Implications of Dysnatremia and Endocrine Disturbances in COVID-19 Patients
Abstract
:1. Introduction
2. Does the Dysregulation of ACE2 by SARS-CoV-2 Portray a Key Role in COVID-19 Severity?
3. COVID-19 and Endocrine Glands
3.1. Endocrine Profile of COVID-19
3.2. COVID-19 and the Pituitary Gland
3.3. COVID-19 and the Adrenal Gland
3.4. COVID-19 and the Thyroid Gland
3.5. Vaccination against SARS-CoV-2 and Hypopituitarism
3.6. Pituitary Gland and Post COVID-19 Syndrome
4. Electrolyte Imbalances during COVID-19
4.1. Underlying Pathophysiological Mechanisms of COVID-19 Induced Dysnatremia
4.2. Hypernatremia and COVID-19
4.3. Dysnatremia as a Prognostic Factor for COVID-19 Mortality
5. Future Directions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marschalek, R. SARS-CoV-2: The Virus, Its Biology and COVID-19 Disease-Counteracting Possibilities. Front. Biosci. Landmark 2023, 28, 273. [Google Scholar] [CrossRef] [PubMed]
- Sarker, R.; Roknuzzaman, A.S.M.; Nazmunnahar Shahriar, M.; Hossain, M.J.; Islam, M.R. The WHO has declared the end of pandemic phase of COVID-19: Way to come back in the normal life. Health Sci. Rep. 2023, 6, e1544. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Ahmad Farouk, I.; Lal, S.K. COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses 2021, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.Q.; Lin, H.F.; Li, J.; Chen, Y.; Luo, Y.; Zhang, W.; Hu, B.; Tian, F.J.; Hu, Y.J.; Liu, Y.J.; et al. A SARS-CoV-2-Related Virus from Malayan Pangolin Causes Lung Infection without Severe Disease in Human ACE2-Transgenic Mice. J. Virol. 2023, 97, e01719-22. [Google Scholar] [CrossRef]
- Gupta, P.; Gupta, V.; Singh, C.M.; Singhal, L. Emergence of COVID-19 Variants: An Update. Cureus 2023, 15, e41295. Available online: https://www.cureus.com/articles/130199-emergence-of-covid-19-variants-an-update (accessed on 9 May 2024). [CrossRef]
- Choi, J.Y.; Smith, D.M. SARS-CoV-2 Variants of Concern. Yonsei Med. J. 2021, 62, 961. [Google Scholar] [CrossRef]
- Ahmad, A.; Fawaz, M.A.; Aisha, A. A comparative overview of SARS-CoV-2 and its variants of concern. Infez Med. 2022, 30, 328. Available online: https://www.infezmed.it/media/journal/Vol_30_3_2022_2.pdf (accessed on 5 May 2024).
- Da Rosa Mesquita, R.; Francelino Silva Junior, L.C.; Santos Santana, F.M.; Farias De Oliveira, T.; Campos Alcântara, R.; Monteiro Arnozo, G.; da Silva Filho, E.R.; dos Santos, A.G.G.; da Cunha, E.J.O.; de Aquino, S.H.H.; et al. Clinical manifestations of COVID-19 in the general population: Systematic review. Wien. Klin. Wochenschr. 2021, 133, 377–382. [Google Scholar] [CrossRef]
- Ma, Q.; Liu, J.; Liu, Q.; Kang, L.; Liu, R.; Jing, W.; Wu, Y.; Liu, M. Global Percentage of Asymptomatic SARS-CoV-2 Infections Among the Tested Population and Individuals With Confirmed COVID-19 Diagnosis: A Systematic Review and Meta-analysis. JAMA Netw. Open. 2021, 4, e2137257. [Google Scholar] [CrossRef]
- Torabi, S.H.; Riahi, S.M.; Ebrahimzadeh, A.; Salmani, F. Changes in symptoms and characteristics of COVID-19 patients across different variants: Two years study using neural network analysis. BMC Infect. Dis. 2023, 23, 838. [Google Scholar] [CrossRef]
- Sousa Neto, A.R.D.; Carvalho, A.R.B.D.; Oliveira, E.M.N.D.; Magalhães, R.D.L.B.; Moura, M.E.B.; Freitas, D.R.J.D. Symptomatic manifestations of the disease caused by coronavirus (COVID-19) in adults: Systematic review. Rev. Gaúcha Enferm. 2021, 42, e20200205. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Cheng, X.; Feng, X.; Wan, H.; Chen, S.; Xiong, M. Clinical Symptom Differences Between Mild and Severe COVID-19 Patients in China: A Meta-Analysis. Front. Public Health 2021, 8, 561264. [Google Scholar] [CrossRef]
- Georgieva, E.; Ananiev, J.; Yovchev, Y.; Arabadzhiev, G.; Abrashev, H.; Abrasheva, D.; Atanasov, V.; Kostandieva, R.; Mitev, M.; Petkova-Parlapanska, K.; et al. COVID-19 Complications: Oxidative Stress, Inflammation, and Mitochondrial and Endothelial Dysfunction. Int. J. Mol. Sci. 2023, 24, 14876. [Google Scholar] [CrossRef]
- Soraya, G.V.; Ulhaq, Z.S. Crucial laboratory parameters in COVID-19 diagnosis and prognosis: An updated meta-analysis. Med. Clin. 2020, 155, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, M.; Kordrostami, S.; Kalantarhormozi, M.; Bagheri, M. A Review of Hyperglycemia in COVID-19. Cureus 2023, 15. [Google Scholar] [CrossRef] [PubMed]
