Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application
Abstract
:1. Biochemical Mechanobiology: The Proof of Concept for Biomaterial-Based Polymer–Cell Interaction
2. Biomaterial-Based Polymers: Overview
Polymer | Repeat Unit | Source | Biomaterial Structures | Applications | Reference |
---|---|---|---|---|---|
Alginate | Mannuronic Acid + Glucuronic Acid | Seaweed | Hydrogels, Scaffolds | Hydrogel for bone tissue engineering application; | [49] |
Hydrogel for hair follicle regeneration; | [50] | ||||
Hydrogel for intervertebral disc regeneration; | [51] | ||||
Scaffold for the treatment of local breast cancer; | [52] | ||||
Scaffold for mesenchymal stem cell cardiac therapy; | [53] | ||||
Films for active packaging applications. | [54] | ||||
Cellulose | Cellobiose | Plants | Nanofibers, Hydrogels, Nanoparticles, Scaffolds | Scaffold for bone regeneration; | [55,56] |
Scaffold for localized drug delivery; | [57] | ||||
Nanoparticles as antibacterial agents; | [58] | ||||
Nanofibers for skin tissue engineering; | [59] | ||||
Nanofibers’ drug delivery; | [59] | ||||
Hydrogel for wound dressing; | [60] | ||||
Hydrogel for bleeding control; | [60] | ||||
Hydrogel for cartilage and neural tissue engineering. | [61] | ||||
Chitin | N-Acetylglucosamine | Arthropods, mushrooms and algae | Hydrogels, Scaffolds, Nanomaterials | Hydrogel for cartilage regeneration; | [62] |
Hydrogel and nanoparticles for drug delivery; | [63] | ||||
Nanofibers and hydrogel for wound healing; | [64,65] | ||||
Scaffold for neural tissue; | [66] | ||||
Nanoparticles for cancer treatment. | [67] | ||||
Collagen | Glycine-Proline-Hydroxyproline | Extracellular matrix (ECM) | Hydrogels, Scaffolds | Scaffold for bone repair; | [68] |
Scaffold for Achilles tendinopathy; | [69] | ||||
Scaffolds for laryngeal cartilage repair; | [70] | ||||
Hydrogel for accelerated diabetic wound-healing; | [71] | ||||
Hydrogel for aging skin rejuvenation. | [72] | ||||
Hyaluronic acid | Glucuronic Acid–N-Acetylglucosamine | Animal tissues | Hydrogels, Scaffolds, Nanoparticles | Nanoparticles for atherosclerosis; | [73] |
Nanoparticles for drug delivery; | [74] | ||||
Hydrogel and nanoparticles for osteoarthritis; | [75,76] | ||||
Hydrogel for cartilage repair; | [77] | ||||
Combination of hyaluronic acid solution and contact lenses for ophthalmology application. | [78] | ||||
Lignin | Phenylpropanoid unit | Plant | Hydrogels, Nanoparticles, | Hydrogel for wound healing; | [79] |
Hydrogel for cell immobilization; | [80] | ||||
Nanoparticles for oral drug delivery; | [81] | ||||
Nanoparticles for bone repair; | [82] | ||||
Nanoparticles for cartilage repair; | [82] | ||||
Microparticles for bioplastic generation. | [83] | ||||
Silk | Glycine-Alanine-Glycine-Alanine | Silkworm cocoons, spiders | Scaffold, Film, Nanoparticles | Scaffolds for bone tissue engineering; | [84] |
Scaffolds for meniscus tissue engineering; | [85] | ||||
Scaffolds for thymus bioengineering; | [86] | ||||
Nanoparticles for drug delivery; | [87] | ||||
Films for wearable biosensors. | [88] |
Polymer | Repeat Unit | Source | Biomaterial Structures | Applications | Reference |
---|---|---|---|---|---|
Graphene oxide | Graphite Oxide | Graphite | Scaffolds, Nanoparticles, Hydrogels, 3D-Bioprinting | Scaffolds for bone tissue engineering; | [96] |
Scaffolds for cardiac tissue engineering; | [97] | ||||
Scaffold for controlled differentiation of human neural progenitor cells; | [98] | ||||
Nanocomposites for endodontic treatments; | [99] | ||||
Hydrogels for microfluidic 3D printing. | [100] | ||||
Polyacrylic acid (PAA) | Acrylic Acid | Acrylic acid | Hydrogels, Scaffolds | Hydrogel for anticancer drug release; | [101] |
Hydrogel as an adhesive for medical technology; | [102] | ||||
Scaffold for bone regeneration. | [103] | ||||
Polycaprolactone (PCL) | Caprolactone | Crude oil | Scaffolds, Nanoparticles, Hydrogels | Scaffolds for bone cancer applications; | [104] |
Hydrogels for tendon tissue engineering; | [105] | ||||
Hydrogels for promoting osteogenic differentiation of adipose-derived stem cells; | [106] | ||||
Scaffold for osteogenic differentiation; | [107] | ||||
Implants for cranial reconstruction after burr hole trephination. | [108] | ||||
Polyethylene glycol (PEG) | Ethylene Glycol | Ethylene | Scaffolds, Hydrogels | Hydrogels for cell proliferation and spreading; | [109] |
Hydrogels support human PSC pluripotency and morphogenesis; | [110] | ||||
Hydrogel for wound care management; | [111] | ||||
Scaffolds with boosted in vitro osteogenic ability; | [112] | ||||
Scaffold-based drug delivery in oral cancer treatment. | [113] | ||||
Polylactide (PLA) | Lactic Acid | Lactic acid | Scaffolds, Nanocomposites, Biofilms, Hydrogel | Scaffold for bone tissue engineering; | [114] |
Biofilms for improved in vitro bioactivity and stem cell adhesion; | [115] | ||||
Hydrogel promotes diabetic wound healing; | [116] | ||||
Scaffolds promote cell alignment and differentiation; | [117] | ||||
Scaffold for the biological properties of human dental pulp stem cells. | [118] | ||||
Polylactide-co-glycol (PLGA) | Lactic Acid–Glycolic Acid | Glycolic acid + Lactic acid | Scaffolds, Hydrogels, Nanoparticles | Nanoparticles for drug delivery; | [119] |
Scaffolds for bone regeneration; | [120] | ||||
Scaffolds for corneal regeneration; | [121] | ||||
Hydrogels as a treatment for osteomyelitis; | [122] | ||||
Scaffolds for cardiac tissue engineering. | [123] | ||||
Membrane for generation of biodegradable stent. | [124] | ||||
Polyhydroxybutyrate (PHB) | 3-Hydroxybutyric acid | Prokaryotes | Scaffolds, Nanocomposites, Hydrogels | Scaffolds for bone tissue engineering; | [125] |
Scaffolds for peripheral nerve regeneration; | [126] | ||||
Nanocomposites for bone tissue engineering; | [127] | ||||
Fibers for textile applications. | [128] | ||||
Polyglycolic acid (PGA) | Glycolic Acid | Glycolic acid | Scaffold, Hydrogel | Scaffold for bone tissue engineering; | [129] |
Scaffold for irreparable meniscal tear; | [130] | ||||
Scaffolds to mimic human ear cartilage; | [131] | ||||
Hydrogels in cardiac regeneration. | [132] |
2.1. Biomaterial-Based Polymer Structure Design
2.1.1. Films
2.1.2. Scaffolds
2.1.3. Hydrogel
2.1.4. Nanoparticles
3. Properties of Biomaterial-Based Polymers
3.1. Chemical Properties
3.2. Physical Properties
3.3. Surface Properties of Polymer Films and Scaffolds
Roles in Mechanobiology | |||||
---|---|---|---|---|---|
Properties | Cues | Cell Molecular Response | Biological Applications | Reference | |
Chemical Properties | Composition | Functional groups, synthesis methods and intramolecular forces determine the ability of biomaterials to simulate the cues derived from the Extracellular Matrix | Increase in the integrin-mediated adhesion | Chemical structure and the inclusion of active biomolecules activate a specific molecular pathway | [238] |
Directing stem cell differentiation and proliferation | [239] | ||||
Physical Properties | Tensile Strength, Young’s Modulus, Viscoelasticity, Stiffness | Tensile strength stimulates cells to assume a flattened morphology and generate strong adhesion An elevated Young’s Modulus value stimulates cells to assume a more rounded morphology, with less-pronounced stress fiber Viscoelastic Biomaterials exhibit a different time-depending strain based on the external cues, which affect cell shape, causing an initial spread of cells, but, over time, the cell might relax and adopt more rounded morphology Stiffness, which refers to the resistance to deformation, provides mechanical cues, depending on the proper resistance of biomaterials, which leads to changes in the cell’s shape, adhesion strength, and differentiation fate | Promote activation of Focal Adhesion Kinase (AFK) by facilitating autophosphorylation at Tyrosine 397, generating strong adhesion | [240,241,242] | |
Stiff polymers cause the translocation of YAP and TAZ in the nucleus, promoting Osteogenesis | Bone tissue regeneration | [243,244,245,246] | |||
Stiff polymers cause the translocation of YAP and TAZ in the nucleus, promoting Myogenesis | Skeletal muscle regeneration | [243,244,245,246] | |||
Soft polymers lead the remaining YAP and TAZ in the cytoplasm, promoting adipogenesis | Generation of adipose tissue for facial and breast reconstructive surgery | [247,248,249,250,251] | |||
Soft polymers lead the remaining YAP and TAZ in the cytoplasm, promoting neurogenesis | Neural tissue regeneration | [247,248,249,250,251] | |||
Generation of higher contracting through actomyosin interactions, causing well-defined cytoskeletal network and the tendency of nuclei to be elongated and flattened, promoting Epithelial differentiation | Regeneration of epithelial tissue for airway epithelium development and kidney regeneration | [252,253,254,255,256] | |||
Stiff substrates promote activation of RhoA GTPase, through its effector Rho-associated kinase (ROCK), facilitating the formation of actin stress fiber modulating the Epithelial-to-Mesenchymal Transition | The Activation of RhoA GTPase and Rac1 GTPase is involved in different proliferation and differentiation pathways; the specificity depends on other characteristics of biomaterials | [257,258] | |||
Soft substrate favorites the activation of Rac1 GTPase, which promotes the formation of lamellipodia and membrane ruffles, associated with Epithelial-to-Mesenchymal Transition | [257] | ||||
Stiffer substrates cause modification of the cytoskeletal arrangement, causing activation of Piezo channels, allowing the influx of Calcium and Sodium cations that promote osteogenic differentiation | Bone tissue regeneration | [18,246] | |||
Soft Biomaterials can simulate the action of the Tympanic Membrane, transmitting the vibration to hair cells of the cochlea, activating Mechanical Gated Channels providing the conversion of mechanical stimulus to an electric one | Biodevices for the restoration of tympanic membrane | [259,260] | |||
Conductivity, Ion Conductance, Piezoelectricity | Conductivity and Piezoelectricity provide electrical cues that simulate the physiological one, promoting differentiation and electrophysiological activity Ion Conductance provides movement of ions, generating ionic cues that stimulate the cell’s proliferation and activity | Activation of MAPK/ERK, PI3K/Akt, and NF-kB, promoting the proliferation of Neuronal cells | Neural tissue regeneration | [261,262,263] | |
Activation of MAPK/ERK, PI3K/Akt, and NF-kB, promoting the proliferation of Cardiac cells | Cardiac muscle regeneration | [261,262] | |||
Activation of MAPK/ERK, Wnt/β-catenin, and Notch signaling, causing the differentiation of Neuronal progenitor stem cells | Neural tissue regeneration | [261] | |||
Activation of MAPK/ERK, Wnt/β-catenin, and Notch signaling, causing the differentiation of Cardiac progenitor stem cells | Cardiac muscle regeneration | [261,262] | |||
Activation of TGF-B, BMP, Wnt/β-catenin, and Notch signaling, causing the differentiation of Osteogenic cells | Bone tissue regeneration | [246,262] | |||
Activation of voltage-gated channels with the enhancement of Synaptic Transmission and Action Potential propagation | Neural function regeneration | [264,265] | |||
Thermal Conductivity | Thermal conductivity provides the maintenance of uniform temperature, reducing cell stress | Minor stress causes lower levels of ROS and reduced activation of the Heat Shock Response pathway | The thermal conductivity of biomaterials, in combination with other characteristics, allows possible biological application | [266,267,268] | |
Regulation of the temperature causes increased mitochondrial functions such as ATP production and electron chain transport | [269,270] | ||||
