkit for simulation-based inference. arXiv 2020, arXiv:2007.09114. [Google Scholar] [CrossRef]
- Cranmer, K.; Brehmer, J.; Louppe, G. The frontier of simulation-based inference. Proc. Natl. Acad. Sci. USA 2020, 117, 30055–30062. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Sierra, M.A.; Sokolowski, T.R. Comparing AI versus Optimization Workflows for Simulation-Based Inference of Spatial-Stochastic Systems. arXiv 2024, arXiv:2407.10938. [Google Scholar]
- Jacques, M.A.; Dobrzyński, M.; Gagliardi, P.A.; Sznitman, R.; Pertz, O. CODEX, a neural network approach to explore signaling dynamics landscapes. Mol. Syst. Biol. 2021, 17, e10026. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Hong, H.; Hwang, H.J.; Chang, W.; Kim, J.K. Density physics-informed neural networks reveal sources of cell heterogeneity in signal transduction. Patterns 2024, 5, 100899. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Bennett, J.J.; Stern, A.D.; Zhang, X.; Birtwistle, M.R.; Pandey, G. Low-frequency ERK and Akt activity dynamics are predictive of stochastic cell division events. Npj Syst. Biol. Appl. 2024, 10, 65. [Google Scholar] [CrossRef]
- Stern, A.D.; Smith, G.R.; Santos, L.C.; Sarmah, D.; Zhang, X.; Lu, X.; Iuricich, F.; Pandey, G.; Iyengar, R.; Birtwistle, M.R. Relating individual cell division events to single-cell ERK and Akt activity time courses. Sci. Rep. 2022, 12, 18077. [Google Scholar] [CrossRef]
- Yang, C.; Tian, C.; Hoffman, T.E.; Jacobsen, N.K.; Spencer, S.L. Melanoma subpopulations that rapidly escape MAPK pathway inhibition incur DNA damage and rely on stress signalling. Nat. Commun. 2021, 12, 1747. [Google Scholar] [CrossRef] [PubMed]
- Dessauges, C.; Mikelson, J.; Dobrzyński, M.; Jacques, M.A.; Frismantiene, A.; Gagliardi, P.A.; Khammash, M.; Pertz, O. Optogenetic actuator–ERK biosensor circuits identify MAPK network nodes that shape ERK dynamics. Mol. Syst. Biol. 2022, 18, e10670. [Google Scholar] [CrossRef]
- Loos, C.; Moeller, K.; Fröhlich, F.; Hucho, T.; Hasenauer, J. A hierarchical, data-driven approach to modeling single-cell populations predicts latent causes of cell-to-cell variability. Cell Syst. 2018, 6, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.; Chung, M.; Song, J.; Lee, S.S.; Pertz, O.; Jeon, N.L. Integrated platform for monitoring single-cell MAPK kinetics in computer-controlled temporal stimulations. Sci. Rep. 2018, 8, 11126. [Google Scholar] [CrossRef] [PubMed]
- Miura, H.; Kondo, Y.; Matsuda, M.; Aoki, K. Cell-to-cell heterogeneity in p38-mediated cross-inhibition of JNK causes stochastic cell death. Cell Rep. 2018, 24, 2658–2668. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Abiega, S.; Grönloh, M.L.; Gadella, T.W., Jr.; Bruggeman, F.J.; Goedhart, J. Single-cell imaging of ERK and Akt activation dynamics and heterogeneity induced by G-protein-coupled receptors. J. Cell Sci. 2022, 135, jcs259685. [Google Scholar] [CrossRef]
- Davies, A.E.; Pargett, M.; Siebert, S.; Gillies, T.E.; Choi, Y.; Tobin, S.J.; Ram, A.R.; Murthy, V.; Juliano, C.; Quon, G.; et al. Systems-level properties of EGFR-RAS-ERK signaling amplify local signals to generate dynamic gene expression heterogeneity. Cell Syst. 2020, 11, 161–175. [Google Scholar] [CrossRef]