- Lima-Martínez, M.M.; Boada, C.C.; Silva, M.; Marín, W.; Contreras, M. COVID-19 and diabetes: A bidirectional relationship. Clin. Investig. Arterioscler. 2021, 33, 151–157. [Google Scholar] [CrossRef]
- Khunti, K.; Del Prato, S.; Mathieu, C.; Kahn, S.E.; Gabbay, R.A.; Buse, J.B. COVID-19, Hyperglycemia, and New-Onset Diabetes. Diabetes Care 2021, 44, 2645–2655. [Google Scholar] [CrossRef]
- De Carvalho, H.; Richard, M.C.; Chouihed, T.; Goffinet, N.; Le Bastard, Q.; Freund, Y.; Kratz, A.; Dubroux, M.; Masson, D.; Figueres, L.; et al. Electrolyte imbalance in COVID-19 patients admitted to the Emergency Department: A case–control study. Intern. Emerg. Med. 2021, 16, 1945–1950. [Google Scholar] [CrossRef]
- Bernal, A.; Zafra, M.A.; Simón, M.J.; Mahía, J. Sodium Homeostasis, a Balance Necessary for Life. Nutrients 2023, 15, 395. [Google Scholar] [CrossRef]
- Nahkuri, S.; Becker, T.; Schueller, V.; Massberg, S.; Bauer-Mehren, A. Prior fluid and electrolyte imbalance is associated with COVID-19 mortality. Commun. Med. 2021, 1, 51. [Google Scholar] [CrossRef]
- Yin, J.; Yuan, N.; Huang, Z.; Hu, Z.; Bao, Q.; Shao, Z.; Mei, Q.; Xu, Y.; Wang, W.; Liu, D.; et al. Assessment of hypokalemia and clinical prognosis in Patients with COVID-19 in Yangzhou, China. PLoS ONE 2022, 17, e0271132. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.; Moon, R.; Agiro, A.; Rosenthal, N.; Brown, H.; Legg, R.; Pottorf, W. In-hospital mortality, length of stay, and hospitalization cost of COVID-19 patients with and without hyperkalemia. Am. J. Med. Sci. 2022, 364, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Gheorghe, G.; Ilie, M.; Bungau, S.; Stoian, A.M.P.; Bacalbasa, N.; Diaconu, C.C. Is There a Relationship between COVID-19 and Hyponatremia? Medicina 2021, 57, 55. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.; Dong, X.; Li, Z.; Xu, Q.; Feng, H.; Cai, J.; Huang, S.; Guo, J.; Zhang, L.; et al. Corticosteroid treatment in severe COVID-19 patients with acute respiratory distress syndrome. J. Clin. Investig. 2020, 130, 6417–6428. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Rhou, Y.J.J.; Hor, A.; Wang, M.; Wu, Y.-F.; Jose, S.; Chipps, D.R.; Cheung, N.W. Dexamethasone-induced hyperglycaemia in COVID-19: Glycaemic profile in patients without diabetes and factors associated with hyperglycaemia. Diabetes Res. Clin. Pract. 2022, 194, 110151. [Google Scholar] [CrossRef]
- Babajani, F.; Kakavand, A.; Mohammadi, H.; Sharifi, A.; Zakeri, S.; Asadi, S.; Afshar, Z.M.; Rahimi, Z.; Sayad, B. COVID-19 and renin angiotensin aldosterone system: Pathogenesis and therapy. Health Sci. Rep. 2021, 4, e440. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Rea, F.; Ludergnani, M.; Apolone, G.; Corrao, G. Renin-Angiotensin-Aldosterone System Blockers and the Risk of COVID-19. N. Engl. J. Med. 2020, 382, 2431–2440. [Google Scholar] [CrossRef]
- Reynolds, H.R.; Adhikari, S.; Pulgarin, C.; Troxel, A.B.; Iturrate, E.; Johnson, S.B.; Hausvater, A.; Newman, J.D.; Berger, J.S.; Bangalore, S.; et al. Renin-Angiotensin-Aldosterone System Inhibitors and Risk of COVID-19. N. Engl. J. Med. 2020, 382, 2441–2448. [Google Scholar] [CrossRef]
- Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef]
- Cozzolino, A.; Hasenmajer, V.; Newell-Price, J.; Isidori, A.M. COVID-19 pandemic and adrenals: Deep insights and implications in patients with glucocorticoid disorders. Endocrine 2023, 82, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Xu, B.; Guan, W.; Xu, D.; Li, F.; Ren, R.; Zhu, X.; Gao, Y.; Jiang, L. The Adrenal Cortex, an Underestimated Site of SARS-CoV-2 Infection. Front. Endocrinol. 2020, 11, 593179. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, K. The natriuretic peptide system in heart failure: Diagnostic and therapeutic implications. Pharmacol. Ther. 2021, 227, 107863. [Google Scholar] [CrossRef] [PubMed]
- Fountain, J.H.; Kaur, J.; Lappin, S.L. Physiology, Renin Angiotensin System. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: http://www.ncbi.nlm.nih.gov/books/NBK470410/ (accessed on 24 August 2024).
- Cuzzo, B.; Padala, S.A.; Lappin, S.L. Physiology, Vasopressin. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA; Available online: http://www.ncbi.nlm.nih.gov/books/NBK526069/ (accessed on 24 August 2024).
