Cortical and Striatal Astrocytes of Neonatal Rats Display Distinct Molecular and Pharmacological Characteristics of Dopamine Uptake
Abstract
:1. Introduction
2. Results
2.1. Dependence of [3H]-Dopamine Uptake on Time, Temperature, and Concentration in Neonatal Rat Astrocytes from the Cortex and Striatum
2.2. Dependence of [3H]-Dopamine Uptake in Cortical and Striatal Astrocytes of Neonatal Rats on the Presence of Ouabain amd Sodium Ions
2.3. qPCR Analysis of Transporter mRNA Expression in Neonatal Rat Astrocytes from the Cortex and Striatum
2.4. Inhibition of [3H]-Dopamine Uptake by Antidepressants, Desipramine, Nortriptyline, Amitriptyline, DAT Inhibitor GBR12909, Corticosterone, and Decynium 22
2.5. Changes in mRNA Expression of Plasma Membrane Monoamine Transporter and Norepinephrine Transporter in Cultured Neonatal Rat Astrocytes after 24 h Treatment with Apomorphine, Haloperidol, and L-DOPA
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animals and Primary Cell Culture Preparation
4.3. Dopamine Uptake Experiments
4.3.1. Dependence of [3H]-Dopamine Uptake on Temperature, Time, and Concentration
4.3.2. Inhibition of [3H]-Dopamine Uptake
4.4. Quantitative Polymerase Chain Reaction (qPCR)
4.5. Cell Culture Treatment and Cell Viability
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- von Bartheld, C.S.; Bahney, J.; Herculano-Houzel, S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J. Comp. Neurol. 2016, 524, 3865–3895. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Nedergaard, M. Physiology of Astroglia. Physiol. Rev. 2018, 98, 239–389. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Semyanov, A.; Zorec, R. Physiology of Astroglial Excitability. Function 2020, 1, zqaa016. [Google Scholar] [CrossRef]
- Goenaga, J.; Araque, A.; Kofuji, P.; Herrera Moro Chao, D. Calcium signaling in astrocytes and gliotransmitter release. Front. Synaptic Neurosci. 2023, 15, 1138577. [Google Scholar] [CrossRef]
- Araque, A.; Parpura, V.; Sanzgiri, R.P.; Haydon, P.G. Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci. 1999, 22, 208–215. [Google Scholar] [CrossRef]
- Santello, M.; Calì, C.; Bezzi, P. Gliotransmission and the tripartite synapse. Adv. Exp. Med. Biol. 2012, 970, 307–331. [Google Scholar] [CrossRef] [PubMed]
- Perea, G.; Araque, A. Communication between astrocytes and neurons: A complex language. J. Physiol. Paris 2002, 96, 199–207. [Google Scholar] [CrossRef]
- Perea, G.; Araque, A. GLIA modulates synaptic transmission. Brain Res. Rev. 2010, 63, 93–102. [Google Scholar] [CrossRef]
- Perea, G.; Araque, A. Glial calcium signaling and neuron-glia communication. Cell Calcium 2005, 38, 375–382. [Google Scholar] [CrossRef]
- Araque, A.; Perea, G. Glial modulation of synaptic transmission in culture. Glia 2004, 47, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Perea, G.; Araque, A. Synaptic regulation of the astrocyte calcium signal. J. Neural Transm. 2005, 112, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Perea, G.; Navarrete, M.; Araque, A. Tripartite synapses: Astrocytes process and control synaptic information. Trends Neurosci. 2009, 32, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.O.; Battagello, D.S.; Cardoso, A.R.; Hauser, D.N.; Bittencourt, J.C.; Correa, R.G. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol. Neurobiol. 2019, 39, 31–59. [Google Scholar] [CrossRef] [PubMed]
