Optimizing Pancreatic Cancer Therapy: The Promise of Immune Stimulatory Oncolytic Viruses
Abstract
:1. Introduction
1.1. Oncolytic Viruses and Mechanism of Action
1.2. Types of Oncolytic Viruses
1.3. Oncolytic Viruses and the Tumor Microenvironment
1.4. Development of OVs
2. Oncolytic Viruses for Pancreatic Cancer
2.1. Preclinical Studies of Oncolytic Viruses in Pancreatic Cancer
2.2. Preclinical Trials That Combine OV with Immunotherapy
2.3. OV-Based Clinical Studies in Pancreatic Cancer
2.4. Clinical Studies Combining Oncolytic Viruses with Immunotherapy in Pancreatic Cancer
3. Challenges and Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CAFs | Cancer-Associated Fibroblasts |
CAR | Chimeric Antigen Receptor |
CAR T | Chimeric Antigen Receptor T |
CD | Cytosine Deaminase |
CTLA-4 | Cytotoxic T Lymphocyte-Associated Antigen 4 |
DAMPs | Damage-Associated Molecular Patterns |
DCN | Decorin |
DCs | Dendritic Cells |
DNA | Deoxyribonucleic Acid |
ECM | Extracellular Matrix |
EMA | European Medicines Agency |
EUS | Endoscopic Ultrasound |
FDA | Food and Drug Administration |
FGF2 | Fibroblast Growth Factor 2 |
GM-CSF | Granulocyte-Macrophage Colony-Stimulating Factor |
HMGB1 | High Mobility Group Box 1 |
hMSCs | Human Bone Marrow-Derived Mesenchymal Stromal Cells |
HSV | Herpes Simplex Viruses |
ICAM | Intercellular Adhesion Molecule |
ICIs | Immune Checkpoint Inhibitors |
FN | Interferon |
IFN-β | Interferon Beta |
IFN-γ | Interferon Gamma |
IL | Interleukin |
IL-2 | Interleukin-2 |
IL-6 | Interleukin-6 |
IL-7 | Interleukin-7 |
IL-12 | Interleukin-12 |
MTD | Maximum Tolerated Dose |
ML | Machine Learning |
miRTS | MicroRNA Target Sites |
MV | Measles Virus |
MVMP | Minute Virus of Mice Prototype |
NDV | Newcastle Disease Virus |
NT | Neurotensin |
OAd | Oncolytic Adenovirus |
OS | Overall Survival |
OV | Oncolytic Virus |
PAMPs | Pathogen-Associated Molecular Patterns |
PD-1 | Programmed Cell Death Protein 1 |
PD-L1 | Programmed Death-Ligand 1 |
PDAC | Pancreatic Ductal Adenocarcinoma |
PEG | Polyethylene Glycol |
PFS | Progression-Free Survival |
RNA | Ribonucleic Acid |
SAE | Significant Adverse Events |
SBV | Sindbis Virus |
SCC | Squamous-Cell Carcinoma |
SFV | Semliki Forest Virus |
SMAC | Second Mitochondria-Derived Activator of Caspase |
SVV | Seneca Valley Virus |
TILs | Tumor-Infiltrating Lymphocytes |
TKR | Tumor Necrosis Factor-Alpha |
TLR | Toll-Like Receptor |
TME | Tumor Microenvironment |
TNF-α | Tumor Necrosis Factor-Alpha |
TRAIL | Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand |
TK | Thymidine Kinase |
VV | Vaccinia Virus |
VSV | Vesicular Stomatitis Virus |
VVLΔTK-IL-10 | Vaccinia Virus with Deleted Thymidine Kinase and Interleukin-10 Genes |
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Feng, Z.; Miao, R.; Liu, X.; Liu, C.; Liu, Z. Prognosis and survival analysis of patients with pancreatic cancer: Retrospective experience of a single institution. World J. Surg. Oncol. 2022, 20, 11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carvalho, T.M.A.; Di Molfetta, D.; Greco, M.R.; Koltai, T.; Alfarouk, K.O.; Reshkin, S.J.; Cardone, R.A. Tumor Microenvironment Features and Chemoresistance in Pancreatic Ductal Adenocarcinoma: Insights into Targeting Physicochemical Barriers and Metabolism as Therapeutic Approaches. Cancers 2021, 13, 6135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Puckett, Y.; Garfield, K. Pancreatic Cancer. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK518996/ (accessed on 9 August 2024).
- Słodkowski, M.; Wroński, M.; Karkocha, D.; Kraj, L.; Śmigielska, K.; Jachnis, A. Current Approaches for the Curative-Intent Surgical Treatment of Pancreatic Ductal Adenocarcinoma. Cancers 2023, 15, 2584. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sinn, M.; Bahra, M.; Liersch, T.; Gellert, K.; Messmann, H.; Bechstein, W.; Waldschmidt, D.; Jacobasch, L.; Wilhelm, M.; Rau, B.M.; et al. CONKO-005: Adjuvant Chemotherapy With Gemcitabine Plus Erlotinib Versus Gemcitabine Alone in Patients After R0 Resection of Pancreatic Cancer: A Multicenter Randomized Phase III Trial. J. Clin. Oncol. 2017, 35, 3330–3337. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; et al. Groupe Tumeurs Digestives of Unicancer; PRODIGE Intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Li, F.; Gao, F.; Xing, L.; Qin, P.; Liang, X.; Zhang, J.; Qiao, X.; Lin, L.; Zhao, Q.; et al. Periostin promotes the chemotherapy resistance to gemcitabine in pancreatic cancer. Tumour Biol. 2016, 37, 15283–15291. [Google Scholar] [CrossRef] [PubMed]
- Hennig, A.; Baenke, F.; Klimova, A.; Drukewitz, S.; Jahnke, B.; Brückmann, S.; Secci, R.; Winter, C.; Schmäche, T.; Seidlitz, T.; et al. Detecting drug resistance in pancreatic cancer organoids guides optimized chemotherapy treatment. J. Pathol. 2022, 257, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Burris, H.A., 3rd; Moore, M.J.; Andersen, J.; Green, M.R.; Rothenberg, M.L.; Modiano, M.R.; Cripps, M.C.; Portenoy, R.K.; Storniolo, A.M.; Tarassoff, P.; et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. J. Clin. Oncol. 1997, 15, 2403–2413. [Google Scholar] [CrossRef] [PubMed]
- Karasic, T.B.; O’Hara, M.H.; Loaiza-Bonilla, A.; Reiss, K.A.; Teitelbaum, U.R.; Borazanci, E.; De Jesus-Acosta, A.; Redlinger, C.; Burrell, J.A.; Laheru, D.A.; et al. Effect of Gemcitabine and nab-Paclitaxel With or Without Hydroxychloroquine on Patients With Advanced Pancreatic Cancer: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 993–998. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuruppu, D.; Tanabe, K.K. Viral oncolysis by herpes simplex virus and other viruses. Cancer Biol. Ther. 2005, 4, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Alemany, R. Viruses in cancer treatment. Clin. Transl. Oncol. 2013, 15, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Li, D.; Zhu, X. Cancer immunotherapy: Pros, cons and beyond. Biomed. Pharmacother. 2020, 124, 109821. [Google Scholar] [CrossRef] [PubMed]