Surface Properties | Wettability, Roughness, Porosity, Micro- and Nano- Topography | Wettability is a surface parameter that indicates if a biomaterial is hydrophilic or hydrophobic; this affects how cells spread, shape themselves, and differentiate The roughness of the biomaterial’s surface influences the spreading of cells and the formation of cellular protrusion The porosity of a biomaterial could create a microenvironment that mimics the natural tissue structure, affecting the cells’ spread, shape, and differentiation Micro- and Nano- Topography refers to the three-dimensional features and texture of biomaterial’s surface, which affects the cells’ morphology and differentiation by influencing cell spread, alignment, and forming of shapes | Increased adsorption of fibronectin, collagen, and lamin promote integrin-mediated binding and Extracellular Matrix production | Generation of extracellular matrix studies model | [271,272,273,274] |
Hydrophilic surfaces enhance the adsorption of Bone Morphogenetic Proteins, fibronectin, and osteopontin, and influence the deposition of calcium ions and the formation of hydroxyapatite crystals, promoting osteogenic differentiation | Bone tissue regeneration | [275] | |||
Rough surfaces induce a conformational change in the adsorbed proteins such as fibronectin, collagen, and osteopontin, causing the exposition of binding sites, enhancing focal adhesion formation, and promoting osteoblast differentiation | Bone tissue regeneration | [276] | |||
A porous scaffold mimics the mechanical properties of native cartilage, and also adsorbs and exhibits chondrogenic growth factors such as TGF-B and IGF-1, promoting chondrogenic differentiation | Chondrogenic tissue regeneration | [277,278,279,280,281] | |||
Nano-patterned surfaces provide topographical cues that influence the organization and dynamics of actin cytoskeleton and microtubules, causing neurite outgrowth | Neural tissue regeneration | [282,283] |
4. Biomaterial-Based Polymer for Biological Applications
4.1. Tissue Engineering
4.2. Biodevices
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chin, I.L.; Hool, L.; Choi, Y.S. A Review of In Vitro Platforms for Understanding Cardiomyocyte Mechanobiology. Front. Bioeng. Biotechnol. 2019, 7, 133. [Google Scholar] [CrossRef] [PubMed]
- Argentati, C.; Morena, F.; Tortorella, I.; Bazzucchi, M.; Porcellati, S.; Emiliani, C.; Martino, S. Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. Int. J. Mol. Sci. 2019, 20, 5337. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y. Appetizer on Soft Matter Physics Concepts in Mechanobiology. Dev. Growth Differ. 2023, 65, 234–244. [Google Scholar] [CrossRef]
- Martino, S. Mechanobiology in Cells and Tissues. Int. J. Mol. Sci. 2023, 24, 8564. [Google Scholar] [CrossRef] [PubMed]
- Saraswathibhatla, A.; Indana, D.; Chaudhuri, O. Cell–Extracellular Matrix Mechanotransduction in 3D. Nat. Rev. Mol. Cell Biol. 2023, 24, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Mouw, J.K.; Ou, G.; Weaver, V.M. Extracellular Matrix Assembly: A Multiscale Deconstruction. Nat. Rev. Mol. Cell Biol. 2014, 15, 771–785. [Google Scholar] [CrossRef]
- Stanton, A.E.; Tong, X.; Yang, F. Extracellular Matrix Type Modulates Mechanotransduction of Stem Cells. Acta Biomater. 2019, 96, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Hynes, R.O. The Extracellular Matrix: Not Just Pretty Fibrils. Science 2009, 326, 1216–1219. [Google Scholar] [CrossRef] [PubMed]
- Tortorella, I.; Argentati, C.; Emiliani, C.; Martino, S.; Morena, F. The Role of Physical Cues in the Development of Stem Cell-Derived Organoids. Eur. Biophys. J. 2022, 51, 105–117. [Google Scholar] [CrossRef]
- Zhang, X.; Song, W.; Han, K.; Fang, Z.; Cho, E.; Huangfu, X.; He, Y.; Zhao, J. Three-Dimensional Bioprinting of a Structure-, Composition-, and Mechanics-Graded Biomimetic Scaffold Coated with Specific Decellularized Extracellular Matrix to Improve the Tendon-to-Bone Healing. ACS Appl. Mater. Interfaces 2023, 15, 28964–28980. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, Y.; Zhang, S.; Wang, X.; Dou, H.; Yu, X.; Zhang, Z.; Yang, S.; Xiao, M. Extracellular Matrix Remodeling in Tumor Progression and Immune Escape: From Mechanisms to Treatments. Mol. Cancer 2023, 22, 48. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, J.; Tan, Y.; Wang, Y. Unraveling the Mechanobiology of Cornea: From Bench Side to the Clinic. Front. Bioeng. Biotechnol. 2022, 10, 953590. [Google Scholar] [CrossRef]
- Islam, S.; Boström, K.I.; Di Carlo, D.; Simmons, C.A.; Tintut, Y.; Yao, Y.; Hsu, J.J. The Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Front. Physiol. 2021, 12, 734215. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ni, N.; Lee, M.; Wei, W.; Andrikopoulos, N.; Kakinen, A.; Davis, T.P.; Song, Y.; Ding, F.; Leong, D.T.; et al. Endothelial Leakiness Elicited by Amyloid Protein Aggregation. Nat. Commun. 2024, 15, 613. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Yan, J. Force-Dependent Structural Changes of Filamin C Rod Domains Regulated by Filamin C Dimer. J. Am. Chem. Soc. 2023, 145, 14670–14678. [Google Scholar] [CrossRef] [PubMed]
- Luu, N.; Zhang, S.; Lam, R.H.W.; Chen, W. Mechanical Constraints in Tumor Guide Emergent Spatial Patterns of Glioblastoma Cancer Stem Cells. Mechanobiol. Med. 2024, 2, 100027. [Google Scholar] [CrossRef] [PubMed]
- Sforna, L.; Michelucci, A.; Morena, F.; Argentati, C.; Franciolini, F.; Vassalli, M.; Martino, S.; Catacuzzeno, L. Piezo1 Controls Cell Volume and Migration by Modulating Swelling-Activated Chloride Current through Ca2+ Influx. J. Cell. Physiol. 2022, 237, 1857–1870. [Google Scholar] [CrossRef]
- Morena, F.; Argentati, C.; Caponi, S.; Lüchtefeld, I.; Emiliani, C.; Vassalli, M.; Martino, S. Piezo1—Serine/Threonine-Protein Phosphatase 2A—Cofilin1 Biochemical Mechanotransduction Axis Controls F-Actin Dynamics and Cell Migration. Heliyon 2024, 10, e32458. [Google Scholar] [CrossRef]
- Montes, A.R.; Gutierrez, G.; Buganza Tepole, A.; Mofrad, M.R.K. Multiscale Computational Framework to Investigate Integrin Mechanosensing and Cell Adhesion. J. Appl. Phys. 2023, 134, 114702. [Google Scholar] [CrossRef]
- Huang, M.; Zhou, J.; Li, X.; Liu, R.; Jiang, Y.; Chen, K.; Jiao, Y.; Yin, X.; Liu, L.; Sun, Y.; et al. Mechanical Protein Polycystin-1 Directly Regulates Osteoclastogenesis and Bone Resorption. Sci. Bull. 2024, 69, 1964–1979. [Google Scholar] [CrossRef] [PubMed]
- Janota, C.S.; Calero-Cuenca, F.J.; Gomes, E.R. The Role of the Cell Nucleus in Mechanotransduction. Curr. Opin. Cell Biol. 2020, 63, 204–211. [Google Scholar] [CrossRef]
- Ramdas, N.M.; Shivashankar, G.V. Cytoskeletal Control of Nuclear Morphology and Chromatin Organization. J. Mol. Biol. 2015, 427, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Tortorella, I.; Argentati, C.; Emiliani, C.; Morena, F.; Martino, S. Biochemical Pathways of Cellular Mechanosensing/Mechanotransduction and Their Role in Neurodegenerative Diseases Pathogenesis. Cells 2022, 11, 3093. [Google Scholar] [CrossRef] [PubMed]
- Argentati, C.; Morena, F.; Guidotti, G.; Soccio, M.; Lotti, N.; Martino, S. Tight Regulation of Mechanotransducer Proteins Distinguishes the Response of Adult Multipotent Mesenchymal Cells on PBCE-Derivative Polymer Films with Different Hydrophilicity and Stiffness. Cells 2023, 12, 1746. [Google Scholar] [CrossRef] [PubMed]
- DiCerbo, M.; Benmassaoud, M.M.; Vega, S.L. Porous Scaffold-Hydrogel Composites Spatially Regulate 3D Cellular Mechanosensing. Front. Med. Technol. 2022, 4, 884314. [Google Scholar] [CrossRef] [PubMed]
- Di, X.; Gao, X.; Peng, L.; Ai, J.; Jin, X.; Qi, S.; Li, H.; Wang, K.; Luo, D. Cellular Mechanotransduction in Health and Diseases: From Molecular Mechanism to Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 282. [Google Scholar] [CrossRef] [PubMed]
- Sohn, C.; Ma, J.; Ray, W.J.; Frost, B. Pathogenic Tau Decreases Nuclear Tension in Cultured Neurons. Front. Aging 2023, 4, 1058968. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Xu, R.; Wang, L.; Alam, M.M.; Ma, Z.; Zhu, S.; Martini, A.C.; Jadali, A.; Bernabucci, M.; Xie, P.; et al. Type-I-Interferon Signaling Drives Microglial Dysfunction and Senescence in Human iPSC Models of Down Syndrome and Alzheimer’s Disease. Cell Stem Cell 2022, 29, 1135–1153.e8. [Google Scholar] [CrossRef] [PubMed]
- Frittoli, E.; Palamidessi, A.; Iannelli, F.; Zanardi, F.; Villa, S.; Barzaghi, L.; Abdo, H.; Cancila, V.; Beznoussenko, G.V.; Della Chiara, G.; et al. Tissue Fluidification Promotes a cGAS–STING Cytosolic DNA Response in Invasive Breast Cancer. Nat. Mater. 2023, 22, 644–655. [Google Scholar] [CrossRef]
- Sun, Y.; Helmholz, H.; Willumeit-Römer, R. Peri-implant Gas Accumulation in Response to Magnesium-based Musculoskeletal Biomaterials: Reframing Current Evidence for Preclinical Research and Clinical Evaluation. J. Magnes. Alloys 2024, 12, 59–71. [Google Scholar] [CrossRef]
- Yang, X.; Wu, L.; Li, C.; Li, S.; Hou, W.; Hao, Y.; Lu, Y.; Li, L. Synergistic Amelioration of Osseointegration and Osteoimmunomodulation with a Microarc Oxidation-Treated Three-Dimensionally Printed Ti-24Nb-4Zr-8Sn Scaffold via Surface Activity and Low Elastic Modulus. ACS Appl. Mater. Interfaces 2024, 16, 3171–3186. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Pang, S.W. Biointerfaces with Ultrathin Patterns for Directional Control of Cell Migration. J. Nanobiotechnol. 2024, 22, 158. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Ai, J.; Xia, M.; Pang, Y.; Zheng, Y.; Shen, J.; Guo, S. Deep Insight into the Effect of Microstructure Evolution on Film-Forming Properties of Polylactide during Uniaxial Hot-Stretching Process. Macromolecules 2024, 57, 4937–4946. [Google Scholar] [CrossRef]
- Salahshour, P.; Abdolmaleki, S.; Monemizadeh, S.; Gholizadeh, S.; Khaksar, S. Nanobiomaterials/Bioinks Based Scaffolds in 3D Bioprinting for Tissue Engineering and Artificial Human Organs. Adv. Biol. Earth Sci. 2024, 9, 97–104. [Google Scholar] [CrossRef]
- Long, L.; Liu, M.; Deng, X.; Jin, J.; Cao, M.; Zhang, J.; Tao, J.; Shen, H.; Wang, X.; Liu, D.; et al. Tumor Stiffness Measurement at Multifrequency MR Elastography to Predict Lymphovascular Space Invasion in Endometrial Cancer. Radiology 2024, 311, e232242. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Deng, H.; Zhang, Y.; Wu, F.; He, J. Cancer Cell Response to Extrinsic and Intrinsic Mechanical Cue: Opportunities for Tumor Apoptosis Strategies. Regen. Biomater. 2024, 11, rbae016. [Google Scholar] [CrossRef]
- Giri, P.S.; Rath, S.N. Macrophage Polarization Dynamics in Biomaterials: Implications for In Vitro Wound Healing. ACS Appl. Bio Mater. 2024, 7, 2413–2422. [Google Scholar] [CrossRef]
- Erdil, N. Cardiovascular Disease, Signaling, Gene/Cell Therapy and Advanced Nanobiomaterials. Adv. Biol. Earth Sci. 2024, 9, 58–80. [Google Scholar] [CrossRef]
- Opriș, O.; Mormile, C.; Lung, I.; Stegarescu, A.; Soran, M.-L.; Soran, A. An Overview of Biopolymers for Drug Delivery Applications. Appl. Sci. 2024, 14, 1383. [Google Scholar] [CrossRef]
- Ho, T.T.-P.; Tran, H.A.; Doan, V.K.; Maitz, J.; Li, Z.; Wise, S.G.; Lim, K.S.; Rnjak-Kovacina, J. Natural Polymer-Based Materials for Wound Healing Applications. Adv. NanoBiomed Res. 2024, 4, 2300131. [Google Scholar] [CrossRef]
- Chafran, L.; Carfagno, A.; Altalhi, A.; Bishop, B. Green Hydrogel Synthesis: Emphasis on Proteomics and Polymer Particle-Protein Interaction. Polymers 2022, 14, 4755. [Google Scholar] [CrossRef]
- Jia, Q.; Zhao, Y. Bioinspired Organic Porous Coupling Agent for Enhancement of Nanoparticle Dispersion and Interfacial Strength. ACS Appl. Mater. Interfaces 2024, 16, 6403–6413. [Google Scholar] [CrossRef] [PubMed]
- Coats, J.P.; Cochereau, R.; Dinu, I.A.; Messmer, D.; Sciortino, F.; Palivan, C.G. Trends in the Synthesis of Polymer Nano- and Microscale Materials for Bio-Related Applications. Macromol. Biosci. 2023, 23, 2200474. [Google Scholar] [CrossRef]
- Xu, H.; Cui, Y.; Tian, Y.; Dou, M.; Sun, S.; Wang, J.; Wu, D. Nanoparticle-Based Drug Delivery Systems for Enhancing Bone Regeneration. ACS Biomater. Sci. Eng. 2024, 10, 1302–1322. [Google Scholar] [CrossRef]
- Javid-Naderi, M.J.; Behravan, J.; Karimi-Hajishohreh, N.; Toosi, S. Synthetic Polymers as Bone Engineering Scaffold. Polym. Adv. Technol. 2023, 34, 2083–2096. [Google Scholar] [CrossRef]
- Mundil, R.; Kanizsová, L.; Toman, P.; Kočková, O.; Uchman, M. Unveiling the Reverse Reactivity and Composition Profile of Copolymers from Synthesized and Separated 3-/7-(Prop-2-Ynyl)Oxepan-2-One Isomers: Implications for Precise Polymer Structure Prediction. Polym. Chem. 2024, 15, 1695–1703. [Google Scholar] [CrossRef]