- Ferreira, N.S.; Tostes, R.C.; Paradis, P.; Schiffrin, E.L. Aldosterone, Inflammation, Immune System, and Hypertension. Am. J. Hypertens. 2021, 34, 15–27. [Google Scholar] [CrossRef]
- Mehrabadi, M.E.; Hemmati, R.; Tashakor, A.; Homaei, A.; Yousefzadeh, M.; Hemati, K.; Hosseinkhani, S. Induced dysregulation of ACE2 by SARS-CoV-2 plays a key role in COVID-19 severity. Biomed. Pharmacother. 2021, 137, 111363. [Google Scholar] [CrossRef]
- Mirza, S.A.; Sheikh, A.A.E.; Barbera, M.; Ijaz, Z.; Javaid, M.A.; Shekhar, R.; Pal, S.; Sheikh, A.B. COVID-19 and the Endocrine System: A Review of the Current Information and Misinformation. Infect. Dis. Rep. 2022, 14, 184–197. [Google Scholar] [CrossRef]
- Oguz, S.H.; Yildiz, B.O. Endocrine Disorders and COVID-19. Annu. Rev. Med. 2023, 74, 75–88. [Google Scholar] [CrossRef] [PubMed]
- lvarez-Troncoso, J.; Zapatero Larrauri, M.; Montero Vega, M.D.; Gil Vallano, R.; Palmier Peláez, E.; Martín Rojas-Marcos, P.; Martín-Luengo, F.; del Campo, P.L.; Gil, C.R.H.; Esteban, E.T. Case Report: COVID-19 with Bilateral Adrenal Hemorrhage. Am. J. Trop. Med. Hyg. 2020, 103, 1156–1157. [Google Scholar] [CrossRef]
- Elkhouly, M.M.; Elazzab, A.A.; Moghul, S.S. Bilateral adrenal hemorrhage in a man with severe COVID-19 pneumonia. Radiol. Case Rep. 2021, 16, 1438–1442. [Google Scholar] [CrossRef]
- Rossetti, C.L.; Cazarin, J.; Hecht, F.; Beltrão, F.E.D.L.; Ferreira, A.C.F.; Fortunato, R.S.; Ramos, H.E.; de Carvalho, D.P. COVID-19 and thyroid function: What do we know so far? Front. Endocrinol. 2022, 13, 1041676. [Google Scholar] [CrossRef]
- Abramczyk, U.; Nowaczyński, M.; Słomczyński, A.; Wojnicz, P.; Zatyka, P.; Kuzan, A. Consequences of COVID-19 for the Pancreas. Int. J. Mol. Sci. 2022, 23, 864. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Bao, L.; Song, Z.; Zhang, L.; Yu, P.; Xu, Y.; Wang, J.; Zhao, W.; Zhang, X.; Han, Y.; et al. Infection with SARS-CoV-2 can cause pancreatic impairment. Sig. Transduct. Target Ther. 2024, 9, 98. [Google Scholar] [CrossRef] [PubMed]
- Bechmann, N.; Maccio, U.; Kotb, R.; Dweik, R.A.; Cherfane, M.; Moch, H.; Bornstein, S.R.; Varga, Z. COVID-19 Infections in Gonads: Consequences on Fertility? Horm. Metab. Res. 2022, 54, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Vaikkakara, S.; Raj, M.N.; Sachan, A.; Mohan, A.; Vengamma, B.; Rao, P.V.L.N.S.; Mukka, A.; Sravani, C.; Reddy, A.P. Impact of Severity of Illness on the Function of the Hypothalamo-pituitary-gonadal Axis in Postmenopausal Women with Acute Severe Illness: Implications for Predicting Disease Outcome. Indian J. Endocrinol. Metab. 2017, 21, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Ferro, B.; Bernardeschi, G.; Mori, R.; Abramo, A.; Giunta, F. Sexual hormone pattern in chronic critically ill patients. Crit. Care 2009, 13 (Suppl. 1), P458. [Google Scholar] [CrossRef]
- Coutinho, L.M.; Clemenza, S.; Campana, D.; Petraglia, F. The Menstrual Disorders Related to Systemic Diseases. In Female Reproductive Dysfunction; Petraglia, F., Fauser, B.C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 85–94. Available online: https://link.springer.com/10.1007/978-3-030-14782-2_5 (accessed on 27 August 2024).