- Hucka, M.; Finney, A.; Bornstein, B.J.; Keating, S.M.; Shapiro, B.E.; Matthews, J.; Kovitz, B.L.; Schilstra, M.J.; Funahashi, A.; Doyle, J.C.; et al. Evolving a lingua franca and associated software infrastructure for computational systems biology: The Systems Biology Markup Language (SBML) project. Syst. Biol. 2004, 1, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Keating, S.M.; Waltemath, D.; König, M.; Zhang, F.; Dräger, A.; Chaouiya, C.; Bergmann, F.T.; Finney, A.; Gillespie, C.S.; Helikar, T.; et al. SBML Level 3: An extensible format for the exchange and reuse of biological models. Mol. Syst. Biol. 2020, 16, e9110. [Google Scholar] [CrossRef]
- Keating, S.M.; Bornstein, B.J.; Finney, A.; Hucka, M. SBMLToolbox: An SBML toolbox for MATLAB users. Bioinformatics 2006, 22, 1275–1277. [Google Scholar] [CrossRef]
- Schmidt, H.; Jirstrand, M. Systems Biology Toolbox for MATLAB: A computational platform for research in systems biology. Bioinformatics 2006, 22, 514–515. [Google Scholar] [CrossRef]
- Radivoyevitch, T. A two-way interface between limited Systems Biology Markup Language and R. BMC Bioinform. 2004, 5, 190. [Google Scholar] [CrossRef]
- Welsh, C.; Xu, J.; Smith, L.; König, M.; Choi, K.; Sauro, H.M. libRoadRunner 2.0: A high performance SBML simulation and analysis library. Bioinformatics 2023, 39, btac770. [Google Scholar] [CrossRef] [PubMed]
- Tusek, A.; Kurtanjek, Z. Systems Biology Markup Language: Case Study of T-Cell Signal Transduction Network. In Proceedings of the 2007 29th International Conference on Information Technology Interfaces, Cavtat, Croatia, 25–28 June 2007; pp. 651–656. [Google Scholar]
- Pinto, J.; Costa, R.S.; Alexandre, L.; Ramos, J.; Oliveira, R. SBML2HYB: A Python interface for SBML compatible hybrid modeling. Bioinformatics 2023, 39, btad044. [Google Scholar] [CrossRef] [PubMed]
- Hamis, S.J.; Kapelyukh, Y.; McLaren, A.; Henderson, C.J.; Roland Wolf, C.; Chaplain, M.A. Quantifying ERK activity in response to inhibition of the BRAFV600E-MEK-ERK cascade using mathematical modelling. Br. J. Cancer 2021, 125, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Santra, T. Fitting mathematical models of biochemical pathways to steady state perturbation response data without simulating perturbation experiments. Sci. Rep. 2018, 8, 11679. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Bai, J.; Mur, L.A.; Zou, M.; Han, J.; Gao, R.; Yang, Q. Mathematical modelling of Her2 (ErbB2) PI3K/AKT signalling pathways during breast carcinogenesis to include PTPD2. AIMS Math. 2020, 5, 4946–4958. [Google Scholar] [CrossRef]
- Plaugher, D.; Aguilar, B.; Murrugarra, D. Uncovering potential interventions for pancreatic cancer patients via mathematical modeling. J. Theor. Biol. 2022, 548, 111197. [Google Scholar] [CrossRef]
- Tavenard, R.; Faouzi, J.; Vandewiele, G.; Divo, F.; Androz, G.; Holtz, C.; Payne, M.; Yurchak, R.; Rußwurm, M.; Kolar, K.; et al. Tslearn, a machine learning toolkit for time series data. J. Mach. Learn. Res. 2020, 21, 1–6. [Google Scholar]
- Imoto, H.; Zhang, S.; Okada, M. A computational framework for prediction and analysis of cancer signaling dynamics from RNA sequencing data—application to the ErbB receptor signaling pathway. Cancers 2020, 12, 2878. [Google Scholar] [CrossRef]