- Hemminki, O.; Dos Santos, J.M.; Hemminki, A. Oncolytic viruses for cancer immunotherapy. J. Hematol. Oncol. 2020, 13, 84. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thoidingjam, S.; Sriramulu, S.; Freytag, S.; Brown, S.L.; Kim, J.H.; Chetty, I.J.; Siddiqui, F.; Movsas, B.; Nyati, S. Oncolytic virus-based suicide gene therapy for cancer treatment: A perspective of the clinical trials conducted at Henry Ford Health. Transl. Med. Commun. 2023, 8, 11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ochiai, H.; Campbell, S.A.; Archer, G.E.; Chewning, T.A.; Dragunsky, E.; Ivanov, A.; Gromeier, M.; Sampson, J.H. Targeted therapy for glioblastoma multiforme neoplastic meningitis with intrathecal delivery of an oncolytic recombinant poliovirus. Clin. Cancer Res. 2006, 12, 1349–1354. [Google Scholar] [CrossRef] [PubMed]
- Marintcheva, B. Chapter 9—Virus-based therapeutic approaches. In Harnessing the Power of Viruses; Marintcheva, B., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 243–276. [Google Scholar]
- Bai, Y.; Hui, P.; Du, X.; Su, X. Updates to the antitumor mechanism of oncolytic virus. Thorac. Cancer. 2019, 10, 1031–1035. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marelli, G.; Howells, A.; Lemoine, N.R.; Wang, Y. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer. Front. Immunol. 2018, 9, 866. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaufman, H.L.; Kohlhapp, F.J.; Zloza, A. Oncolytic viruses: A new class of immunotherapy drugs. Nat. Rev. Drug Discov. 2015, 14, 642–662. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Shen, Y.; Wan, X.; Hu, X.; Cai, W.Q.; Wu, Z.; Xin, Q.; Liu, X.; Gui, J.; Xin, H.Y.; et al. Oncolytic virotherapy evolved into the fourth generation as tumor immunotherapy. J. Transl. Med. 2023, 21, 500. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.; Wang, W.; Wang, R.; Zhang, N.; Shang, H.; Bi, Y.; Chen, D.; Zhang, C.; Li, L.; Yin, J.; et al. Reshaping the Immune Microenvironment by Oncolytic Herpes Simplex Virus in Murine Pancreatic Ductal Adenocarcinoma. Mol. Ther. 2021, 29, 744–761. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mantwill, K.; Klein, F.G.; Wang, D.; Hindupur, S.V.; Ehrenfeld, M.; Holm, P.S.; Nawroth, R. Concepts in Oncolytic Adenovirus Therapy. Int. J. Mol. Sci. 2021, 22, 10522. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andtbacka, R.H.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J. Clin. Oncol. 2015, 33, 2780–2788. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Cripe, T.P.; Chiocca, E.A. “Buy one get one free”: Armed viruses for the treatment of cancer cells and their microenvironment. Curr. Gene Ther. 2009, 9, 341–355. [Google Scholar] [CrossRef]
- Elsedawy, N.B.; Russell, S.J. Oncolytic vaccines. Expert. Rev. Vaccines 2013, 12, 1155–1172. [Google Scholar] [CrossRef] [PubMed]
- Larson, C.; Oronsky, B.; Scicinski, J.; Fanger, G.R.; Stirn, M.; Oronsky, A.; Reid, T.R. Going viral: A review of replication-selective oncolytic adenoviruses. Oncotarget 2015, 6, 19976–19989. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, L.; Zuo, M.; Zhou, Q.; Wang, Y. Oncolytic virotherapy in cancer treatment: Challenges and optimization prospects. Front. Immunol. 2023, 14, 1308890. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, B.; Zhou, L.; Lu, J.; Wang, Y.; Liu, C.; You, L.; Guo, J. Stroma-Targeting Therapy in Pancreatic Cancer: One Coin With Two Sides? Front. Oncol. 2020, 10, 576399. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bell, J.; McFadden, G. Viruses for tumor therapy. Cell Host Microbe 2014, 15, 260–265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fukuhara, H.; Ino, Y.; Todo, T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 2016, 107, 1373–1379. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yoo, S.Y.; Badrinath, N.; Lee, H.L.; Heo, J.; Kang, D.H. A Cancer-Favoring, Engineered Vaccinia Virus for Cholangiocarcinoma. Cancers 2019, 11, 1667. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ebelt, N.D.; Zamloot, V.; Manuel, E.R. Targeting desmoplasia in pancreatic cancer as an essential first step to effective therapy. Oncotarget. 2020, 11, 3486–3488. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Erkan, M.; Michalski, C.W.; Rieder, S.; Reiser-Erkan, C.; Abiatari, I.; Kolb, A.; Giese, N.A.; Esposito, I.; Friess, H.; Kleeff, J. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin. Gastroenterol. Hepatol. 2008, 6, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Ullman, N.A.; Burchard, P.R.; Dunne, R.F.; Linehan, D.C. Immunologic Strategies in Pancreatic Cancer: Making Cold Tumors Hot. J. Clin. Oncol. 2022, 40, 2789–2805. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murakami, T.; Hiroshima, Y.; Matsuyama, R.; Homma, Y.; Hoffman, R.M.; Endo, I. Role of the tumor microenvironment in pancreatic cancer. Ann. Gastroenterol. Surg. 2019, 3, 130–137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Chard Dunmall, L.S.; Cheng, Z.; Wang, Y. Remodeling the tumor microenvironment by oncolytic viruses: Beyond oncolysis of tumor cells for cancer treatment. J. Immunother. Cancer. 2022, 10, e004167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Platanias, L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005, 5, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.S.; Liu, Z.; Kowalsky, S.; Feist, M.; Kalinski, P.; Lu, B.; Storkus, W.J.; Bartlett, D.L. Oncolytic Immunotherapy: Conceptual Evolution, Current Strategies, and Future Perspectives. Front. Immunol. 2017, 8, 555. