Sinisan Alleviates Stress-Induced Intestinal Dysfunction and Depressive-like Behaviors in Mice with Irritable Bowel Syndrome by Enhancing the Intestinal Barrier and Modulating Central 5-Hydroxytryptamine
Abstract
:1. Introduction
2. Results
2.1. Identification of Compounds in the HPLC-MS/MS Analysis of Sinisan and Chromatograms
2.2. Sinisan Ameliorates Intestinal Symptoms and Depression-like Behavior in IBS-D Mice
2.3. Sinisan Ameliorated the Pathological Changes in IBS-D Mice
2.4. Effect of Sinisan on Serum Levels of Inflammatory Factors and Oxidative Stress in Colonic Tissues of IBS-D Mice
2.5. Sinisan Ameliorates 5-HT and c-Fos in Brain Tissue of IBS-D Mice, Restores Up-Regulation of OCLN and ZO1 Expression in the Intestine of IBS-D Mice
2.6. Sinisan Inhibits NF-κB Activation and Regulates Tlr4/Myd88/NF-κB Signaling Pathway in IBS-D Mice
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Phytomedicine and Preparation of Sinisan
4.3. HPLC-MS Analysis of Sinisan
4.4. Animals and Treatments
4.5. Behavioral Tests
4.5.1. Body Weight and Fecal Water Content
4.5.2. Visceral Hypersensitivity Assessment
4.5.3. Sucrose Preference Test
4.5.4. Open Field Test
4.5.5. Tail Suspension Test
4.6. Measurement of Oxidative Stress Indicators
4.7. Enzyme-Linked Immunosorbent Assay (ELISA)
4.8. Histologic Evaluation of Hematoxylin-Eosin Staining and Immunofluorescence Correlations
4.9. Western Blot Analysis
4.10. Quantitative Reverse Transcription Polymerase Chain Reaction (Q-RTPCR)
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Camilleri, M. Management Options for Irritable Bowel Syndrome. Mayo Clin. Proc. 2018, 93, 1858–1872. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E.A.; Ryu, H.J.; Bhatt, R.R. The neurobiology of irritable bowel syndrome. Mol. Psychiatry 2023, 28, 1451–1465. [Google Scholar] [CrossRef] [PubMed]
- Chey, W.D.; Kurlander, J.; Eswaran, S. Irritable bowel syndrome: A clinical review. JAMA 2015, 313, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Fritz, N.; Berens, S.; Dong, Y.; Martínez, C.; Schmitteckert, S.; Houghton, L.A.; Goebel-Stengel, M.; Wahl, V.; Kabisch, M.; Götze, D.; et al. The serotonin receptor 3E variant is a risk factor for female IBS-D. J. Mol. Med. 2022, 100, 1617–1627. [Google Scholar] [CrossRef]
- Camilleri, M. Diagnosis and Treatment of Irritable Bowel Syndrome: A Review. JAMA 2021, 325, 865–877. [Google Scholar] [CrossRef]
- Oka, P.; Parr, H.; Barberio, B.; Black, C.J.; Savarino, E.V.; Ford, A.C. Global prevalence of irritable bowel syndrome according to Rome III or IV criteria: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2020, 5, 908–917. [Google Scholar] [CrossRef]
- Colomier, E.; Algera, J.; Melchior, C. Pharmacological Therapies and Their Clinical Targets in Irritable Bowel Syndrome with Diarrhea. Front. Pharmacol. 2020, 11, 629026. [Google Scholar] [CrossRef]
- Lacy, B.E.; Pimentel, M.; Brenner, D.M.; Chey, W.D.; Keefer, L.A.; Long, M.D.; Moshiree, B. ACG Clinical Guideline: Management of Irritable Bowel Syndrome. Am. J. Gastroenterol. 2021, 116, 17–44. [Google Scholar] [CrossRef]
- Du, L.; Zhang, Z.; Zhai, L.; Xu, S.; Yang, W.; Huang, C.; Lin, C.; Zhong, L.L.D.; Bian, Z.; Zhao, L. Altered gut microbiota-host bile acid metabolism in IBS-D patients with liver depression and spleen deficiency pattern. Chin. Med. 2023, 18, 87. [Google Scholar] [CrossRef] [PubMed]
- Bi, Z.; Zheng, Y.; Yuan, J.; Bian, Z. The Efficacy and Potential Mechanisms of Chinese Herbal Medicine on Irritable Bowel Syndrome. Curr. Pharm. Des. 2017, 23, 5163–5172. [Google Scholar] [CrossRef]