- Nałęcz-Jawecki, P.; Gagliardi, P.A.; Kochańczyk, M.; Dessauges, C.; Pertz, O.; Lipniacki, T. The MAPK/ERK channel capacity exceeds 6 bit/hour. PLoS Comput. Biol. 2023, 19, e1011155. [Google Scholar] [CrossRef]
- Smart, B.; de Cesare, I.; Renson, L.; Marucci, L. Model predictive control of cancer cellular dynamics: A new strategy for therapy design. Front. Control Eng. 2022, 3, 935018. [Google Scholar] [CrossRef]
- Calzone, L.; Noël, V.; Barillot, E.; Kroemer, G.; Stoll, G. Modeling signaling pathways in biology with MaBoSS: From one single cell to a dynamic population of heterogeneous interacting cells. Comput. Struct. Biotechnol. J. 2022, 20, 5661–5671. [Google Scholar] [CrossRef] [PubMed]
- Perampalam, P.; MacDonald, J.I.; Zakirova, K.; Passos, D.T.; Wasif, S.; Ramos-Valdes, Y.; Hervieu, M.; Mehlen, P.; Rottapel, R.; Gibert, B.; et al. Netrin signaling mediates survival of dormant epithelial ovarian cancer cells. Elife 2024, 12, RP91766. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, N.M.; Flores-Torres, S.; Kyriakidou, M.; Kinsella, J.M.; Mitsis, G.D. Cancer cell sedimentation in 3D cultures reveals active migration regulated by self-generated gradients and adhesion sites. PLoS Comput. Biol. 2024, 20, e1012112. [Google Scholar] [CrossRef] [PubMed]
- Bosdriesz, E.; Neto, J.M.F.; Sieber, A.; Bernards, R.; Blüthgen, N.; Wessels, L.F. Identifying mutant-specific multi-drug combinations using comparative network reconstruction. Iscience 2022, 25, 104760. [Google Scholar] [CrossRef]
- Dokmegang, J.; Nguyen, H.; Kardash, E.; Savy, T.; Cavaliere, M.; Peyriéras, N.; Doursat, R. Quantification of cell behaviors and computational modeling show that cell directional behaviors drive zebrafish pectoral fin morphogenesis. Bioinformatics 2021, 37, 2946–2954. [Google Scholar] [CrossRef]
- Fröhlich, F.; Loos, C.; Hasenauer, J. Scalable inference of ordinary differential equation models of biochemical processes. Gene Regul. Netw. Methods Protoc. 2019, 385–422. [Google Scholar] [CrossRef]
- Needham, C.J.; Bradford, J.R.; Bulpitt, A.J.; Westhead, D.R. A primer on learning in Bayesian networks for computational biology. PLoS Comput. Biol. 2007, 3, e129. [Google Scholar] [CrossRef]
- Toni, T.; Stumpf, M.P. Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics 2010, 26, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, Q.; Hu, X.T.; Tian, T. An integrated approach to infer dynamic protein-gene interactions–a case study of the human p53 protein. Methods 2016, 110, 3–13. [Google Scholar] [CrossRef]
- Wei, J.; Hu, X.; Zou, X.; Tian, T. Reverse-engineering of gene networks for regulating early blood development from single-cell measurements. BMC Med Genom. 2017, 10, 31–43. [Google Scholar] [CrossRef]
- Arisi, I.; Cattaneo, A.; Rosato, V. Parameter estimate of signal transduction pathways. BMC Neurosci. 2006, 7, S6. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jin, L.; Xiong, M. Extended Kalman filter for estimation of parameters in nonlinear state-space models of biochemical networks. PLoS ONE 2008, 3, e3758. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, F.; Kessler, T.; Weindl, D.; Shadrin, A.; Schmiester, L.; Hache, H.; Muradyan, A.; Schütte, M.; Lim, J.H.; Heinig, M.; et al. Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model. Cell Syst. 2018, 7, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, F.; Sorger, P.K. Fides: Reliable trust-region optimization for parameter estimation of ordinary differential equation models. PLoS Comput. Biol. 2022, 18, e1010322. [Google Scholar] [CrossRef]