- Moon, S.H.; Choi, G.; Cha, H.J.; Yang, Y.J. Silver Nitrate-Assisted Photo-Crosslinking for Enhancing the Mechanical Properties of an Alginate/Silk Fibroin-Based 3D Scaffold. Biofabrication 2024, 16, 035012. [Google Scholar] [CrossRef] [PubMed]
- Grilli, F.; Albanesi, E.; Pelacho, B.; Prosper, F.; Decuzzi, P.; Di Mascolo, D. Microstructured Polymeric Fabrics Modulating the Paracrine Activity of Adipose-Derived Stem Cells. Int. J. Mol. Sci. 2023, 24, 10123. [Google Scholar] [CrossRef]
- Derakhshankhah, H.; Eskandani, M.; Akbari Nakhjavani, S.; Tasoglu, S.; Vandghanooni, S.; Jaymand, M. Electro-Conductive Silica Nanoparticles-Incorporated Hydrogel Based on Alginate as a Biomimetic Scaffold for Bone Tissue Engineering Application. Int. J. Polym. Mater. Polym. Biomater. 2024, 73, 266–278. [Google Scholar] [CrossRef]
- Kang, D.; Liu, Z.; Qian, C.; Huang, J.; Zhou, Y.; Mao, X.; Qu, Q.; Liu, B.; Wang, J.; Hu, Z.; et al. 3D Bioprinting of a Gelatin-Alginate Hydrogel for Tissue-Engineered Hair Follicle Regeneration. Acta Biomater. 2023, 165, 19–30. [Google Scholar] [CrossRef]
- Jarrah, R.M.; Potes, M.D.A.; Vitija, X.; Durrani, S.; Ghaith, A.K.; Mualem, W.; Zamanian, C.; Bhandarkar, A.R.; Bydon, M. Alginate Hydrogels: A Potential Tissue Engineering Intervention for Intervertebral Disc Degeneration. J. Clin. Neurosci. 2023, 113, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Colak, B.; Ertas, Y.N. Implantable, 3D-Printed Alginate Scaffolds with Bismuth Sulfide Nanoparticles for the Treatment of Local Breast Cancer via Enhanced Radiotherapy. ACS Appl. Mater. Interfaces 2024, 16, 15718–15729. [Google Scholar] [CrossRef]
- Ceccaldi, C.; Fullana, S.G.; Alfarano, C.; Lairez, O.; Calise, D.; Cussac, D.; Parini, A.; Sallerin, B. Alginate Scaffolds for Mesenchymal Stem Cell Cardiac Therapy: Influence of Alginate Composition. Cell Transplant. 2012, 21, 1969–1984. [Google Scholar] [CrossRef] [PubMed]
- Riahi, Z.; Priyadarshi, R.; Rhim, J.-W.; Lotfali, E.; Bagheri, R.; Pircheraghi, G. Alginate-Based Multifunctional Films Incorporated with Sulfur Quantum Dots for Active Packaging Applications. Colloids Surf. B Biointerfaces 2022, 215, 112519. [Google Scholar] [CrossRef]
- Luo, C.; Li, Y.-M.; Jiang, K.; Wang, K.; Kuzmanović, M.; You, X.-H.; Zhang, Y.; Lei, J.; Huang, S.-S.; Xu, J.-Z. ECM-Inspired Calcium/Zinc Laden Cellulose Scaffold for Enhanced Bone Regeneration. Carbohydr. Polym. 2024, 331, 121823. [Google Scholar] [CrossRef] [PubMed]
- Sreedharan, M.; Vijayamma, R.; Liyaskina, E.; Revin, V.V.; Ullah, M.W.; Shi, Z.; Yang, G.; Grohens, Y.; Kalarikkal, N.; Ali Khan, K.; et al. Nanocellulose-Based Hybrid Scaffolds for Skin and Bone Tissue Engineering: A 10-Year Overview. Biomacromolecules 2024, 25, 2136–2155. [Google Scholar] [CrossRef]
- Janmohammadi, M.; Nazemi, Z.; Salehi, A.O.M.; Seyfoori, A.; John, J.V.; Nourbakhsh, M.S.; Akbari, M. Cellulose-Based Composite Scaffolds for Bone Tissue Engineering and Localized Drug Delivery. Bioact. Mater. 2023, 20, 137–163. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, H.N.; Mathew, A.P. Cellulose-Based Nanomaterials Advance Biomedicine: A Review. Int. J. Mol. Sci. 2022, 23, 5405. [Google Scholar] [CrossRef]
- Pandey, A. Pharmaceutical and Biomedical Applications of Cellulose Nanofibers: A Review. Environ. Chem. Lett. 2021, 19, 2043–2055. [Google Scholar] [CrossRef]
- Omidian, H.; Akhzarmehr, A.; Chowdhury, S.D. Advancements in Cellulose-Based Superabsorbent Hydrogels: Sustainable Solutions across Industries. Gels 2024, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Niemczyk-Soczynska, B.; Zaszczyńska, A.; Zabielski, K.; Sajkiewicz, P. Hydrogel, Electrospun and Composite Materials for Bone/Cartilage and Neural Tissue Engineering. Materials 2021, 14, 6899. [Google Scholar] [CrossRef] [PubMed]
- Hameed, H.; Khan, M.A.; Paiva-Santos, A.C.; Ereej, N.; Faheem, S. Chitin: A Versatile Biopolymer-Based Functional Therapy for Cartilage Regeneration. Int. J. Biol. Macromol. 2024, 265, 131120. [Google Scholar] [CrossRef] [PubMed]
- Mawazi, S.M.; Kumar, M.; Ahmad, N.; Ge, Y.; Mahmood, S. Recent Applications of Chitosan and Its Derivatives in Antibacterial, Anticancer, Wound Healing, and Tissue Engineering Fields. Polymers 2024, 16, 1351. [Google Scholar] [CrossRef] [PubMed]
- Saghafi, Y.; Baharifar, H.; Najmoddin, N.; Asefnejad, A.; Maleki, H.; Sajjadi-Jazi, S.M.; Bonkdar, A.; Shams, F.; Khoshnevisan, K. Bromelain- and Silver Nanoparticle-Loaded Polycaprolactone/Chitosan Nanofibrous Dressings for Skin Wound Healing. Gels 2023, 9, 672. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Chen, H.; Li, F.; Zhang, F.; Jiang, Y.; Song, J.; Sun, Y.; Zhao, B.; Shi, J. Three-Dimension Chitosan Hydrogel Loading Melanin Composite Nanoparticles for Wound Healing by Anti-Bacteria, Immune Activation and Macrophage Autophagy Promotion. Int. J. Biol. Macromol. 2023, 237, 124176. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Cao, Y.; Yan, Y.; Shen, Z.; Zhao, Y.; Zhang, Y.; Sang, S.; Han, Y. Fabrication and Characterization of Chitosan-Based Composite Scaffolds for Neural Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 831–841. [Google Scholar] [CrossRef]
- Al-Nemrawi, N.K.; Altawabeyeh, R.M.; Darweesh, R.S. Preparation and Characterization of Docetaxel-PLGA Nanoparticles Coated with Folic Acid-Chitosan Conjugate for Cancer Treatment. J. Pharm. Sci. 2022, 111, 485–494. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, M.; Niu, B.; Xu, X.; Xia, W.; Deng, C. Mg-Sr-Ca Containing Bioactive Glass Nanoparticles Hydrogel Modified Mineralized Collagen Scaffold for Bone Repair. J. Biomater. Appl. 2024, 39, 117–128. [Google Scholar] [CrossRef]
- Ling, S.K.-K.; Yung, P.S.-H. Endoscopic Application of a Collagen Scaffold for Treatment of Achilles Tendinopathy. Arthrosc. Tech. 2024, 103071. [Google Scholar] [CrossRef]
- Iravani, K.; Mousavi, S.; Owji, S.M.; Sani, M.; Owji, S.H. Effect of Amniotic Membrane/Collagen Scaffolds on Laryngeal Cartilage Repair. Laryngoscope Investig. Otolaryngol. 2024, 9, e1222. [Google Scholar] [CrossRef]
- Fu, C.; Fan, Y.; Liu, G.; Li, W.; Ma, J.; Xiao, J. One-Step Fabrication of an Injectable Antibacterial Collagen Hydrogel with In Situ Synthesized Silver Nanoparticles for Accelerated Diabetic Wound Healing. Chem. Eng. J. 2024, 480, 148288. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, H.; Yao, L.; Xie, Y.; Liu, P.; Xiao, J. A Highly Bioactive THPC-Crosslinked Recombinant Collagen Hydrogel Implant for Aging Skin Rejuvenation. Int. J. Biol. Macromol. 2024, 266, 131276. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Kim, J.-H.; Choi, K.Y.; Yoon, H.Y.; Kim, K.; Kwon, I.C.; Choi, K.; Lee, B.-H.; Park, J.H.; Kim, I.-S. Hyaluronic Acid Nanoparticles for Active Targeting Atherosclerosis. Biomaterials 2015, 53, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Liu, X.-R.; Chen, Q.-B.; Li, Y.; Zhou, J.-L.; Zhou, L.-Y.; Zou, T. Hyaluronic Acid and Albumin Based Nanoparticles for Drug Delivery. J. Control. Release 2021, 331, 416–433. [Google Scholar] [CrossRef]
- Barbucci, R.; Lamponi, S.; Borzacchiello, A.; Ambrosio, L.; Fini, M.; Torricelli, P.; Giardino, R. Hyaluronic Acid Hydrogel in the Treatment of Osteoarthritis. Biomaterials 2002, 23, 4503–4513. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.-J.; Yoon, J.; Rho, J.G.; Han, H.S.; Lee, S.; Oh, Y.S.; Kim, H.; Kim, E.; Kim, S.J.; Lim, Y.T.; et al. Self-Assembled Hyaluronic Acid Nanoparticles for Osteoarthritis Treatment. Biomaterials 2021, 275, 120967. [Google Scholar] [CrossRef] [PubMed]
- Yakufu, M.; Wang, Z.; Li, C.; Jia, Q.; Ma, C.; Zhang, P.; Abudushalamu, M.; Akber, S.; Yan, L.; Xikeranmu, M.; et al. Carbene-Mediated Gelatin and Hyaluronic Acid Hydrogel Paints with Ultra Adhesive Ability for Arthroscopic Cartilage Repair. Int. J. Biol. Macromol. 2024, 273, 133122. [Google Scholar] [CrossRef]
- Chang, W.-H.; Liu, P.-Y.; Lin, M.-H.; Lu, C.-J.; Chou, H.-Y.; Nian, C.-Y.; Jiang, Y.-T.; Hsu, Y.-H.H. Applications of Hyaluronic Acid in Ophthalmology and Contact Lenses. Molecules 2021, 26, 2485. [Google Scholar] [CrossRef]
- Khadem, E.; Ghafarzadeh, M.; Kharaziha, M.; Sun, F.; Zhang, X. Lignin Derivatives-Based Hydrogels for Biomedical Applications. Int. J. Biol. Macromol. 2024, 261, 129877. [Google Scholar] [CrossRef]
- Nan, N.; Hu, W.; Wang, J. Lignin-Based Porous Biomaterials for Medical and Pharmaceutical Applications. Biomedicines 2022, 10, 747. [Google Scholar] [CrossRef]
- Alqahtani, M.S.; Alqahtani, A.; Al-Thabit, A.; Roni, M.; Syed, R. Novel Lignin Nanoparticles for Oral Drug Delivery. J. Mater. Chem. B 2019, 7, 4461–4473. [Google Scholar] [CrossRef]
- Feng, N.; Zhao, X.; Hu, J.; Tang, F.; Liang, S.; Wu, Q.; Zhang, C. Recent Advance in Preparation of Lignin Nanoparticles and Their Medical Applications: A Review. Phytomedicine 2024, 130, 155711. [Google Scholar] [CrossRef] [PubMed]
- Nandhini, R.; Sivaprakash, B.; Rajamohan, N.; Vo, D.-V.N. Lignin and Polylactic Acid for the Production of Bioplastics and Valuable Chemicals. Environ. Chem. Lett. 2023, 21, 403–427. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Kundu, B.; Naskar, D.; Kim, H.-W.; Maiti, T.K.; Bhattacharya, D.; Kundu, S.C. Silk Scaffolds in Bone Tissue Engineering: An Overview. Acta Biomater. 2017, 63, 1–17. [Google Scholar] [CrossRef]
- Mandal, B.B.; Park, S.-H.; Gil, E.S.; Kaplan, D.L. Multilayered Silk Scaffolds for Meniscus Tissue Engineering. Biomaterials 2011, 32, 639–651. [Google Scholar] [CrossRef]
- Silva, C.S.; Kundu, B.; Gomes, J.M.; Fernandes, E.M.; Reis, R.L.; Kundu, S.C.; Martins, A.; Neves, N.M. Development of Bilayered Porous Silk Scaffolds for Thymus Bioengineering. Biomater. Adv. 2023, 147, 213320. [Google Scholar] [CrossRef]
- Shaidani, S.; Jacobus, C.; Sahoo, J.K.; Harrington, K.; Johnson, H.; Foster, O.; Cui, S.; Hasturk, O.; Falcucci, T.; Chen, Y.; et al. Silk Nanoparticle Synthesis: Tuning Size, Dispersity, and Surface Chemistry for Drug Delivery. ACS Appl. Nano Mater. 2023, 6, 18967–18977. [Google Scholar] [CrossRef]
- Pang, C.; Li, F.; Hu, X.; Meng, K.; Pan, H.; Xiang, Y. Degradable Silk Fibroin Based Piezoresistive Sensor for Wearable Biomonitoring. Discov. Nano 2024, 19, 55. [Google Scholar] [CrossRef] [PubMed]
- Rolon, B.G.; Cruz, J.N. Reinforced Polymers with Natural Fiber. Preprints 2024. [Google Scholar] [CrossRef]
- Kapil, K.; Murata, H.; Szczepaniak, G.; Russell, A.J.; Matyjaszewski, K. Tailored Branched Polymer–Protein Bioconjugates for Tunable Sieving Performance. ACS Macro Lett. 2024, 13, 461–467. [Google Scholar] [CrossRef]
- Yadav, S.; Pawar, R.S.; Sambare, A.A.; Deshpande, S. Finite Element Analysis and Design Optimization of Composite T-joints for Enhanced Maritime and Aerospace Applications. Eng. Solid Mech. 2024, 12, 157–164. [Google Scholar] [CrossRef]
- Chen, G.-Y.; Liu, F.-C.; Hsu, S.-W. Metal Dimer Nanojunction-Magnetic Material Composites for Magnetic Field Sensing. Mater. Horiz. 2024, 11, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Luzi, F.; Tortorella, I.; Di Michele, A.; Dominici, F.; Argentati, C.; Morena, F.; Torre, L.; Puglia, D.; Martino, S. Novel Nanocomposite PLA Films with Lignin/Zinc Oxide Hybrids: Design, Characterization, Interaction with Mesenchymal Stem Cells. Nanomaterials 2020, 10, 2176. [Google Scholar] [CrossRef] [PubMed]
- Rijns, L.; Baker, M.B.; Dankers, P.Y.W. Using Chemistry To Recreate the Complexity of the Extracellular Matrix: Guidelines for Supramolecular Hydrogel–Cell Interactions. J. Am. Chem. Soc. 2024, 146, 17539–17558. [Google Scholar] [CrossRef] [PubMed]
- van Gaal, R.C.; Vrehen, A.F.; van Sprang, J.F.; Fransen, P.-P.K.H.; van Turnhout, M.C.; Dankers, P.Y.W. Biomaterial Screening of Protein Coatings and Peptide Additives: Towards a Simple Synthetic Mimic of a Complex Natural Coating for a Bio-Artificial Kidney. Biomater. Sci. 2021, 9, 2209–2220. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, D. Graphene: A Multifaceted Carbon-Based Material for Bone Tissue Engineering Applications|ACS Omega. Available online: https://pubs.acs.org/doi/full/10.1021/acsomega.3c07062 (accessed on 3 July 2024).