- Bensoussan, A.; Kellow, J.E.; Bourchier, S.J.; Fahey, P.; Shim, L.; Malcolm, A.; Boyce, P. Efficacy of a Chinese Herbal Medicine in Providing Adequate Relief of Constipation-predominant Irritable Bowel Syndrome: A Randomized Controlled Trial. Clin. Gastroenterol. Hepatol. 2015, 13, 1946–1954.e1941. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zheng, Y.; Li, X.; Wu, H.; Liu, P.; Zhang, K.; Shi, Z.; Lv, M.; Wang, F.; Tang, X. Tong-Xie-Yao-Fang alleviates diarrhea-predominant irritable bowel syndrome in rats via the GCN2/PERK-eIF2α-ATF4 signaling pathway. Phytomedicine 2022, 107, 154350. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Fan, Y.; Huang, S.; Lv, J.; Zhang, Y.; Hao, Z. Baizhu shaoyao decoction restores the intestinal barrier and brain-gut axis balance to alleviate diarrhea-predominant irritable bowel syndrome via FoxO1/FoxO3a. Phytomedicine 2024, 122, 155163. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Zhou, Q.; Meng, M.; Chen, W. Efficacy of Shenlingbaizhu formula on irritable bowel syndrome: A systematic review. J. Tradit. Chin. Med. 2020, 40, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Cui, Y.; Gan, S.; Xie, Z.; Cui, S.; Cao, K.; Wang, S.; Shi, G.; Yang, L.; Bai, S.; et al. Sinisan alleviates depression-like behaviors by regulating mitochondrial function and synaptic plasticity in maternal separation rats. Phytomedicine 2022, 106, 154395. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Cao, K.; Cui, S.; Cui, Y.; Mo, H.; Wen, W.; Dong, Z.; Lin, H.; Bai, S.; Yang, L.; et al. SiNiSan ameliorates depression-like behavior in rats by enhancing synaptic plasticity via the CaSR-PKC-ERK signaling pathway. Biomed. Pharmacother. 2020, 124, 109787. [Google Scholar] [CrossRef]
- Cao, K.; Shen, C.; Yuan, Y.; Bai, S.; Yang, L.; Guo, L.; Zhang, R.; Shi, Y. SiNiSan Ameliorates the Depression-Like Behavior of Rats That Experienced Maternal Separation Through 5-HT1A Receptor/CREB/BDNF Pathway. Front. Psychiatry 2019, 10, 160. [Google Scholar] [CrossRef]
- Cai, Y.; Li, X.; Han, Q.; Bai, J.; Zheng, Q.; Sun, R.; Liu, R. Si-Ni-San improves experimental colitis by favoring Akkermensia colonization. J. Ethnopharmacol. 2023, 305, 116067. [Google Scholar] [CrossRef]
- Xu, X.; Hu, H.; Zeng, H.; Li, B.; Yin, Q.; Jiang, Y.; Zang, L.; Zhao, C.; Qian, G. Sinisan ameliorates colonic injury induced by water immersion restraint stress by enhancing intestinal barrier function and the gut microbiota structure. Pharm. Biol. 2023, 61, 598–609. [Google Scholar] [CrossRef]
- Diao, Z.; Xu, W.; Guo, D.; Zhang, J.; Zhang, R.; Liu, F.; Hu, Y.; Ma, Y. Causal association between psycho-psychological factors, such as stress, anxiety, depression, and irritable bowel syndrome: Mendelian randomization. Medicine 2023, 102, e34802. [Google Scholar] [CrossRef]
- Xu, X.J.; Liu, L.; Yao, S.K. Nerve growth factor and diarrhea-predominant irritable bowel syndrome (IBS-D): A potential therapeutic target? J. Zhejiang Univ. Sci. B 2016, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lu, S.; Zhang, C.; Zhu, L.; Li, Y.; Bai, M.; Xu, E. Quantitative proteomic analysis of the liver reveals antidepressant potential protein targets of Sinisan in a mouse CUMS model of depression. Biomed. Pharmacother. 2020, 130, 110565. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.P.; Ye, H.; Ha, N.L.; Ding, S.Q.; Chen, G. Effect of modified Sinisan on anorectal manometry of the constipation predominant type of irritable bowel syndrome. Chin. J. Integr. Med. 2005, 11, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, H.; Sun, C.Y.; He, Q.Y.; Zhang, R.R.; Luo, B.F.; Zhou, Z.H.; Chen, X.F. Evaluation of two laboratory model methods for diarrheal irritable bowel syndrome. Mol. Med. 2023, 29, 5. [Google Scholar] [CrossRef] [PubMed]