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Breitbach, C.J.; Lichty, B.D.; Bell, J.C. Oncolytic Viruses: Therapeutics With an Identity Crisis. eBioMedicine 2016, 9, 31–36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berkey, S.E.; Thorne, S.H.; Bartlett, D.L. Oncolytic Virotherapy and the Tumor Microenvironment. Adv. Exp. Med. Biol. 2017, 1036, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Angarita, F.A.; Acuna, S.A.; Ottolino-Perry, K.; Zerhouni, S.; McCart, J.A. Mounting a strategic offense: Fighting tumor vasculature with oncolytic viruses. Trends Mol. Med. 2013, 19, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Breitbach, C.J.; Arulanandam, R.; De Silva, N.; Thorne, S.H.; Patt, R.; Daneshmand, M.; Moon, A.; Ilkow, C.; Burke, J.; Hwang, T.H.; et al. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res. 2013, 73, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Ilkow, C.S.; Marguerie, M.; Batenchuk, C.; Mayer, J.; Ben Neriah, D.; Cousineau, S.; Falls, T.; Jennings, V.A.; Boileau, M.; Bellamy, D.; et al. Reciprocal cellular cross-talk within the tumor microenvironment promotes oncolytic virus activity. Nat. Med. 2015, 21, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.H.; Choi, I.K.; Lee, H.S.; Yan, H.H.; Son, M.K.; Ahn, H.M.; Hong, J.; Yun, C.O.; Hong, S.S. Oncolytic adenovirus expressing relaxin (YDC002) enhances therapeutic efficacy of gemcitabine against pancreatic cancer. Cancer Lett. 2017, 396, 155–166, Erratum in: Cancer Lett. 2017, 404, 93. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.K.; Lee, Y.S.; Yoo, J.Y.; Yoon, A.R.; Kim, H.; Kim, D.S.; Seidler, D.G.; Kim, J.H.; Yun, C.O. Effect of decorin on overcoming the extracellular matrix barrier for oncolytic virotherapy. Gene Ther. 2010, 17, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hong, J.; Jung, B.K.; Oh, E.; Yun, C.O. Oncolytic Ad co-expressing decorin and Wnt decoy receptor overcomes chemoresistance of desmoplastic tumor through degradation of ECM and inhibition of EMT. Cancer Lett. 2019, 459, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Al-Zaher, A.A.; Moreno, R.; Fajardo, C.A.; Arias-Badia, M.; Farrera, M.; de Sostoa, J.; Rojas, L.A.; Alemany, R. Evidence of Anti-tumoral Efficacy in an Immune Competent Setting with an iRGD-Modified Hyaluronidase-Armed Oncolytic Adenovirus. Mol. Ther. Oncolytics 2018, 8, 62–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bazan-Peregrino, M.; Garcia-Carbonero, R.; Laquente, B.; Álvarez, R.; Mato-Berciano, A.; Gimenez-Alejandre, M.; Morgado, S.; Rodríguez-García, A.; Maliandi, M.V.; Riesco, M.C.; et al. VCN-01 disrupts pancreatic cancer stroma and exerts antitumor effects. J. Immunother. Cancer. 2021, 9, e003254. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rahal, A.; Musher, B. Oncolytic viral therapy for pancreatic cancer. J. Surg. Oncol. 2017, 116, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Dock, G. The Influence of Complicating Diseases Upon Leukaemia; Lea Brothers & Company: Cambridge, UK, 1904. [Google Scholar]
- Zhang, S.; Rabkin, S.D. The discovery and development of oncolytic viruses: Are they the future of cancer immunotherapy? Expert Opin. Drug. Discov. 2021, 16, 391–410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martuza, R.L.; Malick, A.; Markert, J.M.; Ruffner, K.L.; Coen, D.M. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991, 252, 854–856. [Google Scholar] [CrossRef] [PubMed]
- Bommareddy, P.K.; Peters, C.; Saha, D.; Rabkin, S.D.; Kaufman, H.L. Oncolytic Herpes Simplex Viruses as a Paradigm for the Treatment of Cancer. Annu. Rev. Cancer Biol. 2018, 2, 155–173. [Google Scholar] [CrossRef]
- Nasar, R.T.; Uche, I.K.; Kousoulas, K.G. Targeting Cancers with oHSV-Based Oncolytic Viral Immunotherapy. Curr. Issues Mol. Biol. 2024, 46, 5582–5594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barton, K.N.; Siddiqui, F.; Pompa, R.; Freytag, S.O.; Khan, G.; Dobrosotskaya, I.; Ajlouni, M.; Zhang, Y.; Cheng, J.; Movsas, B.; et al. Phase I trial of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for the treatment of metastatic pancreatic cancer. Mol. Ther. Oncolytics 2020, 20, 94–104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- OBryan, S.M.; Mathis, J.M. Oncolytic Virotherapy for Breast Cancer Treatment. Curr. Gene Ther. 2018, 18, 192–205. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Asija, S.; Chatterjee, A.; Goda, J.S.; Yadav, S.; Chekuri, G.; Purwar, R. Oncolytic immunovirotherapy for high-grade gliomas: A novel and an evolving therapeutic option. Front. Immunol. 2023, 14, 1118246. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dai, B.; Roife, D.; Kang, Y.; Gumin, J.; Rios Perez, M.V.; Li, X.; Pratt, M.; Brekken, R.A.; Fueyo-Margareto, J.; Lang, F.F.; et al. Preclinical Evaluation of Sequential Combination of Oncolytic Adenovirus Delta-24-RGD and Phosphatidylserine-Targeting Antibody in Pancreatic Ductal Adenocarcinoma. Mol. Cancer Ther. 2017, 16, 662–670. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Na, Y.; Choi, J.W.; Kasala, D.; Hong, J.; Oh, E.; Li, Y.; Jung, S.J.; Kim, S.W.; Yun, C.O. Potent antitumor effect of neurotensin receptor-targeted oncolytic adenovirus co-expressing decorin and Wnt antagonist in an orthotopic pancreatic tumor model. J. Control Release 2015, 220 Pt B, 766–782. [Google Scholar] [CrossRef] [PubMed]