- Stapor, P.; Schmiester, L.; Wierling, C.; Merkt, S.; Pathirana, D.; Lange, B.M.; Weindl, D.; Hasenauer, J. Mini-batch optimization enables training of ODE models on large-scale datasets. Nat. Commun. 2022, 13, 34. [Google Scholar] [CrossRef]
- Brown, K.S.; Hill, C.C.; Calero, G.A.; Myers, C.R.; Lee, K.H.; Sethna, J.P.; Cerione, R.A. The statistical mechanics of complex signaling networks: Nerve growth factor signaling. Phys. Biol. 2004, 1, 184. [Google Scholar] [CrossRef]
- Xu, T.R.; Vyshemirsky, V.; Gormand, A.; von Kriegsheim, A.; Girolami, M.; Baillie, G.S.; Ketley, D.; Dunlop, A.J.; Milligan, G.; Houslay, M.D.; et al. Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. Sci. Signal. 2010, 3, ra20. [Google Scholar] [CrossRef]
- Toni, T.; Ozaki, Y.i.; Kirk, P.; Kuroda, S.; Stumpf, M.P. Elucidating the in vivo phosphorylation dynamics of the ERK MAP kinase using quantitative proteomics data and Bayesian model selection. Mol. BioSyst. 2012, 8, 1921–1929. [Google Scholar] [CrossRef]
- Liepe, J.; Kirk, P.; Filippi, S.; Toni, T.; Barnes, C.P.; Stumpf, M.P. A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation. Nat. Protoc. 2014, 9, 439–456. [Google Scholar] [CrossRef]
- Wu, Q.; Smith-Miles, K.; Tian, T. Approximate Bayesian computation schemes for parameter inference of discrete stochastic models using simulated likelihood density. BMC Bioinform. 2014, 15, S3. [Google Scholar] [CrossRef]
- He, W.; Xia, P.; Zhang, X.; Tian, T. Bayesian Inference Algorithm for Estimating Heterogeneity of Regulatory Mechanisms Based on Single-Cell Data. Mathematics 2022, 10, 4748. [Google Scholar] [CrossRef]
- Oates, C.J.; Dondelinger, F.; Bayani, N.; Korkola, J.; Gray, J.W.; Mukherjee, S. Causal network inference using biochemical kinetics. Bioinformatics 2014, 30, i468–i474. [Google Scholar] [CrossRef] [PubMed]
- Dixit, P.D.; Lyashenko, E.; Niepel, M.; Vitkup, D. Maximum entropy framework for predictive inference of cell population heterogeneity and responses in signaling networks. Cell Syst. 2020, 10, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, E.; Lavielle, M. Maximum likelihood estimation in nonlinear mixed effects models. Comput. Stat. Data Anal. 2005, 49, 1020–1038. [Google Scholar] [CrossRef]
- Dharmarajan, L.; Kaltenbach, H.M.; Rudolf, F.; Stelling, J. A simple and flexible computational framework for inferring sources of heterogeneity from single-cell dynamics. Cell Syst. 2019, 8, 15–26. [Google Scholar] [CrossRef]
- Lambert, B.; Gavaghan, D.J.; Tavener, S.J. A Monte Carlo method to estimate cell population heterogeneity from cell snapshot data. J. Theor. Biol. 2021, 511, 110541. [Google Scholar] [CrossRef]
- Augustin, D.; Lambert, B.; Wang, K.; Walz, A.C.; Robinson, M.; Gavaghan, D. Filter inference: A scalable nonlinear mixed effects inference approach for snapshot time series data. PLoS Comput. Biol. 2023, 19, e1011135. [Google Scholar] [CrossRef] [PubMed]