- Kuo, W.T.; Odenwald, M.A.; Turner, J.R.; Zuo, L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann. N. Y. Acad. Sci. 2022, 1514, 21–33. [Google Scholar] [CrossRef]
- Camilleri, M.; Madsen, K.; Spiller, R.; Greenwood-Van Meerveld, B.; Verne, G.N. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol. Motil. 2012, 24, 503–512. [Google Scholar] [CrossRef]
- Zeisel, M.B.; Dhawan, P.; Baumert, T.F. Tight junction proteins in gastrointestinal and liver disease. Gut 2019, 68, 547–561. [Google Scholar] [CrossRef]
- Liu, N.; Sun, S.; Wang, P.; Sun, Y.; Hu, Q.; Wang, X. The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine. Int. J. Mol. Sci. 2021, 22, 7931. [Google Scholar] [CrossRef]
- Daut, R.A.; Fonken, L.K. Circadian regulation of depression: A role for serotonin. Front. Neuroendocrinol. 2019, 54, 100746. [Google Scholar] [CrossRef]
- Herrera, D.G.; Robertson, H.A. Activation of c-fos in the brain. Prog. Neurobiol. 1996, 50, 83–107. [Google Scholar] [CrossRef]
- Di Nardo, G.; Cremon, C.; Staiano, A.; Stanghellini, V.; Borrelli, O.; Strisciuglio, C.; Romano, C.; Mallardo, S.; Scarpato, E.; Marasco, G.; et al. Role of inflammation in pediatric irritable bowel syndrome. Neurogastroenterol. Motil. 2023, 35, e14365. [Google Scholar] [CrossRef] [PubMed]
- Cojocariu, R.O.; Balmus, I.M.; Lefter, R.; Ababei, D.C.; Ciobica, A.; Hritcu, L.; Kamal, F.; Doroftei, B. Behavioral and Oxidative Stress Changes in Mice Subjected to Combinations of Multiple Stressors Relevant to Irritable Bowel Syndrome. Brain Sci. 2020, 10, 865. [Google Scholar] [CrossRef] [PubMed]
- Piche, T. Tight junctions and IBS—The link between epithelial permeability, low-grade inflammation, and symptom generation? Neurogastroenterol. Motil. 2014, 26, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Lim, D.Y.; Yeo, W.S. The role of inflammation in irritable bowel syndrome (IBS). J. Inflamm. Res. 2018, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wang, X.; Huang, S.; Wang, H.; Shen, G. Low-level inflammation, immunity, and brain-gut axis in IBS: Unraveling the complex relationships. Gut Microbes 2023, 15, 2263209. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, K.; Wang, H.; Gao, Y.; Nie, K.; Jiang, X.; Su, H.; Tang, Y.; Lu, F.; Dong, H.; et al. The therapeutic effects of saikosaponins on depression through the modulation of neuroplasticity: From molecular mechanisms to potential clinical applications. Pharmacol. Res. 2024, 201, 107090. [Google Scholar] [CrossRef]
- Li, J.; Wang, T.; Liu, P.; Yang, F.; Wang, X.; Zheng, W.; Sun, W. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct. 2021, 12, 3898–3918. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, W.; Jiang, Y.; Wen, J.; Wei, S.; Zhao, Y. Paeoniflorin, a Natural Product With Multiple Targets in Liver Diseases-A Mini Review. Front. Pharmacol. 2020, 11, 531. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Y.; Sun, S.; Zhang, K.; Wang, L.; Zhao, H.; Zhang, Y. Paeonia lactiflora Pall. Polysaccharide alleviates depression in CUMS mice by inhibiting the NLRP3/ASC/Caspase-1 signaling pathway and affecting the composition of their intestinal flora. J. Ethnopharmacol. 2023, 316, 116716. [Google Scholar] [CrossRef]
- Yao, L.; Sun, T. Glycyrrhizin administration ameliorates Streptococcus aureus-induced acute lung injury. Int. Immunopharmacol. 2019, 70, 504–511. [Google Scholar] [CrossRef]
- Nam, Y.; Min, Y.S.; Sohn, U.D. Recent advances in pharmacological research on the management of irritable bowel syndrome. Arch. Pharm. Res. 2018, 41, 955–966. [Google Scholar] [CrossRef] [PubMed]