- Na, Y.; Nam, J.P.; Hong, J.; Oh, E.; Shin, H.C.; Kim, H.S.; Kim, S.W.; Yun, C.O. Systemic administration of human mesenchymal stromal cells infected with polymer-coated oncolytic adenovirus induces efficient pancreatic tumor homing and infiltration. J. Control Release 2019, 305, 75–88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brugada-Vilà, P.; Cascante, A.; Lázaro, M.Á.; Castells-Sala, C.; Fornaguera, C.; Rovira-Rigau, M.; Albertazzi, L.; Borros, S.; Fillat, C. Oligopeptide-modified poly(beta-amino ester)s-coated AdNuPARmE1A: Boosting the efficacy of intravenously administered therapeutic adenoviruses. Theranostics 2020, 10, 2744–2758. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salzwedel, A.O.; Han, J.; LaRocca, C.J.; Shanley, R.; Yamamoto, M.; Davydova, J. Combination of interferon-expressing oncolytic adenovirus with chemotherapy and radiation is highly synergistic in hamster model of pancreatic cancer. Oncotarget 2018, 9, 18041–18052. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Watanabe, K.; Luo, Y.; Da, T.; Guedan, S.; Ruella, M.; Scholler, J.; Keith, B.; Young, R.M.; Engels, B.; Sorsa, S.; et al. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight 2018, 3, e99573. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raimondi, G.; Gea-Sorlí, S.; Otero-Mateo, M.; Fillat, C. Inhibition of miR-222 by Oncolytic Adenovirus-Encoded miRNA Sponges Promotes Viral Oncolysis and Elicits Antitumor Effects in Pancreatic Cancer Models. Cancers 2021, 13, 3233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Doerner, J.; Sallard, E.; Zhang, W.; Solanki, M.; Liu, J.; Ehrke-Schulz, E.; Zirngibl, H.; Lieber, A.; Ehrhardt, A. Novel Group C Oncolytic Adenoviruses Carrying a miRNA Inhibitor Demonstrate Enhanced Oncolytic Activity In Vitro and In Vivo. Mol. Cancer Ther. 2022, 21, 460–470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hashimoto, M.; Kuroda, S.; Kanaya, N.; Kadowaki, D.; Yoshida, Y.; Sakamoto, M.; Hamada, Y.; Sugimoto, R.; Yagi, C.; Ohtani, T.; et al. Long-term activation of anti-tumor immunity in pancreatic cancer by a p53-expressing telomerase-specific oncolytic adenovirus. Br. J. Cancer 2024, 130, 1187–1195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ge, Y.; Lei, W.; Ma, Y.; Wang, Y.; Wei, B.; Chen, X.; Ru, G.; He, X.; Mou, X.; Wang, S. Synergistic antitumor effects of CDK inhibitor SNS-032 and an oncolytic adenovirus co-expressing TRAIL and Smac in pancreatic cancer. Mol. Med. Rep. 2017, 15, 3521–3528. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carew, J.S.; Espitia, C.M.; Zhao, W.; Kelly, K.R.; Coffey, M.; Freeman, J.W.; Nawrocki, S.T. Reolysin is a novel reovirus-based agent that induces endoplasmic reticular stress-mediated apoptosis in pancreatic cancer. Cell Death Dis. 2013, 4, e728. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baertsch, M.A.; Leber, M.F.; Bossow, S.; Singh, M.; Engeland, C.E.; Albert, J.; Grossardt, C.; Jäger, D.; von Kalle, C.; Ungerechts, G. MicroRNA-mediated multi-tissue detargeting of oncolytic measles virus. Cancer Gene Ther. 2014, 21, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Chard, L.S.; Lemoine, N.R.; Wang, Y. New role of Interleukin-10 in enhancing the antitumor efficacy of oncolytic vaccinia virus for treatment of pancreatic cancer. Oncoimmunology 2015, 4, e1038689. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, R.; Chen, J.; Wang, W.; Zhao, Z.; Wang, H.; Liu, S.; Li, F.; Wan, Y.; Yin, J.; Wang, R.; et al. CD40L-armed oncolytic herpes simplex virus suppresses pancreatic ductal adenocarcinoma by facilitating the tumor microenvironment favorable to cytotoxic T cell response in the syngeneic mouse model. J. Immunother. Cancer 2022, 10, e003809. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vienne, M.; Lopez, C.; Lulka, H.; Nevot, A.; Labrousse, G.; Dusetti, N.; Buscail, L.; Cordelier, P. Minute virus of mice shows oncolytic activity against pancreatic cancer cells exhibiting a mesenchymal phenotype. Mol. Ther. Oncol. 2024, 32, 200780. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schäfer, T.E.; Knol, L.I.; Haas, F.V.; Hartley, A.; Pernickel, S.C.S.; Jády, A.; Finkbeiner, M.S.C.; Achberger, J.; Arelaki, S.; Modic, Ž.; et al. Biomarker screen for efficacy of oncolytic virotherapy in patient-derived pancreatic cancer cultures. eBioMedicine 2024, 105, 105219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chard, L.S.; Maniati, E.; Wang, P.; Zhang, Z.; Gao, D.; Wang, J.; Cao, F.; Ahmed, J.; El Khouri, M.; Hughes, J.; et al. A vaccinia virus armed with interleukin-10 is a promising therapeutic agent for treatment of murine pancreatic cancer. Clin. Cancer Res. 2015, 21, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Rovira-Rigau, M.; Raimondi, G.; Marín, M.Á.; Gironella, M.; Alemany, R.; Fillat, C. Bioselection Reveals miR-99b and miR-485 as Enhancers of Adenoviral Oncolysis in Pancreatic Cancer. Mol. Ther. 2019, 27, 230–243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Man, Y.K.S.; Davies, J.A.; Coughlan, L.; Pantelidou, C.; Blázquez-Moreno, A.; Marshall, J.F.; Parker, A.L.; Halldén, G. The Novel Oncolytic Adenoviral Mutant Ad5-3Δ-A20T Retargeted to αvβ6 Integrins Efficiently Eliminates Pancreatic Cancer Cells. Mol. Cancer Ther. 2018, 17, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chu, L.; Yuan, S.; Yang, Y.; Yang, Y.; Xu, B.; Zhang, K.; Liu, X.Y.; Wang, R.; Fang, L.; et al. RGD-modified oncolytic adenovirus-harboring shPKM2 exhibits a potent cytotoxic effect in pancreatic cancer via autophagy inhibition and apoptosis promotion. Cell Death Dis. 2017, 8, e2835. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, Z.; Lee, S.; Je, S.; Eom, C.Y.; Choi, H.J.; Song, J.J.; Kim, J.H. Survivin silencing and TRAIL expression using oncolytic adenovirus increase anti-tumorigenic activity in gemcitabine-resistant pancreatic cancer cells. Apoptosis 2016, 21, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Cataldi, M.; Shah, N.R.; Felt, S.A.; Grdzelishvili, V.Z. Breaking resistance of pancreatic cancer cells to an attenuated vesicular stomatitis virus through a novel activity of IKK inhibitor TPCA-1. Virology 2015, 485, 340–354. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, H.M.; Leber, M.F.; Bossow, S.; Engeland, C.E.; Dessila, J.; Grossardt, C.; Zaoui, K.; Bell, J.C.; Jäger, D.; von Kalle, C.; et al. MicroRNA-sensitive oncolytic measles virus for chemovirotherapy of pancreatic cancer. Mol. Ther. Oncolytics 2021, 21, 340–355. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, J.; Bonifati, S.; Hristov, G.; Marttila, T.; Valmary-Degano, S.; Stanzel, S.; Schnölzer, M.; Mougin, C.; Aprahamian, M.; Grekova, S.P.; et al. Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas. EMBO Mol. Med. 2013, 5, 1537–1555. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dai, M.H.; Liu, S.L.; Chen, N.G.; Zhang, T.P.; You, L.; QZhang, F.; Chou, T.C.; Szalay, A.A.; Fong, Y.; Zhao, Y.P. Oncolytic vaccinia virus in combination with radiation shows synergistic antitumor efficacy in pancreatic cancer. Cancer Lett. 2014, 344, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018, 8, 86. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Palanivelu, L.; Liu, C.H.; Lin, L.T. Immunogenic cell death: The cornerstone of oncolytic viro-immunotherapy. Front. Immunol. 2023, 13, 1038226. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, S.; Li, F.; Ma, Q.; Du, M.; Wang, H.; Zhu, Y.; Deng, L.; Gao, W.; Wang, C.; Liu, Y.; et al. OX40L-Armed Oncolytic Virus Boosts T-cell Response and Remodels Tumor Microenvironment for Pancreatic Cancer Treatment. Theranostics 2023, 13, 4016–4029. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nelson, A.; Gebremeskel, S.; Lichty, B.D.; Johnston, B. Natural killer T cell immunotherapy combined with IL-15-expressing oncolytic virotherapy and PD-1 blockade mediates pancreatic tumor regression. J. Immunother. Cancer 2022, 10, e003923. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mulvihill, S.; Warren, R.; Venook, A.; Adler, A.; Randlev, B.; Heise, C.; Kirn, D. Safety and feasibility of injection with an E1B-55 kDa gene-deleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: A phase I trial. Gene Ther. 2001, 8, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Hecht, J.R.; Bedford, R.; Abbruzzese, J.L.; Lahoti, S.; Reid, T.R.; Soetikno, R.M.; Kirn, D.H.; Freeman, S.M. A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin. Cancer Res. 2003, 9, 555–561. [Google Scholar] [PubMed]
- Nattress, C.B.; Halldén, G. Advances in oncolytic adenovirus therapy for pancreatic cancer. Cancer Lett. 2018, 434, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Carbonero, R.; Bazan-Peregrino, M.; Gil-Martín, M.; Álvarez, R.; Macarulla, T.; Riesco-Martinez, M.C.; Verdaguer, H.; Guillén-Ponce, C.; Farrera-Sal, M.; Moreno, R.; et al. Phase I, multicenter, open-label study of intravenous VCN-01 oncolytic adenovirus with or without nab-paclitaxel plus gemcitabine in patients with advanced solid tumors. J. Immunother. Cancer 2022, 10, e003255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Musher, B.L.; Rowinsky, E.K.; Smaglo, B.G.; Abidi, W.; Othman, M.; Patel, K.; Jawaid, S.; Jing, J.; Brisco, A.; Leen, A.M.; et al. LOAd703, an oncolytic virus-based immunostimulatory gene therapy, combined with chemotherapy for unresectable or metastatic pancreatic cancer (LOKON001): Results from arm 1 of a non-randomised, single-centre, phase 1/2 study. Lancet Oncol. 2024, 25, 488–500. [Google Scholar] [CrossRef] [PubMed]
- Noonan, A.M.; Farren, M.R.; Geyer, S.M.; Huang, Y.; Tahiri, S.; Ahn, D.; Mikhail, S.; Ciombor, K.K.; Pant, S.; Aparo, S.; et al. Randomized Phase 2 Trial of the Oncolytic Virus Pelareorep (Reolysin) in Upfront Treatment of Metastatic Pancreatic Adenocarcinoma. Mol. Ther. 2016, 24, 1150–1158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Qian, L.; Chen, K.; Gu, S.; Meng, Z.; Wang, J.; Li, Y.; Wang, P. Oncolytic adenovirus in treating malignant ascites: A phase II trial and longitudinal single-cell study. Mol. Ther. 2024, 32, 2000–2020. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mahalingam, D.; Fountzilas, C.; Moseley, J.L.; Noronha, N.; Cheetham, K.; Dzugalo, A.; Nuovo, G.; Gutierrez, A.; Arora, S.P. A study of REOLYSIN in combination with pembrolizumab and chemotherapy in patients (pts) with relapsed metastatic adenocarcinoma of the pancreas (MAP). J. Clin. Oncol. 2017, 35, e15753. [Google Scholar] [CrossRef]
- Mahalingam, D.; Wilkinson, G.A.; Eng, K.H.; Fields, P.; Raber, P.; Moseley, J.L.; Cheetham, K.; Coffey, M.; Nuovo, G.; Kalinski, P.; et al. Pembrolizumab in Combination with the Oncolytic Virus Pelareorep and Chemotherapy in Patients with Advanced Pancreatic Adenocarcinoma: A Phase Ib Study. Clin. Cancer Res. 2020, 26, 71–81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saltos, A.N.; Arrowood, C.; Beasley, G.; Ronald, J.; El-Haddad, G.; Guerra-Guevara, L.; Ready, N.E. A phase 1 first-in-human study of interferon beta (IFNβ) and membrane-stable CD40L expressing oncolytic virus (MEM-288) in solid tumors including non–small-cell lung cancer (NSCLC). J. Clin. Oncol. 2023, 41 (Suppl. 16), 2569. [Google Scholar] [CrossRef]
- Shen, Y.; Qin, A.; Qiu, Y.; Jin, X.; Song, W.; Fang, T.; Liang, T. 766 A clinical trial to evaluate the safety, tolerability and preliminary efficacy of VG161 in combination with Nivolumab in patients with advanced pancreatic cancer. J. ImmunoTherapy Cancer 2023, 11 (Suppl. 1), A861. [Google Scholar]
- Pipiya, T.; Sauthoff, H.; Huang, Y.Q.; Chang, B.; Cheng, J.; Heitner, S.; Chen, S.; Rom, W.N.; Hay, J.G. Hypoxia reduces adenoviral replication in cancer cells by downregulation of viral protein expression. Gene Ther. 2005, 12, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Taylor, I.P.; Lopez, J.A. Oncolytic adenoviruses and the treatment of pancreatic cancer: A review of clinical trials. J. Cancer Res. Clin. Oncol. 2023, 149, 8117–8129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhatnagar, A.R.; Siddiqui, F.; Khan, G.; Pompa, R.; Kwon, D.; Nyati, S. Long-Term Follow-Up of Phase I Trial of Oncolytic Adenovirus-Mediated Cytotoxic and Interleukin-12 Gene Therapy for Treatment of Metastatic Pancreatic Cancer. Biomedicines 2024, 12, 1065. [Google Scholar] [CrossRef]