- Pal, R. COVID-19, hypothalamo-pituitary-adrenal axis and clinical implications. Endocrine 2020, 68, 251–252. [Google Scholar] [CrossRef]
- Gorbova, N.Y.; Vladimirova, V.P.; Rozhinskaya, L.Y.; Belaya, Z.Y. Hypophysitis and reversible hypopituitarism developed after COVID-19 infection—A clinical case report. Probl. Endokrinol. 2022, 68, 50–56. [Google Scholar] [CrossRef]
- Misgar, R.A.; Rasool, A.; Wani, A.I.; Bashir, M.I. Central diabetes insipidus (Infundibuloneuro hypophysitis): A late complication of COVID-19 infection. J. Endocrinol. Investig. 2021, 44, 2855–2856. [Google Scholar] [CrossRef]
- Rajevac, H.; Bachan, M.; Khan, Z. Diabetes Insipidus as A Symptom of COVID-19 Infection: Case Report. Chest 2020, 158, A2576. [Google Scholar] [CrossRef]
- Sheikh, A.B.; Javed, N.; Sheikh, A.A.E.; Upadhyay, S.; Shekhar, R. Diabetes Insipidus and Concomitant Myocarditis: A Late Sequelae of COVID-19 Infection. J. Investig. Med. High Impact Case Rep. 2021, 9, 232470962199995. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kumar, K.; Venkataramani, S.; Ghazi, N.M. Central Diabetes Insipidus: An Acute Manifestation of COVID-19 Infection. Cureus 2023, 15, e43884. [Google Scholar]
- Murvelashvili, N.; Tessnow, A. A Case of Hypophysitis Following Immunization With the mRNA-1273 SARS-CoV-2 Vaccine. J. Investig. Med. High Impact Case Rep. 2021, 9, 23247096211043386. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Zhong, J.; Jiang, Y.; Zhang, J. Associations between COVID-19 infection and sex steroid hormones. Front. Endocrinol. 2022, 13, 940675. [Google Scholar] [CrossRef]
- Ma, L.; Xie, W.; Li, D.; Shi, L.; Ye, G.; Mao, Y.; Xiong, Y.; Sun, H.; Zheng, F.; Chen, Z.; et al. Evaluation of sex-related hormones and semen characteristics in reproductive-aged male COVID-19 patients. J. Med. Virol. 2021, 93, 456–462. [Google Scholar] [CrossRef]
- Phelan, N.; Behan, L.A.; Owens, L. The Impact of the COVID-19 Pandemic on Women’s Reproductive Health. Front. Endocrinol. 2021, 12, 642755. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Verbakel, J.Y.; Kasaven, L.S.; Tzafetas, M.; Grewal, K.; Jones, B.; Bennett, P.R.; Kyrgiou, M.; Saso, S. The menstrual cycle and the COVID-19 pandemic. PLoS ONE 2023, 18, e0290413. [Google Scholar] [CrossRef]
- Błażejewski, G.; Witkoś, J. The Impact of COVID-19 on Menstrual Cycle in Women. J. Clin. Med. 2023, 12, 4991. [Google Scholar] [CrossRef]
- Stasi, V.D.; Rastrelli, G. The Role of Sex Hormones in the Disparity of COVID-19 Outcomes Based on Gender. J. Sex. Med. 2021, 18, 1950–1954. [Google Scholar] [CrossRef]
- Afshari, P.; Zakerkish, M.; Abedi, P.; Beheshtinasab, M.; Maraghi, E.; Meghdadi, H. Effect of COVID-19 infection on sex hormone levels in hospitalized patients: A prospective longitudinal study in Iran. Health Sci. Rep. 2023, 6, e1011. [Google Scholar] [CrossRef]
- Salciccia, S.; Moriconi, M.; Asero, V.; Canale, V.; Eisenberg, M.L.; Glover, F.; Belladelli, F.; Seranio, N.; Basran, S.; De Berardinis, E.; et al. Systematic review and meta-analysis of serum total testosterone and luteinizing hormone variations across hospitalized COVID-19 patients. Sci. Rep. 2024, 14, 1–11. [Google Scholar] [CrossRef]
- Spratt, D.I.; Bigos, S.T.; Beitins, I.; Cox, P.; Longcope, C.; Orav, J. Both hyper- and hypogonadotropic hypogonadism occur transiently in acute illness: Bio- and immunoactive gonadotropins. J. Clin. Endocrinol. Metab. 1992, 75, 1562–1570. [Google Scholar] [PubMed]
- Marques, C.A.; Almeida, P.P.; Gonçalves, A.M.; Nagirnyak, V.; Cabeleira, J. COVID-19 and Adrenal Insufficiency: Unmasking the Link. Cureus 2023, 15, e47920. [Google Scholar] [CrossRef] [PubMed]
- Vakhshoori, M.; Heidarpour, M.; Bondariyan, N.; Sadeghpour, N.; Mousavi, Z. Adrenal Insufficiency in Coronavirus Disease 2019 (COVID-19)-Infected Patients without Preexisting Adrenal Diseases: A Systematic Literature Review. Int. J. Endocrinol. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- De Almeida, C.A.P.; Guimarães, M.R.; De Oliveira, M.F.A.; Seabra, V.; Smolentzov, I.; Reichert, B.V.; Lins, P.R.G.; Rodrigues, C.E.; da Conceição Andrade, L. Is there a link between COVID-19 and adrenal insufficiency? J. Nephrol. 2022, 36, 617–619. [Google Scholar] [CrossRef]
- Bayaz, S.M.H.D.; Zargaz, S.E.H.; Ziaee, M.; Soroosh, Z.; Babaiyan, S. Adrenal Insufficiency in Patients with COVID-19. Shiraz E-Med. J. 2023. in press. Available online: https://brieflands.com/articles/semj-136950.html (accessed on 11 June 2024).