- Loos, C.; Hasenauer, J. Robust calibration of hierarchical population models for heterogeneous cell populations. J. Theor. Biol. 2020, 488, 110118. [Google Scholar] [CrossRef]
- Persson, S.; Welkenhuysen, N.; Shashkova, S.; Wiqvist, S.; Reith, P.; Schmidt, G.W.; Picchini, U.; Cvijovic, M. Scalable and flexible inference framework for stochastic dynamic single-cell models. PLoS Comput. Biol. 2022, 18, e1010082. [Google Scholar] [CrossRef]
- Browning, A.P.; Ansari, N.; Drovandi, C.; Johnston, A.P.; Simpson, M.J.; Jenner, A.L. Identifying cell-to-cell variability in internalization using flow cytometry. J. R. Soc. Interface 2022, 19, 20220019. [Google Scholar] [CrossRef]
- Hsu, I.S.; Moses, A.M. Stochastic models for single-cell data: Current challenges and the way forward. FEBS J. 2022, 289, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Prangle, D. Lazy abc. Stat. Comput. 2016, 26, 171–185. [Google Scholar] [CrossRef]
- Yazdani, A.; Lu, L.; Raissi, M.; Karniadakis, G.E. Systems biology informed deep learning for inferring parameters and hidden dynamics. PLoS Comput. Biol. 2020, 16, e1007575. [Google Scholar] [CrossRef]
Name | Web Link | Language | Ref/Comment |
---|---|---|---|
MAPKcascades | https://github.com/SJHamis/MAPKcascades | MATLAB | [224] |
MARM1 | https://github.com/labsyspharm/marm1-supplement | Python | [84] |
MRA-SMC-ABC | https://github.com/SBIUCD/MRA_SMC_ABC1 | MATLAB | [225] |
Modeling | https://github.com/Jia-V/modeling | MATLAB | [226] |
PCC-Mutation | https://github.com/drplaugher/PCC_Mutations | MATLAB& Python | [227] |
Tslearn | https://github.com/tslearn-team/tslearn | Python | [228] |
Biomass | https://github.com/okadalabipr/biomass | Python | [229] |
pulsatile-information | https://github.com/pawelnalecz/pulsatile-information | Python | [230] |
Adaptive MPC | https://github.com/Ben-Smart/Adaptive_MPC_on_NSCLC | MATLAB | [231] |
MaBoss | https://github.com/sysbio-curie/MaBoSS_test | Python | [232] |
TRACT | https://github.com/developerpiru/TRACS | Python | [233] |
HyMetaGrowthXTreat | https://github.com/NMDimitriou/HyMetaGrowthXTreat | MATLAB | [234] |
MixedIC50 | https://github.com/NKI-CCB/MixedIC50 | R | [235] |
MaSoFin | https://github.com/guijoe/MaSoFin | C | [236] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Zhang, X.; Tian, T. Mathematical Modeling and Inference of Epidermal Growth Factor-Induced Mitogen-Activated Protein Kinase Cell Signaling Pathways. Int. J. Mol. Sci. 2024, 25, 10204. https://doi.org/10.3390/ijms251810204
Feng J, Zhang X, Tian T. Mathematical Modeling and Inference of Epidermal Growth Factor-Induced Mitogen-Activated Protein Kinase Cell Signaling Pathways. International Journal of Molecular Sciences. 2024; 25(18):10204. https://doi.org/10.3390/ijms251810204
Chicago/Turabian StyleFeng, Jinping, Xinan Zhang, and Tianhai Tian. 2024. "Mathematical Modeling and Inference of Epidermal Growth Factor-Induced Mitogen-Activated Protein Kinase Cell Signaling Pathways" International Journal of Molecular Sciences 25, no. 18: 10204. https://doi.org/10.3390/ijms251810204
APA StyleFeng, J., Zhang, X., & Tian, T. (2024). Mathematical Modeling and Inference of Epidermal Growth Factor-Induced Mitogen-Activated Protein Kinase Cell Signaling Pathways. International Journal of Molecular Sciences, 25(18), 10204. https://doi.org/10.3390/ijms251810204