- Groeneveldt, C.; van den Ende, J.; van Montfoort, N. Preexisting immunity: Barrier or bridge to effective oncolytic virus therapy? Cytokine Growth Factor. Rev. 2023, 70, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, S.; Ghorbani, E.; Khazaei, M.; Avan, A.; Ryzhikov, M.; Azadmanesh, K.; Hassanian, S.M. Interferon-Mediated Tumor Resistance to Oncolytic Virotherapy. J. Cell Biochem. 2017, 118, 1994–1999. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, C.; Iankov, I.D.; Anderson, S.K.; Aderca, I.; Leontovich, A.A.; Maurer, M.J.; Oberg, A.L.; Schroeder, M.A.; Giannini, C.; Greiner, S.M.; et al. Constitutive Interferon Pathway Activation in Tumors as an Efficacy Determinant Following Oncolytic Virotherapy. J. Natl. Cancer Inst. 2018, 110, 1123–1132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, M.; Zhang, R.; Huang, H.; Liu, P.; Zhao, X.; Wu, H.; He, Y.; Xu, R.; Qin, X.; Cheng, Z.; et al. Erythrocyte-Leveraged Oncolytic Virotherapy (ELeOVt): Oncolytic Virus Assembly on Erythrocyte Surface to Combat Pulmonary Metastasis and Alleviate Side Effects. Adv. Sci. 2024, 11, e2303907. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bounassar-Filho, J.P.; Boeckler-Troncoso, L.; Cajigas-Gonzalez, J.; Zavala-Cerna, M.G. SARS-CoV-2 as an Oncolytic Virus Following Reactivation of the Immune System: A Review. Int. J. Mol. Sci. 2023, 24, 2326. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yaacov, B.; Lazar, I.; Tayeb, S.; Frank, S.; Izhar, U.; Lotem, M.; Perlman, R.; Ben-Yehuda, D.; Zakay-Rones, Z.; Panet, A. Extracellular matrix constituents interfere with Newcastle disease virus spread in solid tissue and diminish its potential oncolytic activity. J. Gen. Virol. 2012, 93 Pt 8, 1664–1672. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhang, Z.; Chen, Y.; Xu, J.; Wang, J.; Wang, Z. Enhancing cancer therapy: The integration of oncolytic virus therapy with diverse treatments. Cancer Cell Int. 2024, 24, 242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, Z.; McGray, A.J.R.; Jiang, W.; Lu, B.; Kalinski, P.; Guo, Z.S. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol. Cancer 2022, 21, 196. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaufman, H.L. Can Biomarkers Guide Oncolytic Virus Immunotherapy? Clin. Cancer Res. 2021, 27, 3278–3279. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, D.; Fountzilas, C.; Moseley, J.; Noronha, N.; Tran, H.; Chakrabarty, R.; Selvaggi, G.; Coffey, M.; Thompson, B.; Sarantopoulos, J. A phase II study of REOLYSIN® (pelareorep) in combination with carboplatin and paclitaxel for patients with advanced malignant melanoma. Cancer Chemother. Pharmacol. 2017, 79, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Huang, J.; Tong, A.; Yang, H. Oncolytic Viruses for Cancer Therapy: Barriers and Recent Advances. Mol. Ther. Oncolytics 2019, 15, 234–247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tian, Y.; Xie, D.; Yang, L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct. Target. Ther. 2022, 7, 117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fang, C.; Xiao, G.; Wang, T.; Song, L.; Peng, B.; Xu, B.; Zhang, K. Emerging Nano-/Biotechnology Drives Oncolytic Virus-Activated and Combined Cancer Immunotherapy. Research 2023, 6, 0108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ajam-Hosseini, M.; Akhoondi, F.; Doroudian, M. Nano based-oncolytic viruses for cancer therapy. Crit. Rev. Oncol. Hematol. 2023, 185, 103980. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, Z.; Zhang, Y.; Huang, X.; Liu, Q. Efficacy and Safety of Oncolytic Viruses in Randomized Controlled Trials: A Systematic Review and Meta-Analysis. Cancers 2020, 12, 1416. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lichty, B.D.; Breitbach, C.J.; Stojdl, D.F.; Bell, J.C. Going viral with cancer immunotherapy. Nat. Rev. Cancer. 2014, 14, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2014, 13, 8–17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaviarasan, V.; Ragunath, B.; Veerabathiran, R. Chapter 4—Oncolytic virus cancer therapeutic options and integration of artificial intelligence into virus cancer research. In Oncogenic Viruses; Ennaji, M.M., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 61–80. [Google Scholar]
Virus Name | Virus Type | Mechanism & Target | Enhancements | Efficacy in Models | Key Findings | References |
---|---|---|---|---|---|---|
Reolysin | Reovirus | Selective reovirus replication and induction of ER stress-mediated apoptosis; targets KRas-transformed cells | Combined with ER stress inducers (tunicamycin, brefeldin A, and bortezomib) | Enhanced selective replication, increased ER stress, apoptosis; tumor reduction | Effectively targets Ras-activated cancers | [71] |
MV-EGFPmtd | Measles virus | Integrated MicroRNA target sites (miRTS) interact with normal tissue microRNAs, preventing viral replication in nontarget cells | -- | Detargets normal tissues; retains oncolytic potency in pancreatic cancer models | Feasibility of modifying tropism without compromising efficacy | [72] |
oAd/DCN/LRP-PEG-NT | Adenovirus | Modified with NT peptide and PEG for enhanced targeting, Degrades ECM, targets NTR-overexpressing cells | -- | Significant tumor suppression; improved transduction efficiency | Effective targeting of NTR-overexpressing pancreatic cancer cells; ECM degradation; Wnt signaling inhibition | [62] |
uMSC-delivered oAd/RLX-PCDP | Adenovirus | Delivered via hMSCs; enhances viral delivery and replication Complexed with biodegradable polymer (PCDP) for improved delivery | -- | Stronger antitumor effect in pancreatic tumor models compared to naked virus or hMSC treatment | Enhanced internalization, viral production, and release in tumor tissues | [63] |
VLΔTK-IL-10 | Vaccinia virus | Deleted TK and armed with IL-10 genes; enhances targeted viral attack on tumors | -- | Prolonged survival in immunocompetent and genetically engineered mouse models | Increased survival rates; targeted viral attack on tumors | [77] |
Delta-24-RGD (DNX-2401) | Adenovirus | Selective replication in p16/RB/E2F pathway abnormal cells | Combined with phosphatidylserine targeting antibody 1N11 | Reduced tumor growth; enhanced anticancer immune responses | Significant reduction in tumor growth; targeted replication in abnormal pathway cells | [61] |