- Alzahrani, A.S.; Mukhtar, N.; Aljomaiah, A.; Aljamei, H.; Bakhsh, A.; Alsudani, N.; Elsayed, T.; Alrashidi, N.; Fadel, R.; Alqahtani, E.; et al. The Impact of COVID-19 Viral Infection on the Hypothalamic-Pituitary-Adrenal Axis. Endocr. Pract. 2021, 27, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Khoo, B.; Mills, E.G.; Phylactou, M.; Patel, B.; Eng, P.C.; Thurston, L.; Muzi, B.; Meeran, K.; Prevost, A.T.; et al. Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol. 2020, 8, 659–660. [Google Scholar] [CrossRef]
- Buckley, T.M.; Schatzberg, A.F. On the Interactions of the Hypothalamic-Pituitary-Adrenal (HPA) Axis and Sleep: Normal HPA Axis Activity and Circadian Rhythm, Exemplary Sleep Disorders. J. Clin. Endocrinol. Metab. 2005, 90, 3106–3114. [Google Scholar] [CrossRef]
- Petramala, L.; Olmati, F.; Conforti, M.G.; Concistré, A.; Bisogni, V.; Alfieri, N.; Iannucci, G.; de Toma, G.; Letizia, C. Autoimmune Diseases in Patients with Cushing’s Syndrome after Resolution of Hypercortisolism: Case Reports and Literature Review. Int. J. Endocrinol. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ilias, I.; Vassiliou, A.G.; Keskinidou, C.; Vrettou, C.S.; Orfanos, S.; Kotanidou, A.; Dimopoulou, I. Changes in Cortisol Secretion and Corticosteroid Receptors in COVID-19 and Non COVID-19 Critically Ill Patients with Sepsis/Septic Shock and Scope for Treatment. Biomedicines 2023, 11, 1801. [Google Scholar] [CrossRef]
- Świątkowska-Stodulska, R.; Berlińska, A.; Puchalska-Reglińska, E. Cortisol as an Independent Predictor of Unfavorable Outcomes in Hospitalized COVID-19 Patients. Biomedicines 2022, 10, 1527. [Google Scholar] [CrossRef]
- Giovanella, L.; Ruggeri, R.M.; Ovčariček, P.P.; Campenni, A.; Treglia, G.; Deandreis, D. Prevalence of thyroid dysfunction in patients with COVID-19: A systematic review. Clin. Transl. Imaging 2021, 9, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Muller, I.; Cannavaro, D.; Dazzi, D.; Covelli, D.; Mantovani, G.; Muscatello, A.; Ferrantea, E.; Orsia, E.; Resia, V.; Longari, V.; et al. SARS-CoV-2-related atypical thyroiditis. Lancet Diabetes Endocrinol. 2020, 8, 739–741. [Google Scholar] [CrossRef] [PubMed]
- Lania, A.; Sandri, M.T.; Cellini, M.; Mirani, M.; Lavezzi, E.; Mazziotti, G. Thyrotoxicosis in patients with COVID-19: The THYRCOV study. Eur. J. Endocrinol. 2020, 183, 381–387. [Google Scholar] [CrossRef]
- Yanachkova, V.; Stankova, T.; Staynova, R. Thyroid dysfunction as a long-term post-COVID-19 complication in mild-to-moderate COVID-19. Biotechnol. Biotechnol. Equip. 2023, 37, 194–202. [Google Scholar] [CrossRef]
- Gao, W.; Guo, W.; Guo, Y.; Shi, M.; Dong, G.; Wang, G.; Ge, Q.; Zhu, J.; Zhou, X. Thyroid hormone concentrations in severely or critically ill patients with COVID-19. J. Endocrinol. Investig. 2021, 44, 1031–1040. [Google Scholar] [CrossRef]
- van Gerwen, M.; Alsen, M.; Little, C.; Barlow, J.; Naymagon, L.; Tremblay, D.; Sinclair, C.F.; Genden, E. Outcomes of Patients With Hypothyroidism and COVID-19: A Retrospective Cohort Study. Front. Endocrinol. 2020, 11, 565. [Google Scholar] [CrossRef]
- Feghali, K.; Atallah, J.; Norman, C. Manifestations of thyroid disease post COVID-19 illness: Report of Hashimoto thyroiditis, Graves’ disease, and subacute thyroiditis. J. Clin. Transl. Endocrinol. Case Rep. 2021, 22, 100094. [Google Scholar] [CrossRef] [PubMed]
- Fliers, E.; Boelen, A. An update on non-thyroidal illness syndrome. J. Endocrinol. Investig. 2021, 44, 1597–1607. [Google Scholar] [CrossRef]
- Lee, S.; Farwell, A.P. Euthyroid Sick Syndrome. Compr. Physiol. 2016, 6, 1071–1080. [Google Scholar]
- DeGroot, L.J. The Non-Thyroidal Illness Syndrome. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000; Available online: http://www.ncbi.nlm.nih.gov/books/NBK285570/ (accessed on 24 August 2024).
- Boelaert, K.; Visser, W.E.; Taylor, P.N.; Moran, C.; Léger, J.; Persani, L. Endocrinology in the time of COVID-19: Management of hyperthyroidism and hypothyroidism. Eur. J. Endocrinol. 2020, 183, G33–G39. [Google Scholar] [CrossRef]
- Kleebayoon, A.; Wiwanitkit, V. COVID-19 Vaccine, Safety in a Case with Underlying Pituitary Adenoma. Neurol. India 2023, 71, 1076. [Google Scholar] [CrossRef] [PubMed]
- Verrienti, M.; Picciola, V.M.; Ambrosio, M.R.; Zatelli, M.C. Pituitary and COVID-19 vaccination: A systematic review. Pituitary 2024. [Google Scholar] [CrossRef] [PubMed]
- Taieb, A.; Nassim, B.H.S.; Asma, G.; Jabeur, M.; Ghada, S.; Asma, B.A. The Growing Understanding of the Pituitary Implication in the Pathogenesis of Long COVID-19 Syndrome: A Narrative Review. Adv. Respir. Med. 2024, 92, 96–109. [Google Scholar] [CrossRef]
- Taieb, A.; Mounira, E.E. Pilot Findings on SARS-CoV-2 Vaccine-Induced Pituitary Diseases: A Mini Review from Diagnosis to Pathophysiology. Vaccines 2022, 10, 2004. [Google Scholar] [CrossRef]
- Urhan, E.; Karaca, Z.; Unuvar, G.K.; Gundogan, K.; Unluhizarci, K. Investigation of pituitary functions after acute coronavirus disease 2019. Endocr. J. 2022, 69, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, K.G.; Perumal, N.; Cherian, A.; Wyawahare, M.; Prasad, A.; Sahoo, J.; Kamalanathan, S.K.; Anusuya, R.; Naik, D. Hypothalamic-Pituitary Adrenal Axis Status 3 Months After Recovery From COVID-19 Infection. Endocr. Res. 2023, 48, 85–93. [Google Scholar]
- Saba, L.; Hanna, C.; Creo, A.L. Updates in hyponatremia and hypernatremia. Curr. Opin. Pediatr. 2024, 36, 219–227. [Google Scholar] [CrossRef]
- Spasovski, G.; Vanholder, R.; Allolio, B.; Annane, D.; Ball, S.; Bichet, D.; Decaux, G.; Fenske, W.; Hoorn, E.J.; Ichai, C.; et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur. J. Endocrinol. 2014, 170, G1–G47. [Google Scholar] [CrossRef]
- Alosaimi, M.M.; Hassan, H. Hyponatremia, a Concise Practical Review. Curr. Trends Intern. Med. 2024, 8, 214. Available online: https://www.gavinpublishers.com/article/view/hyponatremia-a-concise-practical-review (accessed on 19 June 2024).