- Pilato, S.; Pilato, S.; Moffa, S.; Moffa, S.; Siani, G.; Siani, G.; Diomede, F.; Diomede, F.; Trubiani, O.; Trubiani, O.; et al. 3D Graphene Oxide-Polyethylenimine Scaffolds for Cardiac Tissue Engineering. ACS Appl. Mater. Interfaces 2023, 15, 14077–14088. [Google Scholar] [CrossRef] [PubMed]
- Saadati, M.; Akhavan, O.; Fazli, H.; Nemati, S.; Baharvand, H. Controlled Differentiation of Human Neural Progenitor Cells on Molybdenum Disulfide/Graphene Oxide Heterojunction Scaffolds by Photostimulation. ACS Appl. Mater. Interfaces 2023, 15, 3713–3730. [Google Scholar] [CrossRef]
- Nasim, I.; Kanth Jaju, K.; Shamly, M.; Vishnupriya, V.; Jabin, Z. Effect of Nanoparticle Based Intra-Canal Medicaments on Root Dentin Micro-Hardness. Bioinformation 2022, 18, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yu, Y.; Shang, L.; Zhao, Y. Histidine-Triggered GO Hybrid Hydrogels for Microfluidic 3D Printing. ACS Nano 2022, 16, 19533–19542. [Google Scholar] [CrossRef]
- Bardajee, G.R.; Ghadimkhani, R.; Jafarpour, F. A Biocompatible Double Network Hydrogel Based on Poly (Acrylic Acid) Grafted onto Sodium Alginate for Doxorubicin Hydrochloride Anticancer Drug Release. Int. J. Biol. Macromol. 2024, 260, 128871. [Google Scholar] [CrossRef] [PubMed]
- Glingasorn, B.; Yongsapanan, N.; Pangon, A.; Lin, C.; Ummartyotin, S. Synthesis of Bioinspired Based Hydrogel Composite from Hyaluronic Acid/Polyacrylic Acid and Lignin as an Adhesive for Medical Technology. Emergent Mater. 2024, 7, 275–284. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Hsu, F.-C.; Chou, C.-W.; Wu, T.-H.; Lin, H.-R. Poly(Acrylic Acid)–Chitosan–Silica Hydrogels Carrying Platelet Gels for Bone Defect Repair. J. Mater. Chem. B 2014, 2, 8329–8337. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, W.; Bartolo, P. The Effect of Graphene and Graphene Oxide Induced Reactive Oxygen Species on Polycaprolactone Scaffolds for Bone Cancer Applications. Mater. Today Bio 2024, 24, 100886. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Lin, H.; Rothrauff, B.B.; Yu, S.; Tuan, R.S. Multilayered Polycaprolactone/Gelatin Fiber-Hydrogel Composite for Tendon Tissue Engineering. Acta Biomater. 2016, 35, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Koh, W.-G. Composite Hydrogel of Methacrylated Hyaluronic Acid and Fragmented Polycaprolactone Nanofiber for Osteogenic Differentiation of Adipose-Derived Stem Cells. Pharmaceutics 2020, 12, 902. [Google Scholar] [CrossRef] [PubMed]
- Samavati, B.; Tamjid, E.; Khalili, M.A.; Khajeh, K. 3D-Printing and Biofunctionalization of PCL-Based Nanocomposite Scaffolds for Osteogenic Differentiation. Preprint 2024. [Google Scholar] [CrossRef]
- Yang, M.; Ng, H.J.H.; Nga, V.D.; Chou, N.; Yeo, T.T. Cranial Reconstruction Using a Polycaprolactone Implant After Burr Hole Trephination. J. 3D Print. Med. 2020, 4, 9–16. [Google Scholar] [CrossRef]
- Chang, C.-W.; Yeh, Y.-C. Poly(Glycerol Sebacate)-Co-Poly(Ethylene Glycol)/Gelatin Hybrid Hydrogels as Biocompatible Biomaterials for Cell Proliferation and Spreading. Macromol. Biosci. 2021, 21, 2100248. [Google Scholar] [CrossRef]
- Seitz, M.P.; Song, Y.; Lian, X.L.; Ma, Z.; Jain, E. Soft Polyethylene Glycol Hydrogels Support Human PSC Pluripotency and Morphogenesis. ACS Biomater. Sci. Eng. 2024, 10, 4525–4540. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-L.; Fu, R.-H.; Liao, S.-F.; Liu, S.-P.; Lin, S.-Z.; Wang, Y.-C. A PEG-Based Hydrogel for Effective Wound Care Management. Cell Transpl. 2018, 27, 275–284. [Google Scholar] [CrossRef]
- Xia, D.; Hu, Y.; Ma, N.; Zhang, L.; Zheng, Y.; Lin, T.; Qi, J.; Jin, Q. Robust Hierarchical Porous Polycaprolactone/Nano-Hydroxyapatite/Polyethylene Glycol Scaffolds with Boosted In Vitro Osteogenic Ability. Colloids Surf. A Physicochem. Eng. Asp. 2024, 681, 132740. [Google Scholar] [CrossRef]
- Saberian, E.; Jenča, A.; Petrášová, A.; Zare-Zardini, H.; Ebrahimifar, M. Application of Scaffold-Based Drug Delivery in Oral Cancer Treatment: A Novel Approach. Pharmaceutics 2024, 16, 802. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.G.; Dalvi, Y.B.; Fijol, N.; Shilpa, J.; Unni, R.; Binsi, P.K.; Varghese, M.G.; Reshmy, R.; Mathew, A.P.; Anil, S. Fish Scale Derived Hydroxyapatite Incorporated 3D Printed PLA Scaffold for Bone Tissue Engineering. New J. Chem. 2024, 48, 10841–10851. [Google Scholar] [CrossRef]
- Ben Abdeljawad, M.; Carette, X.; Argentati, C.; Martino, S.; Gonon, M.-F.; Odent, J.; Morena, F.; Mincheva, R.; Raquez, J.-M. Interfacial Compatibilization into PLA/Mg Composites for Improved In Vitro Bioactivity and Stem Cell Adhesion. Molecules 2021, 26, 5944. [Google Scholar] [CrossRef] [PubMed]
- Bîrcă, A.C.; Chircov, C.; Niculescu, A.G.; Hildegard, H.; Baltă, C.; Roșu, M.; Mladin, B.; Gherasim, O.; Mihaiescu, D.E.; Vasile, B. Ștefan; et al. H2O2-PLA-(Alg)2Ca Hydrogel Enriched in Matrigel® Promotes Diabetic Wound Healing. Pharmaceutics 2023, 15, 857. [Google Scholar] [CrossRef] [PubMed]
- Gasparotto, M.; Bellet, P.; Scapin, G.; Busetto, R.; Rampazzo, C.; Vitiello, L.; Shah, D.I.; Filippini, F. 3D Printed Graphene-PLA Scaffolds Promote Cell Alignment and Differentiation. Int. J. Mol. Sci. 2022, 23, 1736. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Lin, X.; Zou, L.; Fu, W.; Lv, H. Effect of Graphene Oxide/ Poly-L-Lactic Acid Composite Scaffold on the Biological Properties of Human Dental Pulp Stem Cells. BMC Oral Health 2024, 24, 413. [Google Scholar] [CrossRef] [PubMed]
- Narmani, A.; Jahedi, R.; Bakhshian-Dehkordi, E.; Ganji, S.; Nemati, M.; Ghahramani-Asl, R.; Moloudi, K.; Hosseini, S.M.; Bagheri, H.; Kesharwani, P.; et al. Biomedical Applications of PLGA Nanoparticles in Nanomedicine: Advances in Drug Delivery Systems and Cancer Therapy. Expert Opin. Drug Deliv. 2023, 20, 937–954. [Google Scholar] [CrossRef]
- Jin, S.; Xia, X.; Huang, J.; Yuan, C.; Zuo, Y.; Li, Y.; Li, J. Recent Advances in PLGA-Based Biomaterials for Bone Tissue Regeneration. Acta Biomater. 2021, 127, 56–79. [Google Scholar] [CrossRef]
- Ahearne, M.; Fernández-Pérez, J.; Masterton, S.; Madden, P.W.; Bhattacharjee, P. Designing Scaffolds for Corneal Regeneration. Adv. Funct. Mater. 2020, 30, 1908996. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, Y.; Wang, Q.; Ren, G.; Wang, Y.; Zhou, S.; Wang, Q.; Peng, C.; Cheng, X. Thermosensitive vancomycin@PLGA-PEG-PLGA/HA Hydrogel as an All-in-One Treatment for Osteomyelitis. Int. J. Pharm. 2022, 627, 122225. [Google Scholar] [CrossRef] [PubMed]
- Saghebasl, S.; Akbarzadeh, A.; Gorabi, A.M.; Nikzamir, N.; SeyedSadjadi, M.; Mostafavi, E. Biodegradable Functional Macromolecules as Promising Scaffolds for Cardiac Tissue Engineering. Polym. Adv. Technol. 2022, 33, 2044–2068. [Google Scholar] [CrossRef]
- Sevostyanov, M.A.; Baikin, A.S.; Sergienko, K.V.; Shatova, L.A.; Kirsankin, A.A.; Baymler, I.V.; Shkirin, A.V.; Gudkov, S.V. Biodegradable Stent Coatings on the Basis of PLGA Polymers of Different Molecular Mass, Sustaining a Steady Release of the Thrombolityc Enzyme Streptokinase. React. Funct. Polym. 2020, 150, 104550. [Google Scholar] [CrossRef]
- Sriram, M.; Priya, S.; Katti, D.S. Polyhydroxybutyrate-Based Osteoinductive Mineralized Electrospun Structures That Mimic Components and Tissue Interfaces of the Osteon for Bone Tissue Engineering. Biofabrication 2024, 16, 025036. [Google Scholar] [CrossRef]
- Lezcano, M.F.; Álvarez, G.; Chuhuaicura, P.; Godoy, K.; Alarcón, J.; Acevedo, F.; Gareis, I.; Dias, F.J. Polyhydroxybutyrate (PHB) Scaffolds for Peripheral Nerve Regeneration: A Systematic Review of Animal Models. Biology 2022, 11, 706. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Girdhar, M.; Kumar, R.; Chaturvedi, H.S.; Vadhel, A.; Solanki, P.R.; Kumar, A.; Kumar, D.; Mamidi, N. Polyhydroxybutyrate-Based Nanocomposites for Bone Tissue Engineering. Pharmaceuticals 2021, 14, 1163. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.K.; Novembre, L.; Greco, A.; Sannino, A. Polyhydroxyalkanoates, A Prospective Solution in the Textile Industry—A Review. Polym. Degrad. Stab. 2024, 219, 110619. [Google Scholar] [CrossRef]
- Cao, H.; Kuboyama, N. A Biodegradable Porous Composite Scaffold of PGA/β-TCP for Bone Tissue Engineering. Bone 2010, 46, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, S.; Sezaki, S.; Okamoto, Y.; Ishitani, T.; Wakama, H.; Neo, M. Safety and Efficacy of a Novel Polyglycolic Acid Meniscal Scaffold for Irreparable Meniscal Tear. Cartilage 2024, 15, 110–119. [Google Scholar] [CrossRef]
- Melgar-Lesmes, P.; Bosch, O.; Zubajlo, R.; Molins, G.; Comfort, S.; Luque-Saavedra, A.; López-Moya, M.; García-Polite, F.; Ferrandis, F.J.P.; Rogers, C.; et al. Optimization of 3D Autologous Chondrocyte-Seeded Polyglycolic Acid Scaffolds to Mimic Human Ear Cartilage. Biomater. Sci. 2023, 11, 3695–3708. [Google Scholar] [CrossRef] [PubMed]
- Yu, X. Application of Hydrogels in Cardiac Regeneration. Cardiol. Ther. 2023, 12, 637–674. [Google Scholar] [CrossRef]
- Ohtani, S.; Gon, M.; Tanaka, K.; Chujo, Y. Synthesis of Regioregular and Random Boron-Fused Azomethine Conjugated Polymers for Film Morphology Control. Chem. Asian J. 2024, 19, e202301136. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Jin, X.; He, X.; Huang, W.; Tian, Q.; Fu, Q.; Yan, W. Synthesis of Aluminum Phosphate-Coated Halloysite Nanotubes: Effects on Morphological, Mechanical, and Rheological Properties of PEO/PBAT Blends. Nanomaterials 2022, 12, 2896. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, G.S.A.; Zeng, X.; Chakma, R.; Wakai, I.Y.; Feng, Y. Recent Advances and Challenges in Thermal Stability of PVA-Based Film: A Review. Polym. Adv. Technol. 2024, 35, e6327. [Google Scholar] [CrossRef]
- Lai, W.-F.; Wong, W.-T. Design and Practical Considerations for Active Polymeric Films in Food Packaging. Int. J. Mol. Sci. 2022, 23, 6295. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Min, S.-B.; Jeon, D.; Kim, C.B. Marangoni-Driven Patterning in Polymer Thin Film Supported on Shrinking Substrate for Resolution Enhancement. Macromol. Chem. Phys. 2023, 224, 2300035. [Google Scholar] [CrossRef]
- Hu, N.; Mi, L.; Metwalli, E.; Bießmann, L.; Herold, C.; Cubitt, R.; Zhong, Q.; Müller-Buschbaum, P. Effect of Thermal Stimulus on Kinetic Rehydration of Thermoresponsive Poly(Diethylene Glycol Monomethyl Ether Methacrylate)-Block-Poly(Poly(Ethylene Glycol) Methyl Ether Methacrylate) Thin Films Probed by In Situ Neutron Reflectivity. Langmuir 2022, 38, 8094–8103. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wei, L.; Lan, L.; Gao, Y.; Zhang, Q.; Dawit, H.; Mao, J.; Guo, L.; Shen, L.; Wang, L. Conductive Biomaterials for Cardiac Repair: A Review. Acta Biomater. 2022, 139, 157–178. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, J.; Liu, J.; Chen, X.; Chen, M.; Wang, J. Dual Ligand-Assisted Assembly of Metal–Organic Frameworks on Upconversion Nanoparticles for NIR Photodynamic Therapy against Hypoxic Tumors. J. Mater. Chem. B 2023, 11, 9516–9524. [Google Scholar] [CrossRef]
- Wu, W.; Wu, W.; Guo, M.; Wang, R.; Wang, X.; Gao, Q. Synthesis of MPEG-b-PLLA Diblock Copolymers and Their Crystallization Performance with PDLA and PLLA Composite Films. Materials 2024, 17, 2105. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Li, B.; Sheng, W. Surface Functionalization with Polymer Brushes via Surface-Initiated Atom Transfer Radical Polymerization: Synthesis, Applications, and Current Challenges. Langmuir 2024, 40, 5571–5589. [Google Scholar] [CrossRef] [PubMed]