ICOVIR15 | Adenovirus | Enhanced E1A and late viral protein expression through miR-99b and miR-485 | -- | Increased adenoviral activity in pancreatic cancer cell lines | Downregulation of transcriptional repressors ELF4, MDM2, and KLF8; enhanced antitumoral activity | [78] |
YDC002 | Adenovirus | Degrades ECM, enhances chemosensitivity | Combined with gemcitabine | Potent anticancer effects; enhanced chemosensitivity | Reduced ECM components; enhanced cytotoxicity of gemcitabine | [47] |
OAds expressing IFN | Adenovirus | Expresses interferon; enhances chemotherapy efficacy | Combined with 5-FU, gemcitabine, and cisplatin | Improved cancer cell death in vitro; inhibited tumor growth in animal models | Improved efficacy of chemotherapy drugs; enhanced survival rates | [65] |
SAG101 | Adenovirus | Coated with OM-pBAEs for enhanced transduction | -- | Improved antitumor activity and reduced toxicity in PDAC mouse models | Enhanced transduction efficiency; reduced liver sequestration; improved therapeutic potential | [64] |
AdNuPARmE1A-miR222-S | Adenovirus | Engineered with miR-222 binding sites; Inhibits miR-222 to improve viral yield and cytotoxic effects in vivo | -- | Controlled tumor progression better than control virus in xenografts | Enhanced viral fitness, and improved tumor control through miRNA modulation | [67] |
oHSV-CD40L | Herpes simplex | Expresses membrane-bound CD40L; stimulates immune responses | Combined with PD-1 antagonist antibody | Slowed tumor growth, prolonged survival; increased mature DCs and activated cytotoxic T cells | Enhanced immune response; improved outcomes in pancreatic cancer treatment | [74] |
Ad5-3Δ-A20T | Adenovirus | Selective targeting of αvβ6 integrin receptor, promoting viral propagation and spread | -- | Superior efficacy in 3D organotypic cocultures and Suit-2 for in vivo models | Highly selective for αvβ6 integrin-expressing pancreatic cancer cells; potential to improve systemic delivery | [79] |
OAd.R.shPKM2 | Adenovirus | Knockdown of PKM2 | -- | Reduced tumor growth in PANC-1 xenograft model | Induced apoptosis and impaired autophagy; strong antitumor effect | [80] |
ZD55-TRAIL-IETD-Smac | Adenovirus | Expression of TRAIL and Smac; Enhanced apoptosis of pancreatic cancer cells by affecting antiapoptotic signaling elements | Combined with Cyclin-dependent kinase (CDK) inhibitor SNS-032 | Significant inhibition of BxPC-3 pancreatic tumor xenografts | Combination therapy sensitized cancer cells to apoptosis | [70] |
OAd expressing survivin shRNA & TRAIL | Adenovirus | Downregulation of survivin with TRAIL expression to enhance cytotoxic death post-gemcitabine treatment | Combined with Gemcitabine | Tumor regression in MiaPaCa-2 pancreatic cancer model | Enhanced cell death correlated with survivin downregulation and increased PARP cleavage | [81] |
VSV-ΔM51-GFP | Vesicular Stomatitis Virus | Enhance viral replication and oncolysis by targeting IKK-β and JAK1 | Combined with TPCA-1 (IKK-β inhibitor) and ruxolitinib (JAK1/2 inhibitor) | Enhanced replication and oncolysis in VSV-resistant PDAC cell lines with inhibitors | Upregulated type I interferon signaling contributes to resistance; inhibition of STAT1/2 phosphorylation enhances VSV-ΔM51 efficacy | [82] |
microRNA-sensitive CD-UPRT-armed MeV | Measles Virus | MicroRNA-regulated vector tropism targeting pancreatic cancer cells; 5-fluorouracil-based chemovirotherapy | Combined with 5-fluorocytosine | Delayed tumor growth and prolonged survival in xenografts with combination treatment | Effective strategy against pancreatic cancer with favorable therapeutic index; potential for clinical translation | [83] |
H-1PV | Parvovirus | Induction of oxidative stress and apoptosis | Combined with Histone deacetylase inhibitors (HDACIs) valproic acid | Complete tumor remission in rat and mouse xenograft models | Promising results warranting clinical evaluation in cervical and pancreatic ductal carcinomas | [84] |
GLV-1h151 | Vaccinia Virus | Direct oncolysis; inflammation-mediated immune responses | Combined with radiation | Synergistic cytotoxic effect in combination with radiation; well-tolerated in mice | Potential for clinical translation; effective against colorectal cancers independent of disease stage | [85] |
Phase | Oncolytic Virus | Clinical Trial Identifier | Description | Inclusion Criteria | Coupled with | Virus Dose | Status | Estimated Study Completion (mm/yyyy) |
---|---|---|---|---|---|---|---|---|
I | Talimog-ene Laherpa-repvec (T-VEC) | NCT03086642 | Immune-enhanced herpes simplex virus type-1 (HSV-1) that selectively replicates in solid tumors | Locally advanced or metastatic pancreatic cancer, refractory to at least one chemotherapy regimen | -- | 4.0 mL of 106 PFU/mL on week 1 and 4.0 mL of 106, 107, or 108 PFU/mL on week 4 | Active, not recruiting | April 2026 |
I | TBI-1401 (HF10) | NCT03252808 | Replication-competent HSV-1 Oncolytic Virus | Stage III or IV unresectable pancreatic cancer. Patients with stage IV must have failed gemcitabine-based first-line chemotherapy. | With gemcitabine + nab-paclitaxel or TS-1. | 1 × 106 or 1 × 107 TCID50 */mL TBI-1401 (HF10) administered to the tumor in up to 2 mL | Active, not recruiting | March 2035 |
IIb | VCN-01 | NCT05673811 | Genetically modified wild-type human adenovirus serotype 5 (HAd5) with selective replication | Metastatic pancreatic cancer | Nab-paclitaxel and gemcitabine | 1 × 1013 vp on day 1 and day 92 | Recruiting | April 2025 |
I | R130 | NCT05860374 | Modified herpes simplex virus-1(HSV-1) containing the gene coding for antiCD3 scFv/CD86/PD1/HSV2-US11 | Advanced solid tumors including pancreatic cancer | -- | 1 × 108 PFU/mL, Every 7–14 days | Recruiting | March 2026 |