- Khan, F.G.; Sattar, S.; Yaqoob, M.M.; Vallani, N.; Asad, M. Frequency of dysnatremia in patients admitted with COVID-19 infection and its prognostic implication. J. Int. Med. Res. 2023, 51, 03000605231202180. [Google Scholar] [CrossRef]
- Liu, D.; Mowrey, W.; Fisher, M.; Basalely, A.; McCarthy, J.; Kumar, N.; Thakkar, J.; Azzi, Y.; Brogan, M.; Golestaneh, L.; et al. Associations of Dysnatremia with COVID-19 Status and Mortality. Kidney360 2022, 3, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Królicka, A.; Letachowicz, K.; Adamik, B.; Doroszko, A.; Kaliszewski, K.; Kiliś-Pstrusińska, K.; Kujawa, K.; Matera-Witkiewicz, A.; Madziarski, M.; Pomorski, M.; et al. Dysnatremia in COVID-19 Patients—An Analysis of the COLOS Study. J. Clin. Med. 2023, 12, 2802. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Martínez, F.J.; Orozco-Juárez, K.; Chávez-Lárraga, A.J.; Velasco-Santos, J.I. Disnatremias y su asociación con morbimortalidad en pacientes con COVID-19 [Dysnatremias and their association with morbidity and mortality in patients with COVID-19]. Rev. Med. Inst. Mex. Seguro Soc. 2022, 60, 548–555. (In Spanish) [Google Scholar] [PubMed] [PubMed Central]
- Martino, M.; Falcioni, P.; Giancola, G.; Ciarloni, A.; Salvio, G.; Silvetti, F.; Taccaliti, A.; Arnaldi, G. Sodium alterations impair the prognosis of hospitalized patients with COVID-19 pneumonia. Endocr. Connect. 2021, 10, 1344–1351. [Google Scholar] [CrossRef]
- Voets, P.J.; Frölke, S.C.; Vogtländer, N.P.; Kaasjager, K.A. COVID-19 and dysnatremia: A comparison between COVID-19 and non-COVID-19 respiratory illness. SAGE Open Med. 2021, 9, 20503121211027778. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tzoulis, P.; Grossman, A.B.; Baldeweg, S.E.; Bouloux, P.; Kaltsas, G. MANAGEMENT OF ENDOCRINE DISEASE: Dysnatraemia in COVID-19: Prevalence, prognostic impact, pathophysiology, and management. Eur. J. Endocrinol. 2021, 185, R103–R111. [Google Scholar] [CrossRef]
- Atila, C.; Sailer, C.O.; Bassetti, S.; Tschudin-Sutter, S.; Bingisser, R.; Siegemund, M.; Osswald, S.; Rentsch, K.; Rueegg, M.; Schaerli, S.; et al. Prevalence and outcome of dysnatremia in patients with COVID-19 compared to controls. Eur. J. Endocrinol. 2021, 184, 409–418. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, J.G.; Núñez-Gil, I.J.; Cuesta, M.; Rubio, M.A.; Maroun-Eid, C.; Arroyo-Espliguero, R.; Romero, R.; Becerra-Muñoz, V.M.; Uribarri, A.; Feltes, G.; et al. Prognostic Impact of Hyponatremia and Hypernatremia in COVID-19 Pneumonia. A HOPE-COVID-19 (Health Outcome Predictive Evaluation for COVID-19) Registry Analysis. Front. Endocrinol. 2020, 11, 599255. [Google Scholar] [CrossRef]
- Berni, A.; Malandrino, D.; Corona, G.; Maggi, M.; Parenti, G.; Fibbi, B.; Poggesi, L.; Bartoloni, A.; Lavorini, F.; Fanelli, A.; et al. Serum sodium alterations in SARS-CoV-2 (COVID-19) infection: Impact on patient outcome. Eur. J. Endocrinol. 2021, 185, 137–144. [Google Scholar] [CrossRef]
- Frontera, J.A.; Valdes, E.; Huang, J.M.; Lewis, A.; Lord, A.S.; Zhou, T.; Kahn, D.E.D.; Melmed, K.; Czeisler, B.M.; Yaghi, S.; et al. Prevalence and Impact of Hyponatremia in Patients With Coronavirus Disease 2019 in New York City. Crit. Care Med. 2020, 48, e1211–e1217. [Google Scholar] [CrossRef]
- Khidir, R.J.Y.; Ibrahim, B.A.Y.; Adam, M.H.M.; Hassan, R.M.E.; Fedail, A.S.S.; Abdulhamid, R.O.; Mohamed, S.O.O. Prevalence and outcomes of hyponatremia among COVID-19 patients: A systematic review and meta-analysis. Int. J. Health Sci. 2022, 16, 69–84. [Google Scholar]
- Hata, T.; Goto, T.; Yamanaka, S.; Matsumoto, T.; Yamamura, O.; Hayashi, H. Prognostic value of initial serum sodium level in predicting disease severity in patients with COVID-19: A multicenter retrospective study. J. Infect. Chemother. 2024, 30, 181–187. [Google Scholar] [CrossRef]
- Leow, M.K.; Kwek, D.S.; Ng, A.W.; Ong, K.; Kaw, G.J.; Lee, L.S. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin. Endocrinol. 2005, 63, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Yasir, M.; Mechanic, O.J. Syndrome of Inappropriate Antidiuretic Hormone Secretion; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: http://www.ncbi.nlm.nih.gov/books/NBK507777/ (accessed on 23 May 2024).