- Altuijri, R.; Abdelhamied, M.M.; Atta, A.; Abdel-Hamid, H.M.; Henaish, A.M.A.; El-Aassar, M.R. Impacts of Low Energy Oxygen Irradiation on the Dielectric Properties of PVA/TiO2 Nanocomposite Films. ECS J. Solid State Sci. Technol. 2024, 13, 043005. [Google Scholar] [CrossRef]
- Kunjattu, H.S.; Thorat, N.M.; Gawas, S.; Kharul, U.K. Scalable, Interfacially Synthesized, Covalent–Organic Framework (COF)-Based Thin-Film Composite (TFC) Hollow Fiber Membranes for Organic Solvent Nanofiltration (OSN). ACS Appl. Mater. Interfaces 2024, 16, 19463–19471. [Google Scholar] [CrossRef]
- Khavari, R.; Jahanfar, M.; Anaghizi, S.J.; Khademi, A.; Farivar, S.; Ghomi, H. Enhancing Cell Growth with PAN/PVA-Gelatin 3D Scaffold: A Novel Approach Using In-Situ UV Radiation Electrospinning and Plasma Treatment. Preprint 2023. [Google Scholar] [CrossRef]
- Ito, M.; Okamoto, M. Structure and Properties of 3D Resorbable Scaffolds Based on Poly(L-Lactide) via Salt-Leaching Combined with Phase Separation. Int. J. Hydrol. 2023, 7, 73–76. [Google Scholar] [CrossRef]
- Hemmami, H.; Ben Amor, G.; Bayzid, S.; Maamir, M.; Gherbi, N.; Chourouk, Z.; Alnazza Alhamad, A. Chitosan as a Tissue Engineering Scaffold. IJS Glob. Health 2024, 7, e0302. [Google Scholar] [CrossRef]
- Kalluri, L.; Duan, Y.; Janorkar, A.V. Electrospun Polymeric Nanofibers for Dental Applications. J. Appl. Polym. Sci. 2024, 141, e55224. [Google Scholar] [CrossRef]
- Meng, D.; Hou, Y.; Kurniawan, D.; Weng, R.-J.; Chiang, W.-H.; Wang, W. 3D-Printed Graphene and Graphene Quantum Dot-Reinforced Polycaprolactone Scaffolds for Bone-Tissue Engineering. ACS Appl. Nano Mater. 2024, 7, 1245–1256. [Google Scholar] [CrossRef]
- Jing, X.; Fu, H.; Yu, B.; Sun, M.; Wang, L. Two-Photon Polymerization for 3D Biomedical Scaffolds: Overview and Updates. Front. Bioeng. Biotechnol. 2022, 10, 994355. [Google Scholar] [CrossRef]
- Loewner, S.; Heene, S.; Baroth, T.; Heymann, H.; Cholewa, F.; Blume, H.; Blume, C. Recent Advances in Melt Electro Writing for Tissue Engineering for 3D Printing of Microporous Scaffolds for Tissue Engineering. Front. Bioeng. Biotechnol. 2022, 10, 896719. [Google Scholar] [CrossRef]
- Celik, D.; Ustundag, C.B. Fabrication of Biomimetic Scaffold through Hybrid Forming Technique. Int. J. Ceram. Eng. Sci. 2024, 6, e10210. [Google Scholar] [CrossRef]
- Samadian, F.; Beygi-Khosrowshahi, Y. Development of Wound Healing Scaffold Using ZnO and TiO2 Nanoparticles. Preprint 2024. [Google Scholar] [CrossRef]
- Hahn, F.; Ferrandez-Montero, A.; Queri, M.; Vancaeyzeele, C.; Plesse, C.; Agniel, R.; Leroy-Dudal, J. Electroactive 4D Porous Scaffold Based on Conducting Polymer as a Responsive and Dynamic In Vitro Cell Culture Platform. ACS Appl. Mater. Interfaces 2024, 16, 5613–5626. [Google Scholar] [CrossRef] [PubMed]
- Malekpour, A.; Chen, X. Printability and Cell Viability in Extrusion-Based Bioprinting from Experimental, Computational, and Machine Learning Views. J. Funct. Biomater. 2022, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Ozbek, I.I.; Saybasili, H.; Ulgen, K.O. Applications of 3D Bioprinting Technology to Brain Cells and Brain Tumor Models: Special Emphasis to Glioblastoma. ACS Biomater. Sci. Eng. 2024, 10, 2616–2635. [Google Scholar] [CrossRef]
- Jiu, J.; Liu, H.; Li, D.; Li, J.; Liu, L.; Yang, W.; Yan, L.; Li, S.; Zhang, J.; Li, X.; et al. 3D Bioprinting Approaches for Spinal Cord Injury Repair. Biofabrication 2024, 16, 032003. [Google Scholar] [CrossRef]
- Al-Mansour, A.H.M.; Rizk, A.N.G.A.; Al-Mansour, H.M.S.; Mahamed, H.S.F.A.; Sharmah, H.S.M.A.; Al-mahamed, A.M.; Al-hattab, J.M.; Almansour, F.M.H. Updates in the Use of 3D Bioprinting in Biomedical Engineering for Clinical Application: A Review. J. Pharm. Res. Int. 2022, 34, 42–53. [Google Scholar] [CrossRef]
- Ning, H.; Zhou, T.; Joo, S.W. Machine Learning Boosts Three-Dimensional Bioprinting. Int. J. Bioprinting 2023, 9, 739. [Google Scholar] [CrossRef] [PubMed]
- Cross-Najafi, A.A.; Farag, K.; Chen, A.M.; Smith, L.J.; Zhang, W.; Li, P.; Ekser, B. The Long Road to Develop Custom-Built Livers: Current Status of 3D Liver Bioprinting. Transplantation 2024, 108, 357–368. [Google Scholar] [CrossRef]
- Raveendran, N.; Vaswani, K.; Han, P.; Basu, S.; Moran, C.S.; Ivanovski, S. Modeling Inflammatory Response Using 3D Bioprinting of Polarized Macrophages. Int. J. Bioprinting 2024, 10, 2116. [Google Scholar] [CrossRef]
- Fritschen, A.; Lindner, N.; Scholpp, S.; Richthof, P.; Dietz, J.; Linke, P.; Guttenberg, Z.; Blaeser, A. High-Scale 3D-Bioprinting Platform for the Automated Production of Vascularized Organs-on-a-Chip. Adv. Healthc. Mater. 2024, 13, 2304028. [Google Scholar] [CrossRef] [PubMed]
- Di Buduo, C.A.; Lunghi, M.; Kuzmenko, V.; Laurent, P.-A.; Della Rosa, G.; Del Fante, C.; Dalle Nogare, D.E.; Jug, F.; Perotti, C.; Eto, K.; et al. Bioprinting Soft 3D Models of Hematopoiesis Using Natural Silk Fibroin-Based Bioink Efficiently Supports Platelet Differentiation. Adv. Sci. 2024, 11, 2308276. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, U.; Kolla, S.; Maredupaka, S.; Priya, S.; Srinivasulu, K.; Chelluri, L.K. Development of an Alginate–Chitosan Biopolymer Composite with dECM Bioink Additive for Organ-on-a-Chip Articular Cartilage. Sci. Rep. 2024, 14, 11765. [Google Scholar] [CrossRef] [PubMed]
- Puistola, P.; Kethiri, A.; Nurminen, A.; Turkki, J.; Hopia, K.; Miettinen, S.; Mörö, A.; Skottman, H. Cornea-Specific Human Adipose Stem Cell-Derived Extracellular Matrix for Corneal Stroma Tissue Engineering. ACS Appl. Mater. Interfaces 2024, 16, 15761–15772. [Google Scholar] [CrossRef] [PubMed]
- Alshangiti, D.M.; El-damhougy, T.K.; Zaher, A.; Madani, M.; Mohamady Ghobashy, M. Revolutionizing Biomedicine: Advancements, Applications, and Prospects of Nanocomposite Macromolecular Carbohydrate-Based Hydrogel Biomaterials: A Review. RSC Adv. 2023, 13, 35251–35291. [Google Scholar] [CrossRef]
- Rosales, A.M.; Anseth, K.S. The Design of Reversible Hydrogels to Capture Extracellular Matrix Dynamics. Nat. Rev. Mater. 2016, 1, 15012. [Google Scholar] [CrossRef]
- Majcher, M.J.; Hoare, T. Hydrogel Synthesis and Design. In Functional Biopolymers; Jafar Mazumder, M.A., Sheardown, H., Al-Ahmed, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 239–278. ISBN 978-3-319-95990-0. [Google Scholar]
- Fortunati, E.; D’Angelo, F.; Martino, S.; Orlacchio, A.; Kenny, J.M.; Armentano, I. Carbon Nanotubes and Silver Nanoparticles for Multifunctional Conductive Biopolymer Composites. Carbon 2011, 49, 2370–2379. [Google Scholar] [CrossRef]
- Rescignano, N.; Fortunati, E.; Montesano, S.; Emiliani, C.; Kenny, J.M.; Martino, S.; Armentano, I. PVA Bio-Nanocomposites: A New Take-off Using Cellulose Nanocrystals and PLGA Nanoparticles. Carbohydr. Polym. 2014, 99, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Thanou, M. Targeting Nanoparticles to Cancer. Pharmacol. Res. 2010, 62, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Li, S.; Shi, R.; Liu, H. Multifunctional Mesoporous Silica Nanoparticles for Biomedical Applications. Signal Transduct. Target. Ther. 2023, 8, 435. [Google Scholar] [CrossRef]
- Argentati, C.; Morena, F.; Fontana, C.; Tortorella, I.; Emiliani, C.; Latterini, L.; Zampini, G.; Martino, S. Functionalized Silica Star-Shaped Nanoparticles and Human Mesenchymal Stem Cells: An In Vitro Model. Nanomaterials 2021, 11, 779. [Google Scholar] [CrossRef]
- Tarpani, L.; Morena, F.; Gambucci, M.; Zampini, G.; Massaro, G.; Argentati, C.; Emiliani, C.; Martino, S.; Latterini, L. The Influence of Modified Silica Nanomaterials on Adult Stem Cell Culture. Nanomaterials 2016, 6, 104. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Chenab, K.K.; Taheri-Ledari, R.; Mosafer, J.; Hashemi, S.M.; Mokhtarzadeh, A.; Maleki, A.; Hamblin, M.R. Recent Advances in the Application of Mesoporous Silica-Based Nanomaterials for Bone Tissue Engineering. Mater. Sci. Eng. C 2020, 107, 110267. [Google Scholar] [CrossRef] [PubMed]
- Martino, S.; D’Angelo, F.; Armentano, I.; Kenny, J.M.; Orlacchio, A. Stem Cell-Biomaterial Interactions for Regenerative Medicine. Biotechnol. Adv. 2012, 30, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Argentati, C.; Dominici, F.; Morena, F.; Rallini, M.; Tortorella, I.; Ferrandez-Montero, A.; Pellegrino, R.M.; Ferrari, B.; Emiliani, C.; Lieblich, M.; et al. Thermal Treatment of Magnesium Particles in Polylactic Acid Polymer Films Elicits the Expression of Osteogenic Differentiation Markers and Lipidome Profile Remodeling in Human Adipose Stem Cells. Int. J. Biol. Macromol. 2022, 223, 684–701. [Google Scholar] [CrossRef]
- Vinnacombe-Willson, G.A.; García-Astrain, C.; Troncoso-Afonso, L.; Wagner, M.; Langer, J.; González-Callejo, P.; Silvio, D.D.; Liz-Marzán, L.M. Growing Gold Nanostars on 3D Hydrogel Surfaces. Chem. Mater. 2024, 36, 5192–5203. [Google Scholar] [CrossRef] [PubMed]
- Skrodzki, D.; Molinaro, M.; Brown, R.; Moitra, P.; Pan, D. Synthesis and Bioapplication of Emerging Nanomaterials of Hafnium. ACS Nano 2024, 18, 1289–1324. [Google Scholar] [CrossRef]
- Ehrhorn, E.G.; Lovell, P.; Svechkarev, D.; Romanova, S.; Mohs, A.M. Optimizing the Performance of Silica Nanoparticles Functionalized with a Near-Infrared Fluorescent Dye for Bioimaging Applications. Nanotechnology 2024, 35, 305605. [Google Scholar] [CrossRef]
- Tripathi, M.; Sharma, A.; Sinharay, S.; Raichur, A.M. Effect of PVP Molecular Weights on the Synthesis of Ultrasmall Cus Nanoflakes: Synthesis, Properties, and Potential Application for Phototheranostics. ACS Appl. Bio Mater. 2024, 7, 1671–1681. [Google Scholar] [CrossRef]
- He, Z.; Li, F.; Zuo, P.; Tian, H. Principles and Applications of Resonance Energy Transfer Involving Noble Metallic Nanoparticles. Materials 2023, 16, 3083. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, L.; Xu, L.; Liu, H.; Tian, S.; Yang, J. Synthesis and Electrocatalytic Applications of Noble Metal Chalcogenides Nanomaterials. ChemElectroChem 2024, 11, e202300686. [Google Scholar] [CrossRef]
- Zhao, R.; Xiang, J.; Wang, B.; Chen, L.; Tan, S. Recent Advances in the Development of Noble Metal NPs for Cancer Therapy. Bioinorg. Chem. Appl. 2022, 2022, 2444516. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.; Huang, J.; Jiang, C.; Zhou, L.; Zheng, M.; Nezamzadeh-Ejhieh, A.; Qi, N.; Lu, C.; Liu, J. A Novel Platform of MOF for Sonodynamic Therapy Advanced Therapies. Pharmaceutics 2023, 15, 2071. [Google Scholar] [CrossRef]
- Elbanna, K.; Alsulami, F.S.; Neyaz, L.A.; Abulreesh, H.H. Poly (γ) Glutamic Acid: A Unique Microbial Biopolymer with Diverse Commercial Applicability. Front. Microbiol. 2024, 15, 1348411. [Google Scholar] [CrossRef]
- Sinha, S. An Overview of Biopolymer-Derived Packaging Material. Polym. Renew. Resour. 2024, 15, 193–209. [Google Scholar] [CrossRef]
- Zemljič, L.F.; Tušek, L.; Mešl, A.; Plohl, O.; Čolnik, M.; Škerget, M. Feathered Innovation: Transforming Recycled Keratin into Bioactive Micro/Nanoparticles for Advanced Drug Delivery Systems. Preprint 2024. [Google Scholar] [CrossRef]
- Jamali, A.R.; Shaikh, A.A.; Chandio, A.D. Preparation and Characterisation of Polyvinyl Alcohol/Glycerol Blend Thin Films for Sustainable Flexibility. Mater. Res. Express 2024, 11, 045102. [Google Scholar] [CrossRef]
- Alkhalidi, H.M.; Alahmadi, A.A.; Rizg, W.Y.; Yahya, E.B.; HPS, A.K.; Mushtaq, R.Y.; Badr, M.Y.; Safhi, A.Y.; Hosny, K.M. Revolutionizing Cancer Treatment: Biopolymer-Based Aerogels as Smart Platforms for Targeted Drug Delivery. Macromol. Rapid Commun. 2024, 45, 2300687. [Google Scholar] [CrossRef] [PubMed]