- Speranza, L.; di Porzio, U.; Viggiano, D.; de Donato, A.; Volpicelli, F. Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control. Cells 2021, 10, 735. [Google Scholar] [CrossRef]
- Ott, T.; Nieder, A. Dopamine and Cognitive Control in Prefrontal Cortex. Trends Cogn. Sci. 2019, 23, 213–234. [Google Scholar] [CrossRef]
- Turk, A.Z.; Lotfi Marchoubeh, M.; Fritsch, I.; Maguire, G.A.; SheikhBahaei, S. Dopamine, vocalization, and astrocytes. Brain Lang. 2021, 219, 104970. [Google Scholar] [CrossRef]
- Linnerbauer, M.; Rothhammer, V. Protective Functions of Reactive Astrocytes Following Central Nervous System Insult. Front. Immunol. 2020, 11, 573256. [Google Scholar] [CrossRef]
- Miyazaki, I.; Asanuma, M. Neuron-Astrocyte Interactions in Parkinson’s Disease. Cells 2020, 9, 2623. [Google Scholar] [CrossRef]
- Saba, J.; López Couselo, F.; Turati, J.; Carniglia, L.; Durand, D.; de Laurentiis, A.; Lasaga, M.; Caruso, C. Astrocytes from cortex and striatum show differential responses to mitochondrial toxin and BDNF: Implications for protection of striatal neurons expressing mutant huntingtin. J. Neuroinflammation 2020, 17, 290. [Google Scholar] [CrossRef]
- Chai, H.; Diaz-Castro, B.; Shigetomi, E.; Monte, E.; Octeau, J.C.; Yu, X.; Cohn, W.; Rajendran, P.S.; Vondriska, T.M.; Whitelegge, J.P.; et al. Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence. Neuron 2017, 95, 531–549.e9. [Google Scholar] [CrossRef]
- Jennings, A.; Rusakov, D.A.; Rusakov, D.A. Do astrocytes respond to dopamine? Opera Med. Physiol. Opera Medica Physiol. 2016, 2, 34–43. [Google Scholar]
- Beaulieu, J.M.; Espinoza, S.; Gainetdinov, R.R. Dopamine receptors—IUPHAR Review 13. Br. J. Pharmacol. 2015, 172, 1–23. [Google Scholar] [CrossRef]
- Maiya, R.; Mayfield, R.D. Dopamine Transporter Network and Pathways. In International Review of Neurobiology; Academic Press: Cambridge, MA, USA, 2004; Volume 61, pp. 79–96. [Google Scholar]
- Takeda, H.; Inazu, M.; Matsumiya, T. Astroglial dopamine transport is mediated by norepinephrine transporter. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2002, 366, 620–623. [Google Scholar] [CrossRef]
- Inazu, M.; Takeda, H.; Matsumiya, T. Functional expression of the norepinephrine transporter in cultured rat astrocytes Norepinephrine transporter in astrocytes. J. Neurochem. 2003, 84, 136–144. [Google Scholar] [CrossRef]
- Morón, J.A.; Brockington, A.; Wise, R.A.; Rocha, B.A.; Hope, B.T. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: Evidence from knock-out mouse lines. J. Neurosci. 2002, 22, 389–395. [Google Scholar] [CrossRef]
- Nishijima, H.; Tomiyama, M. What mechanisms are responsible for the reuptake of levodopa-derived dopamine in parkinsonian striatum? Front. Neurosci. 2016, 10, 575. [Google Scholar] [CrossRef]
- Gasser, P.J. Organic Cation Transporters in Brain Catecholamine Homeostasis. Handb. Exp. Pharmacol. 2021, 266, 187–197. [Google Scholar] [CrossRef]