- Yousaf, Z.; Al-Shokri, S.D.; Al-soub, H.; Mohamed, M.F.H. COVID-19-associated SIADH: A clue in the times of pandemic! Am. J. Physiol.-Endocrinol. Metab. 2020, 318, E882–E885. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, M.M.; Ahmad, E.; Jeelani, H.M.; Riaz, A.; Muneeb, A. COVID-19 Pneumonia: An Emerging Cause of Syndrome of Inappropriate Antidiuretic Hormone. Cureus 2020, 12, e8841. [Google Scholar] [CrossRef]
- Gutierrez, J.A.; Ritzenthaler, D.; Sawaya, A.; Pensiero, A.L. Severe Hyponatremia in the Setting of COVID-19-Associated Syndrome of Inappropriate Antidiuretic Hormone: A Case Report. Cureus 2023, 15, e33330. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef]
- Atila, C.; Monnerat, S.; Bingisser, R.; Siegemund, M.; Lampart, M.; Rueegg, M.; Zellweger, N.; Osswald, S.; Rentsch, K.; Christ-Crain, M.; et al. Inverse relationship between IL-6 and sodium levels in patients with COVID-19 and other respiratory tract infections: Data from the COVIVA study. Endocr. Connect. 2022, 11, e220171. [Google Scholar] [CrossRef] [PubMed]
- Silverman, M.N.; Pearce, B.D.; Biron, C.A.; Miller, A.H. Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol. 2005, 18, 41–78. [Google Scholar] [CrossRef]
- Durcan, E.; Hacioglu, A.; Karaca, Z.; Unluhizarci, K.; Gonen, M.S.; Kelestimur, F. Hypothalamic-Pituitary Axis Function and Adrenal Insufficiency in COVID-19 Patients. Neuroimmunomodulation 2023, 30, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Hamazaki, K.; Nishigaki, T.; Kuramoto, N.; Oh, K.; Konishi, H. Secondary Adrenal Insufficiency After COVID-19 Diagnosed by Insulin Tolerance Test and Corticotropin-Releasing Hormone Test. Cureus 2022, 14, e23021. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhou, W.; Xu, W. Thyroid Function Analysis in 50 Patients with COVID-19: A Retrospective Study. Thyroid 2021, 31, 8–11. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Vardeny, O.; Michel, T.; McMurray, J.J.V.; Pfeffer, M.A.; Solomon, S.D. Renin–Angiotensin–Aldosterone System Inhibitors in Patients with COVID-19. N. Engl. J. Med. 2020, 382, 1653–1659. [Google Scholar] [CrossRef] [PubMed]
- Ata, F.; Almasri, H.; Sajid, J.; Yousaf, Z. COVID-19 presenting with diarrhoea and hyponatraemia. BMJ Case Rep. 2020, 13, e235456. [Google Scholar] [CrossRef]
- Ray, E.C.; Rondon-Berrios, H.; Boyd, C.R.; Kleyman, T.R. Sodium retention and volume expansion in nephrotic syndrome: Implications for hypertension. Adv. Chronic Kidney Dis. 2015, 22, 179–184. [Google Scholar] [CrossRef]
- Pourfridoni, M.; Abbasnia, S.M.; Shafaei, F.; Razaviyan, J.; Heidari-Soureshjani, R. Fluid and Electrolyte Disturbances in COVID-19 and Their Complications. BioMed Res. Int. 2021, 2021, 1–5. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.-Y. Prevalence of hyponatremia among older inpatients in a general hospital. Eur. Geriatr. Med. 2020, 11, 685–692. [Google Scholar] [CrossRef]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef]
- Lindner, G.; Funk, G.-C. Hypernatremia in critically ill patients. J. Crit. Care 2013, 28, 216.e11–216.e20. [Google Scholar] [CrossRef]
- So, B.Y.F.; Wong, C.K.; Chan, G.C.K.; Ng, J.K.C.; Lui, G.C.Y.; Szeto, C.C.; Hung, I.F.N.; Tse, H.F.; Tang, S.C.W.; Chan, T.M.; et al. Epidemiology and Outcomes of Hypernatraemia in Patients with COVID-19—A Territory-Wide Study in Hong Kong. J. Clin. Med. 2023, 12, 1042. [Google Scholar] [CrossRef] [PubMed]
- Habas, E.; Ali, E.; Habas, A.; Rayani, A.; Ghazouani, H.; Khan, F.; Khalifa, F.; Abdel-Nasser, E. Hyponatremia and SARS-CoV-2 infection: A narrative review. Medicine 2022, 101, e30061. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.Y.; Cheung, R.Y.T.; Ip, A.; Chan, W.M.; Sin, W.C.; Yap, D.Y.H. A retrospective cohort study on the clinical outcomes of patients admitted to intensive care units with dysnatremia. Sci. Rep. 2023, 13, 21236. [Google Scholar] [CrossRef]