- Ndwandwe, B.K.; Malinga, S.P.; Kayitesi, E.; Dlamini, B.C. Recent Developments in the Application of Natural Pigments as pH-Sensitive Food Freshness Indicators in Biopolymer-Based Smart Packaging: Challenges and Opportunities. Int. J. Food Sci. Technol. 2024, 59, 2148–2161. [Google Scholar] [CrossRef]
- Wittmar, A.S.M.; Ropertz, M.; Braun, M.; Hagemann, U.; Andronescu, C.; Ulbricht, M. Preparation of N-Doped Carbon Materials from Cellulose:Chitosan Blends and Their Potential Application in Electrocatalytic Oxygen Reduction. Polym. Bull. 2023, 80, 7827–7845. [Google Scholar] [CrossRef]
- Talebian, S.; Schofield, T.; Valtchev, P.; Schindeler, A.; Kavanagh, J.M.; Adil, Q.; Dehghani, F. Biopolymer-Based Multilayer Microparticles for Probiotic Delivery to Colon. Adv. Healthc. Mater. 2022, 11, 2102487. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.; Alam, M.; Wang, S.; Zaman, J.U.; Rahman, M.S.; Johir, M.; Tian, L.; Choi, J.-G.; Ahmed, M.B.; Yoon, M.-H. Interaction Chemistry of Functional Groups for Natural Biopolymer-Based Hydrogel Design. Mater. Sci. Eng. R. Rep. 2023, 156, 100758. [Google Scholar] [CrossRef]
- Kargozar, S.; Ramakrishna, S.; Mozafari, M. Chemistry of Biomaterials: Future Prospects. Curr. Opin. Biomed. Eng. 2019, 10, 181–190. [Google Scholar] [CrossRef]
- Marques, J.M.C.; Prudente, F.V.; Pirani, F. Intermolecular Forces: From Atoms and Molecules to Nanostructures. Molecules 2022, 27, 3072. [Google Scholar] [CrossRef]
- Sohaimy, M.I.H.; Isa, M.I.N. Proton-Conducting Biopolymer Electrolytes Based on Carboxymethyl Cellulose Doped with Ammonium Formate. Polymers 2022, 14, 3019. [Google Scholar] [CrossRef] [PubMed]
- Jansi, R.; Vinay, B.; Revathy, M.S.; Sasikumar, P.; Marasamy, L.; Janani, A.; Haldhar, R.; Kim, S.-C.; Almarhoon, Z.M.; Hossain, M.K. Synergistic Blends of Sodium Alginate and Pectin Biopolymer Hosts as Conducting Electrolytes for Electrochemical Applications. ACS Omega 2024, 9, 13906–13916. [Google Scholar] [CrossRef]
- Marzi, J.; Fuhrmann, E.; Brauchle, E.; Singer, V.; Pfannstiel, J.; Schmidt, I.; Hartmann, H. Non-Invasive Three-Dimensional Cell Analysis in Bioinks by Raman Imaging. ACS Appl. Mater. Interfaces 2022, 14, 30455–30465. [Google Scholar] [CrossRef] [PubMed]
- Jumeaux, M.; Touchaleaume, F.; Durrieu, V.; Vandenbossche, V.; Vaca-Medina, G.; Rouilly, A. Melt Processing of Unrefined Horn Keratin. ACS Sustain. Chem. Eng. 2023, 11, 15423–15431. [Google Scholar] [CrossRef]
- Chen, C.; Wei, K.; Gu, J.; Huang, X.; Dai, X.; Liu, Q. Combined Effect of Biopolymer and Fiber Inclusions on Unconfined Compressive Strength of Soft Soil. Polymers 2022, 14, 787. [Google Scholar] [CrossRef] [PubMed]
- Wawrzyńczak, A.; Chudzińska, J.; Feliczak-Guzik, A. Metal and Metal Oxides Nanoparticles as Nanofillers for Biodegradable Polymers. ChemPhysChem 2024, 25, e202300823. [Google Scholar] [CrossRef]
- Taniguchi Nagahara, M.H.; Caiado Decarli, M.; Inforçatti Neto, P.; Lopes da Silva, J.V.; Moraes, Â.M. Crosslinked Alginate-Xanthan Gum Blends as Effective Hydrogels for 3D Bioprinting of Biological Tissues. J. Appl. Polym. Sci. 2022, 139, e52612. [Google Scholar] [CrossRef]
- Benoso, P.; Bittante, A.M.Q.B.; Moraes, I.C.F.; do Amaral Sobral, P.J. Rheological and Viscoelastic Properties of Colloidal Solutions Based on Gelatins and Chitosan as Affected by pH. Int. J. Food Sci. Technol. 2022, 57, 2365–2375. [Google Scholar] [CrossRef]
- Buitrago-Rincon, D.L.; Sadtler, V.; Mercado, R.A.; Roques-Carmes, T.; Marchal, P.; Muñoz-Navarro, S.F.; Sandoval, M.; Pedraza-Avella, J.A.; Lemaitre, C. Silica Nanoparticles in Xanthan Gum Solutions: Oil Recovery Efficiency in Core Flooding Tests. Nanomaterials 2023, 13, 925. [Google Scholar] [CrossRef]
- Kopač, T.; Abrami, M.; Grassi, M.; Ručigaj, A.; Krajnc, M. Polysaccharide-Based Hydrogels Crosslink Density Equation: A Rheological and LF-NMR Study of Polymer-Polymer Interactions. Carbohydr. Polym. 2022, 277, 118895. [Google Scholar] [CrossRef]
- Rizal, S.; Abdul Khalil, H.P.S.; Hamid, S.A.; Ikramullah, I.; Kurniawan, R.; Hazwan, C.M.; Muksin, U.; Aprilia, S.; Alfatah, T. Coffee Waste Macro-Particle Enhancement in Biopolymer Materials for Edible Packaging. Polymers 2023, 15, 365. [Google Scholar] [CrossRef]
- Hernández, V.; Ibarra, D.; Triana, J.F.; Martínez-Soto, B.; Faúndez, M.; Vasco, D.A.; Gordillo, L.; Herrera, F.; García-Herrera, C.; Garmulewicz, A. Agar Biopolymer Films for Biodegradable Packaging: A Reference Dataset for Exploring the Limits of Mechanical Performance. Materials 2022, 15, 3954. [Google Scholar] [CrossRef]
- Rix, J.; Uckermann, O.; Kirsche, K.; Schackert, G.; Koch, E.; Kirsch, M.; Galli, R. Correlation of Biomechanics and Cancer Cell Phenotype by Combined Brillouin and Raman Spectroscopy of U87-MG Glioblastoma Cells. J. R. Soc. Interface 2022, 19, 20220209. [Google Scholar] [CrossRef] [PubMed]
- Spencer, S.J.; Ranganathan, V.T.; Yethiraj, A.; Andrews, G.T. Concentration Dependence of Elastic and Viscoelastic Properties of Aqueous Solutions of Ficoll and Bovine Serum Albumin by Brillouin Light Scattering Spectroscopy. Langmuir 2024, 40, 4615–4622. [Google Scholar] [CrossRef]
- Lin, Y.; Ye, M.; Zhang, X.; Chen, Y.; Chen, Y.; Wu, J.; Wang, H. Biodegradable Copolyesters Based on a “Soft” Isohexide Building Block with Tunable Viscoelasticity and Self-Adhesiveness. Polym. Chem. 2022, 13, 4511–4523. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Wang, J.; Fan, Y. Viscoelastic Modeling of the Stress Relaxation Behavior for the Bionic Extracellular Matrix Polymer Scaffold. Med. Nov. Technol. Devices 2022, 16, 100181. [Google Scholar] [CrossRef]
- Passeri, A.A.; Argentati, C.; Morena, F.; Bonacci, F.; Neri, I.; Fioretto, D.; Vassalli, M.; Martino, S.; Mattarelli, M.; Caponi, S. Brillouin Spectroscopy for Accurate Assessment of Morphological and Mechanical Characteristics in Micro-Structured Samples. J. Phys. Photonics 2024, 6, 035016. [Google Scholar] [CrossRef]
- Dalwadi, S.; Goel, A.; Kapetanakis, C.; Salas-de la Cruz, D.; Hu, X. The Integration of Biopolymer-Based Materials for Energy Storage Applications: A Review. Int. J. Mol. Sci. 2023, 24, 3975. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.B.; Hamsan, M.H.; Nofal, M.m.; Karim, W.O.; Brevik, I.; Brza, M.A.; Abdulwahid, R.T.; Al-Zangana, S.; Kadir, M.F.Z. Structural, Impedance and Electrochemical Characteristics of Electrical Double Layer Capacitor Devices Based on Chitosan: Dextran Biopolymer Blend Electrolytes. Polymers 2020, 12, 1411. [Google Scholar] [CrossRef]
- Manaila-Maximean, D.; Ilis, M.; Ganea, P.C.; Micutz, M.; Boscornea, C.; Cîrcu, V. Dielectric Characterization of Polymer Dispersed Liquid Crystal Film with Chitosan Biopolymer. J. Mol. Liq. 2024, 393, 123552. [Google Scholar] [CrossRef]
- Zahmatkeshsaredorahi, A.; Jakob, D.S.; Fang, H.; Fakhraai, Z.; Xu, X.G. Pulsed Force Kelvin Probe Force Microscopy through Integration of Lock-In Detection. Nano Lett. 2023, 23, 8953–8959. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.; McDonagh, C.; Tiwari, B.K.; Kerry, J.P.; Pathania, S. Effect of Cold Plasma Treatment on the Packaging Properties of Biopolymer-Based Films: A Review. Appl. Sci. 2022, 12, 1346. [Google Scholar] [CrossRef]
- Kamaruddin, Z.H.; Jumaidin, R.; Ilyas, R.A.; Selamat, M.Z.; Alamjuri, R.H.; Yusof, F.A.M. Biocomposite of Cassava Starch-Cymbopogan Citratus Fibre: Mechanical, Thermal and Biodegradation Properties. Polymers 2022, 14, 514. [Google Scholar] [CrossRef]
- Wu, J.; Hu, T.; Wang, H.; Zong, M.; Wu, H.; Wen, P. Electrospinning of PLA Nanofibers: Recent Advances and Its Potential Application for Food Packaging. J. Agric. Food Chem. 2022, 70, 8207–8221. [Google Scholar] [CrossRef]
- Temesgen, S.; Rennert, M.; Tesfaye, T.; Großmann, L.; Kuehnert, I.; Smolka, N.; Nase, M. Thermal, Morphological, and Structural Characterization of Starch-Based Bio-Polymers for Melt Spinnability. e-Polymers 2024, 24, 20240025. [Google Scholar] [CrossRef]
- Sarkar, S.; Saikia, A.; Kundu, S. Transparent and Superhydrophilic Flexible Protein Films with Antifogging and Self-Cleaning Attributes. ACS Appl. Mater. Interfaces 2023, 15, 56397–56412. [Google Scholar] [CrossRef]
- Quick, C.R.; Dumitraschkewitz, P.; Schawe, J.E.K.; Pogatscher, S. Fast Differential Scanning Calorimetry to Mimic Additive Manufacturing Processing: Specific Heat Capacity Analysis of Aluminium Alloys. J. Therm. Anal. Calorim. 2023, 148, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Kopra, K.; Valtonen, S.; Mahran, R.; Kapp, J.N.; Hassan, N.; Gillette, W.; Dennis, B.; Li, L.; Westover, K.D.; Plückthun, A.; et al. Thermal Shift Assay for Small GTPase Stability Screening: Evaluation and Suitability. Int. J. Mol. Sci. 2022, 23, 7095. [Google Scholar] [CrossRef] [PubMed]
- Vidakis, N.; Petousis, M.; Mangelis, P.; Maravelakis, E.; Mountakis, N.; Papadakis, V.; Neonaki, M.; Thomadaki, G. Thermomechanical Response of Polycarbonate/Aluminum Nitride Nanocomposites in Material Extrusion Additive Manufacturing. Materials 2022, 15, 8806. [Google Scholar] [CrossRef] [PubMed]
- Redkin, A.; Il’ina, E.; Pershina, S.; Mushnikov, P.; Stankus, S.; Agazhanov, A.; Zaikov, Y.; Kholkina, A.; Artamonov, A. Thermal Properties of Li2BeF4 near Melting Point. Thermo 2022, 2, 107–115. [Google Scholar] [CrossRef]
- Gerasimenko, A.Y.; Kuksin, A.V.; Shaman, Y.P.; Kitsyuk, E.P.; Fedorova, Y.O.; Murashko, D.T.; Shamanaev, A.A.; Eganova, E.M.; Sysa, A.V.; Savelyev, M.S.; et al. Hybrid Carbon Nanotubes–Graphene Nanostructures: Modeling, Formation, Characterization. Nanomaterials 2022, 12, 2812. [Google Scholar] [CrossRef]
- Dashtimoghadam, E.; Maw, M.; Keith, A.N.; Vashahi, F.; Kempkes, V.; Gordievskaya, Y.D.; Kramarenko, E.Y.; Bersenev, E.A.; Nikitina, E.A.; Ivanov, D.A.; et al. Super-Soft, Firm, and Strong Elastomers toward Replication of Tissue Viscoelastic Response. Mater. Horiz. 2022, 9, 3022–3030. [Google Scholar] [CrossRef] [PubMed]
- Karagöz, Z.; Rijns, L.; Dankers, P.Y.W.; van Griensven, M.; Carlier, A. Towards Understanding the Messengers of Extracellular Space: Computational Models of Outside-in Integrin Reaction Networks. Comput. Struct. Biotechnol. J. 2021, 19, 303–314. [Google Scholar] [CrossRef]
- Jelfs, K.E. Computational Modeling to Assist in the Discovery of Supramolecular Materials. Ann. N. Y. Acad. Sci. 2022, 1518, 106–119. [Google Scholar] [CrossRef]
- Ghosh, R.; Gupta, S.; Mehrotra, S.; Kumar, A. Surface-Modified Diopside-Reinforced PCL Biopolymer Composites with Enhanced Interfacial Strength and Mechanical Properties for Orthopedic Applications. ACS Appl. Mater. Interfaces 2024, 16, 7670–7685. [Google Scholar] [CrossRef]
- El Faroudi, L.; Saadi, L.; Barakat, A.; Mansori, M.; Abdelouahdi, K.; Solhy, A. Facile and Sustainable Synthesis of ZnO Nanoparticles: Effect of Gelling Agents on ZnO Shapes and Their Photocatalytic Performance. ACS Omega 2023, 8, 24952–24963. [Google Scholar] [CrossRef]
- Shaheen, R.; Yasin, T.; Ali, Z.; Khan, A.S.; Adalat, B.; Tahir, M.; Khan, S.B. Synthesis, Characterization, and Adsorptive Characteristics of Radiation-Grafted Glycidyl Methacrylate Bamboo Fiber Composites. ACS Omega 2023, 8, 38849–38859. [Google Scholar] [CrossRef] [PubMed]
- Pires, J.R.A.; Souza, V.G.L.; Fuciños, P.; Pastrana, L.; Fernando, A.L. Methodologies to Assess the Biodegradability of Bio-Based Polymers—Current Knowledge and Existing Gaps. Polymers 2022, 14, 1359. [Google Scholar] [CrossRef]