- Gasser, P.J. Roles for the uptake(2) transporter OCT3 in regulation of dopaminergic neurotransmission and behavior. Neurochem. Int. 2019, 123, 46–49. [Google Scholar] [CrossRef]
- Itagaki, S.; Ganapathy, V.; Ho, H.T.B.; Zhou, M.; Babu, E.; Wang, J. Electrophysiological characterization of the polyspecific organic cation transporter plasma membrane monoamine transporter. Drug Metab. Dispos. Biol. Fate Chem. 2012, 40, 1138–1143. [Google Scholar] [CrossRef]
- Dahlin, A.; Xia, L.; Kong, W.; Hevner, R.; Wang, J. Expression and immunolocalization of the plasma membrane monoamine transporter in the brain. Neuroscience 2007, 146, 1193–1211. [Google Scholar] [CrossRef]
- Koepsell, H.; Schmitt, B.M.; Gorboulev, V. Organic cation transporters. Rev. Physiol. Biochem. Pharmacol. 2003, 150, 36–90. [Google Scholar] [CrossRef]
- Wang, J. The plasma membrane monoamine transporter (PMAT): Structure, function, and role in organic cation disposition. Clin. Pharmacol. Ther. 2016, 100, 489–499. [Google Scholar] [CrossRef]
- Hösli, E.; Hösli, L. Autoradiographic studies on the uptake of 3H-dopamine by neurons and astrocytes in explant and primary cultures of rat CNS: Effects of uptake inhibitors. Int. J. Dev. Neurosci. 1997, 15, 45–53. [Google Scholar] [CrossRef]
- Hösli, E.; Hösli, L. Binding sites for [3H]dopamine and dopamine-antagonists on cultured astrocytes of rat striatum and spinal cord: An autoradiographic study. Neurosci. Lett. 1986, 65, 177–182. [Google Scholar] [CrossRef]
- Inazu, M.; Takeda, H.; Matsumiya, T. Expression and functional characterization of the extraneuronal monoamine transporter in normal human astrocytes. J. Neurochem. 2003, 84, 43–52. [Google Scholar] [CrossRef]
- Inazu, M.; Kubota, N.; Takeda, H.; Zhang, J.; Kiuchi, Y.; Oguchi, K.; Matsumiya, T. Pharmacological characterization of dopamine transport in cultured rat astrocytes. Life Sci. 1999, 64, 2239–2245. [Google Scholar] [CrossRef]
- Inazu, M.; Takeda, H.; Ikoshi, H.; Uchida, Y.; Kubota, N.; Kiuchi, Y.; Oguchi, K.; Matsumiya, T. Regulation of dopamine uptake by basic fibroblast growth factor and epidermal growth factor in cultured rat astrocytes. Neurosci. Res. 1999, 34, 235–244. [Google Scholar] [CrossRef]
- Asanuma, M.; Miyazaki, I.; Murakami, S.; Diaz-Corrales, F.J.; Ogawa, N. Striatal astrocytes act as a reservoir for L-DOPA. PLoS ONE 2014, 9, e106362. [Google Scholar] [CrossRef]
- Li, X.M.; Juorio, A.V.; Paterson, I.A.; Walz, W.; Zhu, M.Y.; Boulton, A.A. Gene expression of aromatic L-amino acid decarboxylase in cultured rat glial cells. J. Neurochem. 1992, 59, 1172–1175. [Google Scholar] [CrossRef]
- Inyushin, M.Y.; Huertas, A.; Kucheryavykh, Y.V.; Kucheryavykh, L.Y.; Tsydzik, V.; Sanabria, P.; Eaton, M.J.; Skatchkov, S.N.; Rojas, L.V.; Wessinger, W.D. L-DOPA Uptake in Astrocytic Endfeet Enwrapping Blood Vessels in Rat Brain. Park. Dis. 2012, 2012, 321406. [Google Scholar] [CrossRef]
- Tsai, M.J.; Lee, E.H. Characterization of L-DOPA transport in cultured rat and mouse astrocytes. J. Neurosci. Res. 1996, 43, 490–495. [Google Scholar] [CrossRef]
- Juorio, A.V.; Li, X.M.; Walz, W.; Paterson, I.A. Decarboxylation of L-dopa by cultured mouse astrocytes. Brain Res. 1993, 626, 306–309. [Google Scholar] [CrossRef]