- Nozu, T.; Okumura, T. Pathophysiological Commonality Between Irritable Bowel Syndrome and Metabolic Syndrome: Role of Corticotropin-releasing Factor-Toll-like Receptor 4-Proinflammatory Cytokine Signaling. J. Neurogastroenterol. Motil. 2022, 28, 173–184. [Google Scholar] [CrossRef]
- Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol. Life Sci. 2021, 78, 1233–1261. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Akira, S. TLR signaling pathways. Semin. Immunol. 2004, 16, 3–9. [Google Scholar] [CrossRef]
- Zinatizadeh, M.R.; Schock, B.; Chalbatani, G.M.; Zarandi, P.K.; Jalali, S.A.; Miri, S.R. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes. Dis. 2021, 8, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Laurindo, L.F.; Santos, A.; Carvalho, A.C.A.; Bechara, M.D.; Guiguer, E.L.; Goulart, R.A.; Vargas Sinatora, R.; Araújo, A.C.; Barbalho, S.M. Phytochemicals and Regulation of NF-kB in Inflammatory Bowel Diseases: An Overview of In Vitro and In Vivo Effects. Metabolites 2023, 13, 96. [Google Scholar] [CrossRef]
- Zhang, F.C.; Wei, Y.X.; Weng, R.X.; Xu, Q.Y.; Li, R.; Yu, Y.; Xu, G.Y. Paraventricular thalamus-insular cortex circuit mediates colorectal visceral pain induced by neonatal colonic inflammation in mice. CNS Neurosci. Ther. 2024, 30, e14534. [Google Scholar] [CrossRef]
- Cryan, J.F.; Mombereau, C.; Vassout, A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 2005, 29, 571–625. [Google Scholar] [CrossRef]
Plant Name | Chinese Name | Place of Origin | Voucher Number |
---|---|---|---|
Bupleurum chinense DC | Chaihu | Hebei, China | 22120101 |
Paeonia lactiflora Pall | Baishao | Anhui, China | 22060801 |
Citrus aurantium L. | Zhishi | Jiangxi, China | 22030601 |
Glycyrrhiza uralensis Fisch | Gancao | Inner Mongolia, China | 22030502 |
Name | Forward | Reverse |
---|---|---|
TNF-α | CGGGCAGGTCTACTTTGGAG | ACCCTGAGCCATAATCCCCI |
IL-6 | CTGCAAGAGACTTCCATCCAG | AGTGGTATAGACAGGTCTGTTGG |
IL-1β | AATCTCGCAGCAGCACATCA | GGAAGGTCCACGGGAAAGAC |
β-actin | GCTTCTTTGCAGCTCCTTCG | ACCCATTCCCACCATCACAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, H.; Jiang, Y.; Yin, Q.; Li, X.; Xiong, Y.; Li, B.; Xu, X.; Hu, H.; Qian, G. Sinisan Alleviates Stress-Induced Intestinal Dysfunction and Depressive-like Behaviors in Mice with Irritable Bowel Syndrome by Enhancing the Intestinal Barrier and Modulating Central 5-Hydroxytryptamine. Int. J. Mol. Sci. 2024, 25, 10262. https://doi.org/10.3390/ijms251910262
Zeng H, Jiang Y, Yin Q, Li X, Xiong Y, Li B, Xu X, Hu H, Qian G. Sinisan Alleviates Stress-Induced Intestinal Dysfunction and Depressive-like Behaviors in Mice with Irritable Bowel Syndrome by Enhancing the Intestinal Barrier and Modulating Central 5-Hydroxytryptamine. International Journal of Molecular Sciences. 2024; 25(19):10262. https://doi.org/10.3390/ijms251910262
Chicago/Turabian StyleZeng, Haizhou, Yupeng Jiang, Qiuxiong Yin, Xinran Li, Yanli Xiong, Boyi Li, Xiaoying Xu, Huimei Hu, and Guoqiang Qian. 2024. "Sinisan Alleviates Stress-Induced Intestinal Dysfunction and Depressive-like Behaviors in Mice with Irritable Bowel Syndrome by Enhancing the Intestinal Barrier and Modulating Central 5-Hydroxytryptamine" International Journal of Molecular Sciences 25, no. 19: 10262. https://doi.org/10.3390/ijms251910262
APA StyleZeng, H., Jiang, Y., Yin, Q., Li, X., Xiong, Y., Li, B., Xu, X., Hu, H., & Qian, G. (2024). Sinisan Alleviates Stress-Induced Intestinal Dysfunction and Depressive-like Behaviors in Mice with Irritable Bowel Syndrome by Enhancing the Intestinal Barrier and Modulating Central 5-Hydroxytryptamine. International Journal of Molecular Sciences, 25(19), 10262. https://doi.org/10.3390/ijms251910262