- Falchi, A.G.; Mascolo, C.; Sepe, V.; Libetta, C.; Bonadeo, E.; Albertini, R.; Manzoni, F.; Perlini, S. Hyponatremia as a predictor of outcome and mortality: Results from a second-level urban emergency department population. Ir. J. Med. Sci. 2023, 192, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.M.; Beveridge, A.; Chróinín, D.N. Exploring hyponatremia in older hospital in-patients: Management, association with falls, and other adverse outcomes. Aging Health Res. 2022, 2, 100060. [Google Scholar] [CrossRef]
- Parajuli, S.; Tiwari, S.; Gupta, S.K.; Shakya, Y.M.; Shakya, Y.L. Hyponatremia in Patients Admitted to Intensive Care Unit of a Tertiary Center: A Descriptive Cross-sectional Study. J. Nepal Med. Assoc. 2022, 60, 935–938. [Google Scholar] [CrossRef]
- Rondon-Berrios, H.; Velez, J.C.Q. Hyponatremia in Cirrhosis. Clin. Liver Dis. 2022, 26, 149–164. [Google Scholar] [CrossRef]
- Saepudin, S.; Ball, P.A.; Morrissey, H. Hyponatremia during hospitalization and in-hospital mortality in patients hospitalized from heart failure. BMC Cardiovasc. Disord. 2015, 15, 88. [Google Scholar] [CrossRef]
- Edmonds, Z.V. Hyponatremia in pneumonia. J. Hosp. Med. 2012, 7 (Suppl. 4), S11–S13. [Google Scholar] [CrossRef]
- Potasso, L.; Sailer, C.O.; Blum, C.A.; Cesana-Nigro, N.; Schuetz, P.; Mueller, B.; Christ-Crain, M. Mild to moderate hyponatremia at discharge is associated with increased risk of recurrence in patients with community-acquired pneumonia. Eur. J. Intern. Med. 2020, 75, 44–49. [Google Scholar] [CrossRef]
Authors | Type of Study | Country | Year of Publication | Number of Patients | Hyponatremia on Admission/ Fatal Outcome | Hypernatremia on Admission/ Fatal Outcome |
---|---|---|---|---|---|---|
Khan et al. [95] | Retrospective longitudinal study | Pakistan | 2023 | 574 | 39% | 4.7% |
Liu et al. [96] | Retrospective observational study | USA | 2022 | 5407 | 7%/8% | 7%/15% |
Królicka et al. [97] | Retrospective observational study | Poland | 2023 | 2026 | 17.14%/28.52% | 5.03%/47.95% |
Núñez-Martínez et al. [98] | Retrospective, descriptive and analytical cohort study | Mexico | 2022 | 722 | 21.19%/13.3% | 2.49%/13.7% |
Martino et al. [99] | Open-label, observational study | Italy | 2021 | 117 | 26.5%/4% | 6.8%/1% |
Voets et al. [100] | Retrospective chart review | USA | 2021 | 331 | 34% | 38% |
Tzolius et al. [101] | Retrospective longitudinal cohort study | United Kingdom | 2021 | 488 | 24.6%/28.4% | 5.3%/46.1% |
Atila et al. [102] | Prospective, observational, cohort study | Switzerland | 2021 | 1041 | 28.1%/11.5% | 2.9%/9.3% |
Ruiz-Sánchez et al. [103] | Retrospective study | Canada, Germany, China, Cuba, Italy, Spain, Ecuador | 2020 | 5868 | 18.4% | 2.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlosa, M.; Grubišić, B.; Švitek, L.; Sabadi, D.; Canecki-Varžić, S.; Mihaljević, I.; Bilić-Ćurčić, I.; Kizivat, T. Implications of Dysnatremia and Endocrine Disturbances in COVID-19 Patients. Int. J. Mol. Sci. 2024, 25, 9856. https://doi.org/10.3390/ijms25189856
Zlosa M, Grubišić B, Švitek L, Sabadi D, Canecki-Varžić S, Mihaljević I, Bilić-Ćurčić I, Kizivat T. Implications of Dysnatremia and Endocrine Disturbances in COVID-19 Patients. International Journal of Molecular Sciences. 2024; 25(18):9856. https://doi.org/10.3390/ijms25189856
Chicago/Turabian StyleZlosa, Mihaela, Barbara Grubišić, Luka Švitek, Dario Sabadi, Silvija Canecki-Varžić, Ivica Mihaljević, Ines Bilić-Ćurčić, and Tomislav Kizivat. 2024. "Implications of Dysnatremia and Endocrine Disturbances in COVID-19 Patients" International Journal of Molecular Sciences 25, no. 18: 9856. https://doi.org/10.3390/ijms25189856
APA StyleZlosa, M., Grubišić, B., Švitek, L., Sabadi, D., Canecki-Varžić, S., Mihaljević, I., Bilić-Ćurčić, I., & Kizivat, T. (2024). Implications of Dysnatremia and Endocrine Disturbances in COVID-19 Patients. International Journal of Molecular Sciences, 25(18), 9856. https://doi.org/10.3390/ijms25189856