I | R130 | NCT05886075 | Modified herpes simplex virus-1 (HSV-1) containing the gene coding for antiCD3 scFv/CD86/PD1/HSV2-US11 | Relapsed/ refractory advanced solid tumors including pancreatic cancer | -- | 1 × 108 PFU/mL, Every 7–14 days | Recruiting | March 2025 |
II | H101 | NCT06196671 | Oncolytic adenovirus | Advanced pancreatic cancer | PD-1 inhibitor (camrelizumab) | H101 15 × 1011 vp on day 1 | Not yet recruiting | January 2028 |
I | Oncolytic virus | NCT06346808 | -- | Preoperative therapy for patients with borderline resectable and locally advanced pancreatic cancer | AntiPD1 (camrelizumab) and chemotherapy (gemcitabine + capecitabine) | -- | Not yet recruiting | May 2027 |
I, II | LOAd703 (delolimogene mupadenorepvec) | NCT02705196 | Oncolytic adenovirus encoding TMZ-CD40L and 4-1BBL | Locally advanced pancreatic cancer | Gemcitabine + nab-paclitaxel +/− antiPD-L1 antibody atezolizumab | six doses of 5 × 1010, 1 × 1011 or 5 × 1011 vp per treatment | Recruiting | October 2025 |
Ib | STI-1386 (Seprehvec) | NCT05361954 | Second-generation oncolytic herpes simplex virus type 1 | Relapsed and refractory solid tumors including locally advanced pancreatic cancer | -- | 3 + 3 dose-escalation design with three dosing cohorts: 4 mL of 1 × 106, 1 × 107, or 1 × 108/1 mL | Not yet recruiting | February 2027 |
I | MEM-288 | NCT05076760 | Conditionally replicative oncolytic adenovirus vector encoding transgenes for human interferon beta (IFNβ) and a recombinant chimeric form of CD40-ligand (MEM40) | Solid tumors including advanced/metastatic pancreatic cancer that progressed following previous antiPD-1/PD-L1 therapy with or without concurrent chemotherapy | Part 1—MEM-288 alone Part 2—With AntiPD-1 (Nivolumab) | Up to six doses of 1 × 1010, 3.3 × 1010 or 1 × 1011 vp given every 3 weeks | Recruiting | November 2026 |
I, II | VG161 | NCT05162118 | Recombinant human-IL12/15/PDL1B oncolytic HSV-1 | Advanced pancreatic cancer | PD-1 inhibitor (Nivolumab) | 1.5 × 108 on day 1, 1.0 × 108 on day 1 and 2 or 1.0 × 108 on day 1, 2, and 3 | Recruiting | December 2025 |
I | VCN-01 | NCT02045602 | Genetically modified wild-type human adenovirus serotype 5 (HAd5) with selective replication | Advanced solid tumors including pancreatic cancer | Gemcitabine and abraxane | Single intravenous injection of 1 × 1011, 1 × 1012, 3.3 × 1012 or 1 × 1013 vp | Completed | January 2020 |
I | VCN-01 | NCT02045589 | Genetically modified wild-type human adenovirus serotype 5 (HAd5) with selective replication | Advanced pancreatic cancer | Gemcitabine and abraxane | Three intratumoral administrations of 1 × 1010 or 1 × 1011 vp | Completed | September 2018 |
I | CAdVEC | NCT03740256 | Oncolytic adenovirus expressing PD-L1 blocking antibody and IL-12 | Advanced HER2-positive solid tumors including pancreatic cancer | HER2-specific CAR-T cell | Single dose of 5 × 109, 1 × 1010, 1 × 1011 or 1 × 1012 | Recruiting | December 2038 |
Ib | REOLYSIN (Pelareorep) | NCT02620423 | Oncolytic reovirus | Advanced pancreatic adenocarcinoma | Gemcitabine, irinotecan, or leucovorin/5-fluorouracil (5-FU) with pembrolizumab | 4.5 × 1010 TCID50 * on Days 1 and 2 of a 21 | Completed | August 2018 |
I | OrienX010 | NCT01935453 | Recombinant hGM-CSF HSV-1 | Solid tumors including pancreatic cancer | -- | 106 pfu, 107 pfu, 108 pfu or 4 × 108 pfu as single, multiple (three injections, every 2 weeks) or continuous injections every two weeks | Completed | May 2014 |
I | vvDD-CDSR | NCT00574977 | Vaccinia virus | Solid tumors including pancreatic cancer | -- | 3 × 107, 1 × 108, 3 × 108, 1 × 109 or 3 × 109 pfu | Completed | July 2014 |
II | Reolysin | NCT01280058 | Reovirus | Recurrent or Metastatic Pancreatic Cancer | Carboplatin and paclitaxel | 3 × 1010 TCID50 */day, on days 1–5 of each cycle | Completed | January 2016 |
I | Ad5-yCD/mutTKSR39rep-hIL12 adenovirus (Ad5-vector) | NCT03281382 | Adenovirus | Metastatic pancreatic cancer | Oral 5-fluorocytosine (5-FC) and chemotherapy | 1 × 1011, 3 × 1011, or 1 × 1012 vp | Completed | May 2019 |
I | Ad5-yCD/mutTK(SR39)rep-ADP (Ad5-DS) | NCT02894944 | Replication-competent adenovirus-mediated double-suicide gene therapy | Locally advanced pancreatic cancer | Oral 5-fluorocytosine, valganciclovir, gemcitabine | 1 × 1011, 3 × 1011, and 1 × 1012 viral particles/mL | Completed | April 2019 |
I | ONYX-015 (dl1520) | -- | E1B-55kD gene-deleted replication-selective adenovirus | Locally advanced pancreatic carcinoma | -- | Dose escalation from 108 pfu to 1011 pfu | Completed | -- |
I | ONYX-015 (dl1520) | -- | E1B-55kD gene-deleted replication-selective adenovirus | Locally advanced adenocarcinoma of the pancreas or metastatic disease with minimal/absent liver metastases | Gemcitabine (1000 mg/m2) | 2 × 1010 or 2 × 1011 vp/treatment | Completed | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thoidingjam, S.; Bhatnagar, A.R.; Sriramulu, S.; Siddiqui, F.; Nyati, S. Optimizing Pancreatic Cancer Therapy: The Promise of Immune Stimulatory Oncolytic Viruses. Int. J. Mol. Sci. 2024, 25, 9912. https://doi.org/10.3390/ijms25189912
Thoidingjam S, Bhatnagar AR, Sriramulu S, Siddiqui F, Nyati S. Optimizing Pancreatic Cancer Therapy: The Promise of Immune Stimulatory Oncolytic Viruses. International Journal of Molecular Sciences. 2024; 25(18):9912. https://doi.org/10.3390/ijms25189912
Chicago/Turabian StyleThoidingjam, Shivani, Aseem Rai Bhatnagar, Sushmitha Sriramulu, Farzan Siddiqui, and Shyam Nyati. 2024. "Optimizing Pancreatic Cancer Therapy: The Promise of Immune Stimulatory Oncolytic Viruses" International Journal of Molecular Sciences 25, no. 18: 9912. https://doi.org/10.3390/ijms25189912
APA StyleThoidingjam, S., Bhatnagar, A. R., Sriramulu, S., Siddiqui, F., & Nyati, S. (2024). Optimizing Pancreatic Cancer Therapy: The Promise of Immune Stimulatory Oncolytic Viruses. International Journal of Molecular Sciences, 25(18), 9912. https://doi.org/10.3390/ijms25189912