- Sampaio-Maia, B.; Serrão, M.P.; Soares-da-Silva, P. Regulatory pathways and uptake of L-DOPA by capillary cerebral endothelial cells, astrocytes, and neuronal cells. Am. J. Physiol. Cell Physiol. 2001, 280, C333–C342. [Google Scholar] [CrossRef]
- Miyazaki, I.; Asanuma, M.; Diaz-Corrales, F.J.; Miyoshi, K.; Ogawa, N. Direct evidence for expression of dopamine receptors in astrocytes from basal ganglia. Brain Res. 2004, 1029, 120–123. [Google Scholar] [CrossRef]
- Verharen, J.P.H.; de Jong, J.W.; Lammel, S. Dopaminergic Control over the Tripartite Synapse. Neuron 2020, 105, 954–956. [Google Scholar] [CrossRef]
- Hösli, L.; Hösli, E. Receptors for dopamine and serotonin on astrocytes of cultured rat central nervous system. J. Physiol. 1987, 82, 191–195. [Google Scholar]
- Fischer, T.; Scheffler, P.; Lohr, C. Dopamine-induced calcium signaling in olfactory bulb astrocytes. Sci. Rep. 2020, 10, 631. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F.; Huang, C.; Long, L.H.; Wu, W.N.; Cai, F.; Wang, J.H.; Ma, L.Q.; Chen, J.G. Activation of phosphatidylinositol-linked novel D1 dopamine receptor contributes to the calcium mobilization in cultured rat prefrontal cortical astrocytes. Cell Mol. Neurobiol. 2009, 29, 317–328. [Google Scholar] [CrossRef]
- Hsu, S.S.; Liang, W.Z. Ca2+ signaling as a mechanism of haloperidol-induced cytotoxicity in human astrocytes and assessing the protective role of a Ca2+ chelator. Naunyn Schmiedebergs Arch. Pharmacol. 2020, 393, 2117–2127. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Dyck, L.E.; Wang, H.; Li, X.-M. Antipsychotic drugs cause glial cell line-derived neurotrophic factor secretion from C6 glioma cells. J. Psychiatry Neurosci. JPN 2006, 31, 32–37. [Google Scholar]
- Tanahashi, S.; Yamamura, S.; Nakagawa, M.; Motomura, E.; Okada, M. Clozapine, but not haloperidol, enhances glial D-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes. Br. J. Pharmacol. 2012, 165, 1543–1555. [Google Scholar] [CrossRef]
- Steiner, J.; Schroeter, M.L.; Schiltz, K.; Bernstein, H.G.; Müller, U.J.; Richter-Landsberg, C.; Müller, W.E.; Walter, M.; Gos, T.; Bogerts, B.; et al. Haloperidol and clozapine decrease S100B release from glial cells. Neuroscience 2010, 167, 1025–1031. [Google Scholar] [CrossRef]
- Quincozes-Santos, A.; Bobermin, L.D.; Tonial, R.P.; Bambini-Junior, V.; Riesgo, R.; Gottfried, C. Effects of atypical (risperidone) and typical (haloperidol) antipsychotic agents on astroglial functions. Eur. Arch. Psychiatry Clin. Neurosci. 2010, 260, 475–481. [Google Scholar] [CrossRef]
- Hösli, L.; Hösli, E.; Baggi, M.; Bassetti, C.; Uhr, M. Action of dopamine and serotonin on the membrane potential of cultured astrocytes. Exp. Brain Res. 1987, 65, 482–485. [Google Scholar] [CrossRef]
- Li, A.; Guo, H.; Luo, X.; Sheng, J.; Yang, S.; Yin, Y.; Zhou, J.; Zhou, J. Apomorphine-induced activation of dopamine receptors modulates FGF-2 expression in astrocytic cultures and promotes survival of dopaminergic neurons. Faseb J. 2006, 20, 1263–1265. [Google Scholar] [CrossRef]