- Ren, Y.; Stobbs, J.A.; Lee, D.-J.; Li, D.; Karunakaran, C.; Ai, Y. Utilizing Synchrotron-Based X-ray Micro-Computed Tomography to Visualize the Microscopic Structure of Starch Hydrogels In Situ. Biomacromolecules 2024, 25, 3302–3311. [Google Scholar] [CrossRef]
- Rahman, S.; Konwar, A.; Konwar, A.N.; Dubey, S.; Ghosh, M.P.; Boro, B.; Thakur, D.; Chowdhury, D. Ag Nanoparticle Incorporated Guar Gum–Sodium Alginate–I-Carrageenan Tribiopolymer Blended Cloth Waste Lint Extracted Cellulose Nanocrystal Antimicrobial Composite Film. Biomacromolecules 2024, 25, 1491–1508. [Google Scholar] [CrossRef]
- Garduño-Juárez, R.; Tovar-Anaya, D.O.; Perez-Aguilar, J.M.; Lozano-Aguirre Beltran, L.F.; Zubillaga, R.A.; Alvarez-Perez, M.A.; Villarreal-Ramirez, E. Molecular Dynamic Simulations for Biopolymers with Biomedical Applications. Polymers 2024, 16, 1864. [Google Scholar] [CrossRef] [PubMed]
- Nareswari, T.L.; Juniatik, M.; Aminatun, A.; Sari, M.; Utami, R.A.; Sari, Y.W.; Khairurrijal, K.; Yusuf, Y.; Suciati, T. A Facile Technique for Overcoming Seeding Barriers of Hydrophobic Polycaprolactone/Hydroxyapatite-Based Nanofibers for Bone Tissue Engineering. J. App Pharm. Sci. 2023, 13, 049–060. [Google Scholar] [CrossRef]
- Li, Y.; Cao, X.; Deng, W.; Yu, Q.; Sun, C.; Ma, P.; Shao, F.; Yusif, M.M.; Ge, Z.; Wang, K.; et al. 3D Printable Sodium Alginate-Matrigel (SA-MA) Hydrogel Facilitated Ectomesenchymal Stem Cells (EMSCs) Neuron Differentiation. J. Biomater. Appl. 2021, 35, 709–719. [Google Scholar] [CrossRef]
- Tapial Martínez, P.; López Navajas, P.; Lietha, D. FAK Structure and Regulation by Membrane Interactions and Force in Focal Adhesions. Biomolecules 2020, 10, 179. [Google Scholar] [CrossRef]
- Ullah, H.; Ahsan, N.; Dakshanamurthy, S. Scaffold Protein RACK1 Inhibitor Compounds Prevent the Focal Adhesion Kinase Mediated Breast Cancer Cell Migration and Invasion Potential. bioRxiv 2021. [Google Scholar] [CrossRef]
- Molla, M.H.R.; Aljahdali, M.O.; Sumon, M.A.A.; Asseri, A.H.; Altayb, H.N.; Islam, M.S.; Alsaiari, A.A.; Opo, F.A.D.M.; Jahan, N.; Ahammad, F.; et al. Integrative Ligand-Based Pharmacophore Modeling, Virtual Screening, and Molecular Docking Simulation Approaches Identified Potential Lead Compounds against Pancreatic Cancer by Targeting FAK1. Pharmaceuticals 2023, 16, 120. [Google Scholar] [CrossRef]
- Shivers, J.L.; Feng, J.; van Oosten, A.S.G.; Levine, H.; Janmey, P.A.; MacKintosh, F.C. Compression Stiffening of Fibrous Networks with Stiff Inclusions. Proc. Natl. Acad. Sci. USA 2020, 117, 21037–21044. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, G.; Simpson, M.L.; Abel, S.M. Adsorption of Semiflexible Polymers in Crowded Environments. J. Chem. Phys. 2021, 155, 034904. [Google Scholar] [CrossRef]
- Manjula-Basavanna, A.; Duraj-Thatte, A.M.; Joshi, N.S. Robust Self-Regeneratable Stiff Living Materials Fabricated from Microbial Cells. Adv. Funct. Mater. 2021, 31, 2010784. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, S.; Tahmasebi Birgani, Z.; Habibovic, P. Biomaterial-Induced Pathway Modulation for Bone Regeneration. Biomaterials 2022, 283, 121431. [Google Scholar] [CrossRef] [PubMed]
- Pocaterra, A.; Romani, P.; Dupont, S. YAP/TAZ Functions and Their Regulation at a Glance. J. Cell Sci. 2020, 133, jcs230425. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.; Shi, Y.; Li, R.; Günther, S.; Ong, Y.T.; Potente, M.; Yuan, Z.; Liu, E.; Offermanns, S. YAP and TAZ Protect against White Adipocyte Cell Death during Obesity. Nat. Commun. 2020, 11, 5455. [Google Scholar] [CrossRef]
- Fu, C.; Guzmán-Seda, M.; Laudier, D.; Han, W.M. Wnt7a Suppresses Adipogenesis of Skeletal Muscle Mesenchymal Stem Cells and Fatty Infiltration through the Alternative Wnt-Rho-YAP/TAZ Signaling Axis. bioRxiv 2022. [Google Scholar] [CrossRef] [PubMed]
- Brusatin, G.; Panciera, T.; Gandin, A.; Citron, A.; Piccolo, S. Biomaterials and Engineered Microenvironments to Control YAP/TAZ-Dependent Cell Behavior. Nat. Mater. 2018, 17, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Al, M.; Zaernia, A.; Sefat, F. Biomaterials for Breast Reconstruction: Promises, Advances, and Challenges. J. Tissue Eng. Regen. Med. 2020, 14, 1549–1569. [Google Scholar] [CrossRef]
- Xu, X.; Wang, W.; Zou, J.; Kratz, K.; Deng, Z.; Lendlein, A.; Ma, N. Histone Modification of Osteogenesis Related Genes Triggered by Substrate Topography Promotes Human Mesenchymal Stem Cell Differentiation. ACS Appl. Mater. Interfaces 2023, 15, 29752–29766. [Google Scholar] [CrossRef] [PubMed]
- Luciano, M.; Versaevel, M.; Kalukula, Y.; Gabriele, S. Mechanoresponse of Curved Epithelial Monolayers Lining Bowl-Shaped 3D Microwells. Adv. Healthc. Mater. 2024, 13, 2203377. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, R.B.; Lele, T.P. Nuclear Shapes Are Geometrically Determined by the Excess Surface Area of the Nuclear Lamina. Front. Cell Dev. Biol. 2023, 11, 1058727. [Google Scholar] [CrossRef] [PubMed]
- Nashihah, A.K.; Muhammad Firdaus, F.I.; Fauzi, M.B.; Mobarak, N.N.; Lokanathan, Y. Role of Biomaterials in the Development of Epithelial Support in 3D In Vitro Airway Epithelium Development: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 14935. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.-G.; Rhim, W.-K.; Kim, J.Y.; Lee, E.H.; Lee, S.Y.; Park, J.M.; Lee, J.E.; Yoon, H.; Park, C.G.; Kim, B.S.; et al. Kidney Tissue Regeneration Using Bioactive Scaffolds Incorporated with Differentiating Extracellular Vesicles and Intermediate Mesoderm Cells. Biomater. Res. 2023, 27, 126. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Kouwer, P.H.J. Combining Mechanical Tuneability with Function: Biomimetic Fibrous Hydrogels with Nanoparticle Crosslinkers. Adv. Funct. Mater. 2021, 31, 2105713. [Google Scholar] [CrossRef]
- Lessey, E.C.; Guilluy, C.; Burridge, K. From Mechanical Force to RhoA Activation. Biochemistry 2012, 51, 7420–7432. [Google Scholar] [CrossRef]
- Anand, S.; Danti, S.; Moroni, L.; Mota, C. Regenerative Therapies for Tympanic Membrane. Prog. Mater. Sci. 2022, 127, 100942. [Google Scholar] [CrossRef]
- Fettiplace, R. Hair Cell Transduction, Tuning and Synaptic Transmission in the Mammalian Cochlea. Compr. Physiol. 2017, 7, 1197–1227. [Google Scholar] [CrossRef]
- Burnstine-Townley, A.; Eshel, Y.; Amdursky, N. Conductive Scaffolds for Cardiac and Neuronal Tissue Engineering: Governing Factors and Mechanisms. Adv. Funct. Mater. 2020, 30, 1901369. [Google Scholar] [CrossRef]
- Ali, F.; Koc, M. 3D Printed Polymer Piezoelectric Materials: Transforming Healthcare through Biomedical Applications. Polymers 2023, 15, 4470. [Google Scholar] [CrossRef]
- Chen-Glasser, M.; Li, P.; Ryu, J.; Hong, S.; Chen-Glasser, M.; Li, P.; Ryu, J.; Hong, S. Piezoelectric Materials for Medical Applications. In Piezoelectricity—Organic and Inorganic Materials and Applications; IntechOpen: London, UK, 2018; ISBN 978-1-78923-647-7. [Google Scholar]
- Cheng, S.; Zhu, R.; Xu, X. Hydrogels for Next Generation Neural Interfaces. Commun. Mater. 2024, 5, 99. [Google Scholar] [CrossRef]
- Maity, K.; Mandal, D. Chapter Seven—Piezoelectric Polymers and Composites for Multifunctional Materials. In Advanced Lightweight Multifunctional Materials; Costa, P., Costa, C.M., Lanceros-Mendez, S., Eds.; Woodhead Publishing in Materials; Woodhead Publishing: Thorston, UK, 2021; pp. 239–282. ISBN 978-0-12-818501-8. [Google Scholar]
- Ivanova, D.G.; Yaneva, Z.L. Antioxidant Properties and Redox-Modulating Activity of Chitosan and Its Derivatives: Biomaterials with Application in Cancer Therapy. BioResearch Open Access 2020, 9, 64–72. [Google Scholar] [CrossRef]
- Moola, N.; Jardine, A.; Audenaert, K.; Rafudeen, M.S. 6-Deoxy-6-Amino Chitosan: A Preventative Treatment in the Tomato/Botrytis Cinerea Pathosystem. Front. Plant Sci. 2023, 14, 1282050. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Huang, J.; Mei, W.; Zeng, X.; Wang, C.; Wen, C.; Xu, J. Epigallocatechin-3-Gallate Protects Cardiomyocytes from Hypoxia-Reoxygenation Damage via Raising Autophagy Related 4C Expression. Bioengineered 2021, 12, 9496–9506. [Google Scholar] [CrossRef] [PubMed]
- Lysenko, V.; Talipova, K.; Nygan, S.Y.; Raha, S.; Merante, F. Nutritional Intervention with Tricarboxylic Acid Cycle Intermediates Modulates Mitochondrial Flux and Respiratory Chain Complex Abundance in C2C12 Myoblast Cells. Biomed. J. Sci. Tech. Res. 2019, 24, 18449–18456. [Google Scholar] [CrossRef]
- Wesolowski, L.T.; Semanchik, P.L.; White-Springer, S.H. Beyond Antioxidants: Selenium and Skeletal Muscle Mitochondria. Front. Vet. Sci. 2022, 9, 1011159. [Google Scholar] [CrossRef]
- Al-Azzam, N.; Alazzam, A. Micropatterning of Cells via Adjusting Surface Wettability Using Plasma Treatment and Graphene Oxide Deposition. PLoS ONE 2022, 17, e0269914. [Google Scholar] [CrossRef]
- Hurtado, A.; Aljabali, A.A.A.; Mishra, V.; Tambuwala, M.M.; Serrano-Aroca, Á. Alginate: Enhancement Strategies for Advanced Applications. Int. J. Mol. Sci. 2022, 23, 4486. [Google Scholar] [CrossRef]
- Kumar, S.; Parekh, S.H. Linking Graphene-Based Material Physicochemical Properties with Molecular Adsorption, Structure and Cell Fate. Commun. Chem. 2020, 3, 8. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, D.; Bai, J.; Zheng, H.; Deng, J.; Gou, Z.; Gao, C. Adsorption of Serum Proteins on Titania Nanotubes and Its Role on Regulating Adhesion and Migration of Mesenchymal Stem Cells. J. Biomed. Mater. Res. Part A 2020, 108, 2305–2318. [Google Scholar] [CrossRef]
- dos Santos Trento, G.; Hassumi, J.S.; Buzo Frigério, P.; Farnezi Bassi, A.P.; Okamoto, R.; Gabrielli, M.A.C.; Pereira-Filho, V.A. Gene Expression, Immunohistochemical and Microarchitectural Evaluation of Bone Formation around Two Implant Surfaces Placed in Bone Defects Filled or Not with Bone Substitute Material. Int. J. Implant. Dent. 2020, 6, 80. [Google Scholar] [CrossRef] [PubMed]
- Echeverry-Rendón, M.; Galvis, O.; Aguirre, R.; Robledo, S.; Castaño, J.G.; Echeverría, F. Modification of Titanium Alloys Surface Properties by Plasma Electrolytic Oxidation (PEO) and Influence on Biological Response. J. Mater. Sci. Mater. Med. 2017, 28, 169. [Google Scholar] [CrossRef]
- Luo, H.; Gan, D.; Gama, M.; Tu, J.; Yao, F.; Zhang, Q.; Ao, H.; Yang, Z.; Li, J.; Wan, Y. Interpenetrated Nano- and Submicro-Fibrous Biomimetic Scaffolds towards Enhanced Mechanical and Biological Performances. Mater. Sci. Eng. C 2020, 108, 110416. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, W.; Yao, Q. Copper-Based Biomaterials for Bone and Cartilage Tissue Engineering. J. Orthop. Transl. 2021, 29, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. Recent Development of Biomaterials Combined with Mesenchymal Stem Cells as a Strategy in Cartilage Regeneration. Int. J. Transl. Med. 2022, 2, 456–481. [Google Scholar] [CrossRef]
- Kim, H.S.; Kumbar, S.G.; Nukavarapu, S.P. Biomaterial-Directed Cell Behavior for Tissue Engineering. Curr. Opin. Biomed. Eng. 2021, 17, 100260. [Google Scholar] [CrossRef]
- Liang, J.; Liu, P.; Yang, X.; Liu, L.; Zhang, Y.; Wang, Q.; Zhao, H. Biomaterial-Based Scaffolds in Promotion of Cartilage Regeneration: Recent Advances and Emerging Applications. J. Orthop. Transl. 2023, 41, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, W.; Gong, X.; Hu, G.; Ge, J.; Wu, J.; Gao, X. Investigating the Regulation of Neural Differentiation and Injury in PC12 Cells Using Microstructure Topographic Cues. Biosensors 2021, 11, 399. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, H.; Li, S.; Zhou, S.; Wang, L.; Tang, Y.; Cheng, C.; Haag, R. Multivalent Polyanionic 2D Nanosheets Functionalized Nanofibrous Stem Cell-Based Neural Scaffolds. Adv. Funct. Mater. 2021, 31, 2010145. [Google Scholar] [CrossRef]
- Vacanti, C.A. History of Tissue Engineering and A Glimpse into Its Future. Tissue Eng. 2006, 12, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Uppal, G.; Thakur, A.; Chauhan, A.; Bala, S. Magnesium Based Implants for Functional Bone Tissue Regeneration—A Review. J. Magnes. Alloys 2022, 10, 356–386. [Google Scholar] [CrossRef]
- Chi, M.; Yuan, B.; Xie, Z.; Hong, J. The Innovative Biomaterials and Technologies for Developing Corneal Endothelium Tissue Engineering Scaffolds: A Review and Prospect. Bioengineering 2023, 10, 1284. [Google Scholar] [CrossRef]
- Morena, F.; Argentati, C.; Soccio, M.; Bicchi, I.; Luzi, F.; Torre, L.; Munari, A.; Emiliani, C.; Gigli, M.; Lotti, N.; et al. Unpatterned Bioactive Poly(Butylene 1,4-Cyclohexanedicarboxylate)-Based Film Fast Induced Neuronal-like Differentiation of Human Bone Marrow-Mesenchymal Stem Cells. Int. J. Mol. Sci. 2020, 21, 9274. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Zharkinbekov, Z.; Raziyeva, K.; Tabyldiyeva, L.; Berikova, K.; Zhumagul, D.; Temirkhanova, K.; Saparov, A. Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics 2023, 15, 807. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Cruz, S.H.; Park, S.; Shin, S.R. Nano-Biomaterials and Advanced Fabrication Techniques for Engineering Skeletal Muscle Tissue Constructs in Regenerative Medicine. Nano Converg. 2023, 10, 48. [Google Scholar] [CrossRef]
- Zhou, G.; Jiang, H.; Yin, Z.; Liu, Y.; Zhang, Q.; Zhang, C.; Pan, B.; Zhou, J.; Zhou, X.; Sun, H.; et al. In Vitro Regeneration of Patient-Specific Ear-Shaped Cartilage and Its First Clinical Application for Auricular Reconstruction. eBioMedicine 2018, 28, 287–302. [Google Scholar] [CrossRef]
- Khan, M.U.A.; Aslam, M.A.; Bin Abdullah, M.F.; Hasan, A.; Shah, S.A.; Stojanović, G.M. Recent Perspective of Polymeric Biomaterial in Tissue Engineering—A Review. Mater. Today Chem. 2023, 34, 101818. [Google Scholar] [CrossRef]
- Bornes, T.D.; Jomha, N.M.; Mulet-Sierra, A.; Adesida, A.B. Porous Scaffold Seeding and Chondrogenic Differentiation of BMSC-Seeded Scaffolds. Bio Protoc. 2015, 51, e1693. [Google Scholar] [CrossRef]
- Zhou, Y.; Chyu, J.; Zumwalt, M. Recent Progress of Fabrication of Cell Scaffold by Electrospinning Technique for Articular Cartilage Tissue Engineering. Int. J. Biomater. 2018, 2018, 1953636. [Google Scholar] [CrossRef]
- Ansari, M.; Darvishi, A.; Sabzevari, A. A Review of Advanced Hydrogels for Cartilage Tissue Engineering. Front. Bioeng. Biotechnol. 2024, 12, 1340893. [Google Scholar] [CrossRef]
- Delpierre, A.; Savard, G.; Renaud, M.; Rochefort, G.Y. Tissue Engineering Strategies Applied in Bone Regeneration and Bone Repair. Bioengineering 2023, 10, 644. [Google Scholar] [CrossRef] [PubMed]
- Kallivokas, S.V.; Kontaxis, L.C.; Psarras, S.; Roumpi, M.; Ntousi, O.; Kakkos, I.; Deligianni, D.; Matsopoulos, G.K.; Fotiadis, D.I.; Kostopoulos, V. A Combined Computational and Experimental Analysis of PLA and PCL Hybrid Nanocomposites 3D Printed Scaffolds for Bone Regeneration. Biomedicines 2024, 12, 261. [Google Scholar] [CrossRef] [PubMed]
- Al Alawi, A.M.; Majoni, S.W.; Falhammar, H. Magnesium and Human Health: Perspectives and Research Directions. Int. J. Endocrinol. 2018, 2018, 9041694. [Google Scholar] [CrossRef]
- Hu, J.; Shao, J.; Huang, G.; Zhang, J.; Pan, S. In Vitro and In Vivo Applications of Magnesium-Enriched Biomaterials for Vascularized Osteogenesis in Bone Tissue Engineering: A Review of Literature. J. Funct. Biomater. 2023, 14, 326. [Google Scholar] [CrossRef] [PubMed]
- Iijima, K.; Otsuka, H. Cell Scaffolds for Bone Tissue Engineering. Bioengineering 2020, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, B.; Huang, H.; Niu, J.; Guan, S.; Yuan, G. Extraordinary Ductility Enhancement of Mg-Nd-Zn-Zr Alloy Achieved by Electropulsing Treatment. J. Magnes. Alloys 2022. [Google Scholar] [CrossRef]
- Zheng, R.; Duan, H.; Xue, J.; Liu, Y.; Feng, B.; Zhao, S.; Zhu, Y.; Liu, Y.; He, A.; Zhang, W.; et al. The Influence of Gelatin/PCL Ratio and 3-D Construct Shape of Electrospun Membranes on Cartilage Regeneration. Biomaterials 2014, 35, 152–164. [Google Scholar] [CrossRef]
- Li, K.; O’Dwyer, R.; Yang, F.; Cymerman, J.; Li, J.; Feldman, J.D.; Simon, M.; Rafailovich, M. Enhancement of Acellular Biomineralization, Dental Pulp Stem Cell Migration, and Differentiation by Hybrid Fibrin Gelatin Scaffolds. Dent. Mater. 2023, 39, 305–319. [Google Scholar] [CrossRef]
- Thompson, R.; Mazur, N.; Yang, J.; Chan, C. Soft Surfaces Induce Neural Differentiation via the Neuron Restrictive Silencer Factor. Biochem. Eng. J. 2022, 189, 108724. [Google Scholar] [CrossRef]
- Pang, K.T.; Loo, L.S.W.; Chia, S.; Ong, F.Y.T.; Yu, H.; Walsh, I. Insight into Muscle Stem Cell Regeneration and Mechanobiology. Stem Cell Res. Ther. 2023, 14, 129. [Google Scholar] [CrossRef]
- Fischer, M.; Rikeit, P.; Knaus, P.; Coirault, C. YAP-Mediated Mechanotransduction in Skeletal Muscle. Front. Physiol. 2016, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Pahlevanzadeh, F.; Emadi, R.; Valiani, A.; Kharaziha, M.; Poursamar, S.A.; Bakhsheshi-Rad, H.R.; Ismail, A.F.; RamaKrishna, S.; Berto, F. Three-Dimensional Printing Constructs Based on the Chitosan for Tissue Regeneration: State of the Art, Developing Directions and Prospect Trends. Materials 2020, 13, 2663. [Google Scholar] [CrossRef] [PubMed]
- Ul Haq, A.; Carotenuto, F.; De Matteis, F.; Prosposito, P.; Francini, R.; Teodori, L.; Pasquo, A.; Di Nardo, P. Intrinsically Conductive Polymers for Striated Cardiac Muscle Repair. Int. J. Mol. Sci. 2021, 22, 8550. [Google Scholar] [CrossRef]
- Sarkar, S.; Manna, S.; Das, S.; De, S.; Paul, P.; Dua, T.K.; Sahu, R.; Nandi, G. Current Status of Marine Animal Derived Polysaccharides in Sustainable Food Packaging. ACS Food Sci. Technol. 2023, 3, 1877–1889. [Google Scholar] [CrossRef]
- Abdullah; Zou, Y.; Farooq, S.; Walayat, N.; Zhang, H.; Faieta, M.; Pittia, P.; Huang, Q. Bio-Aerogels: Fabrication, Properties and Food Applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 6687–6709. [Google Scholar] [CrossRef]
- Farghali, M.; Mohamed, I.M.A.; Osman, A.I.; Rooney, D.W. Seaweed for Climate Mitigation, Wastewater Treatment, Bioenergy, Bioplastic, Biochar, Food, Pharmaceuticals, and Cosmetics: A Review. Environ. Chem. Lett. 2023, 21, 97–152. [Google Scholar] [CrossRef]
- Donati, L.; Casagrande Pierantoni, D.; Conti, A.; Calzoni, E.; Corte, L.; Santi, C.; Rosati, O.; Cardinali, G.; Emiliani, C. Water Extracts from Industrial Hemp Waste Inhibit the Adhesion and Development of Candida Biofilm and Showed Antioxidant Activity on HT-29 Colon Cancer Cells. Int. J. Mol. Sci. 2024, 25, 3979. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, I.M.; Carvalho, V.; Rodrigues, R.O.; Pinho, D.; Teixeira, S.F.C.F.; Moita, A.; Hori, T.; Kaji, H.; Lima, R.; Minas, G. Organ-on-a-Chip Platforms for Drug Screening and Delivery in Tumor Cells: A Systematic Review. Cancers 2022, 14, 935. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Nezhad, F.F.; Ghahramani, Y.; Binazadeh, M.; Javidi, Z.; Azhdari, R.; Gholami, A.; Omidifar, N.; Rahman, M.M.; Chiang, W.-H. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chem. Biodivers. 2024, 21, e202301288. [Google Scholar] [CrossRef]
- Tan, M.J.; Owh, C.; Chee, P.L.; Kyaw, A.K.K.; Kai, D.; Loh, X.J. Biodegradable Electronics: Cornerstone for Sustainable Electronics and Transient Applications. J. Mater. Chem. C 2016, 4, 5531–5558. [Google Scholar] [CrossRef]
- Morena, F.; Argentati, C.; Tortorella, I.; Emiliani, C.; Martino, S. De Novo ssRNA Aptamers against the SARS-CoV-2 Main Protease: In Silico Design and Molecular Dynamics Simulation. Int. J. Mol. Sci. 2021, 22, 6874. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xin, Y.; Zhang, H.; Quan, L.; Ao, Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int. J. Nanomed. 2024, 19, 7415–7471. [Google Scholar] [CrossRef] [PubMed]
Biomaterial | Clinical Trial | Aim of Study | ID Number |
---|---|---|---|
Bioengineered Bilayered Living Cellular Construct | A bioengineered living-cell construct activates an acute wound-healing response in venous leg ulcers | Treatment of Chronic nonhealing venous leg ulcers (VLUs) | NCT01327937 (2017) |
Tricalcium Phosphate | EUDRA-CT | Atrophic Nonunion of long bones | NCT02483364 (2020) |
Hydroxyapatite + collagen | A multilayer biomaterial for osteochondral regeneration shows superiority vs. microfractures for the treatment of osteochondral lesions in a multicenter randomized trial at 2 years | Assess the benefit provided by a nanostructured collagen–hydroxyapatite (coll-HA) multilayer scaffold for the treatment of chondral and osteochondral knee lesions | NCT01282034 (2021) |
Carbon nanomaterials | Carbon nanomaterials for cardiovascular theranostics: promises and challenges | Drug-delivery Biosensor Tissue engineering Immunomodulation | NCT02698163 (2016) |
Autologous cartilage cells expanded ex vivo | Autologous chondrocyte implantation (ACI) in the knee: systematic review and economic evaluation | Assess the clinical effectiveness and cost-effectiveness of ACI in chondral defects in the knee, compared with microfracture (MF) | TIG/ACT/01/2000 (2017) |
Collagen Alginate Dressing | Omega3 Wound Fish Skin Graft in the Treatment of DFUs | Treatment of diabetic foot ulcers (DFUs) | NCT04133493 (2019 to 2022) |
Platelet-Rich Plasma (PRP) | Study on the healing of the partial skin-graft donor site in burn patients | Skin burn regeneration | 2016-000968-42 (2016) |
Mucopolysaccharides (Hyaluronic acid + Chondroitin sulfate) | Regeneration of ischemic damage in the cardiovascular system using Wharton’s jelly as an unlimited source of mesenchymal stem cells for regenerative medicine | Regeneration of cardiovascular damaged tissue | 2016-004684-40 (2018) |
Autologous Chondrocyte implantation product | A Clinical Study to Evaluate the Safety and Effectiveness of NOVOCART® 3D Plus Compared to Microfracture in the Treatment of Articular Cartilage Defects of the Knee. | Repair of localized, full-thickness cartilage defects of the femoral condyle (medial, lateral, or trochlea) of 2–6 cm2 | 2011-005798-22 (2012) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donati, L.; Valicenti, M.L.; Giannoni, S.; Morena, F.; Martino, S. Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application. Int. J. Mol. Sci. 2024, 25, 10386. https://doi.org/10.3390/ijms251910386
Donati L, Valicenti ML, Giannoni S, Morena F, Martino S. Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application. International Journal of Molecular Sciences. 2024; 25(19):10386. https://doi.org/10.3390/ijms251910386
Chicago/Turabian StyleDonati, Leonardo, Maria Luisa Valicenti, Samuele Giannoni, Francesco Morena, and Sabata Martino. 2024. "Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application" International Journal of Molecular Sciences 25, no. 19: 10386. https://doi.org/10.3390/ijms251910386
APA StyleDonati, L., Valicenti, M. L., Giannoni, S., Morena, F., & Martino, S. (2024). Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application. International Journal of Molecular Sciences, 25(19), 10386. https://doi.org/10.3390/ijms251910386