- Karakaya, S.; Kipp, M.; Beyer, C. Oestrogen regulates the expression and function of dopamine transporters in astrocytes of the nigrostriatal system. J. Neuroendocrinol. 2007, 19, 682–690. [Google Scholar] [CrossRef]
- Zhou, B.; Zuo, Y.X.; Jiang, R.T. Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neurosci. Ther. 2019, 25, 665–673. [Google Scholar] [CrossRef]
- Khakh, B.S.; Deneen, B. The Emerging Nature of Astrocyte Diversity. Annu. Rev. Neurosci. 2019, 42, 187–207. [Google Scholar] [CrossRef]
- Pelton, E.W., 2nd; Kimelberg, H.K.; Shipherd, S.V.; Bourke, R.S. Dopamine and norepinephrine uptake and metabolism by astroglial cells in culture. Life Sci. 1981, 28, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Hansson, E.; Eriksson, P.; Nilsson, M. Amino acid and monoamine transport in primary astroglial cultures from defined brain regions. Neurochem. Res. 1985, 10, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Hansson, E. Transport of monoamine and amino acid neurotransmitters by primary astroglial cultures. Neurochem. Res. 1985, 10, 667–675. [Google Scholar] [CrossRef]
- Daws, L.C. Organic Cation Transporters in Psychiatric Disorders. Handb. Exp. Pharmacol. 2021, 266, 215–239. [Google Scholar] [CrossRef]
- Buccitelli, C.; Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 2020, 21, 630–644. [Google Scholar] [CrossRef]
- O’Neill, D.J.; Adedoyin, A.; Alfinito, P.D.; Bray, J.A.; Cosmi, S.; Deecher, D.C.; Fensome, A.; Harrison, J.; Leventhal, L.; Mann, C.; et al. Discovery of Novel Selective Norepinephrine Reuptake Inhibitors: 4-[3-Aryl-2,2-dioxido-2,1,3-benzothiadiazol-1(3H)-yl]-1-(methylamino)butan-2-ols (WYE-103231). J. Med. Chem. 2010, 53, 4511–4521. [Google Scholar] [CrossRef] [PubMed]
- Glennon, R.A.; Lee, M.; Rangisetty, J.B.; Dukat, M.; Roth, B.L.; Savage, J.E.; McBride, A.; Rauser, L.; Hufeisen, S.; Lee, D.K. 2-Substituted tryptamines: Agents with selectivity for 5-HT(6) serotonin receptors. J. Med. Chem. 2000, 43, 1011–1018. [Google Scholar] [CrossRef]
- Paczkowski, F.A.; Bryan-Lluka, L.J.; Pörzgen, P.; Brüss, M.; Bönisch, H. Comparison of the pharmacological properties of cloned rat, human, and bovine norepinephrine transporters. J. Pharmacol. Exp. Ther. 1999, 290, 761–767. [Google Scholar]
- Arunotayanun, W.; Dalley, J.W.; Huang, X.P.; Setola, V.; Treble, R.; Iversen, L.; Roth, B.L.; Gibbons, S. An analysis of the synthetic tryptamines AMT and 5-MeO-DALT: Emerging ‘Novel Psychoactive Drugs’. Bioorg Med. Chem. Lett. 2013, 23, 3411–3415. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Xia, L.; Engel, K.; Wang, J. Molecular determinants of substrate selectivity of a novel organic cation transporter (PMAT) in the SLC29 family. J. Biol. Chem. 2007, 282, 3188–3195. [Google Scholar] [CrossRef]
- Fraser-Spears, R.; Krause-Heuer, A.M.; Basiouny, M.; Mayer, F.P.; Manishimwe, R.; Wyatt, N.A.; Dobrowolski, J.C.; Roberts, M.P.; Greguric, I.; Kumar, N.; et al. Comparative analysis of novel decynium-22 analogs to inhibit transport by the low-affinity, high-capacity monoamine transporters, organic cation transporters 2 and 3, and plasma membrane monoamine transporter. Eur. J. Pharmacol. 2019, 842, 351–364. [Google Scholar] [CrossRef]
- Engel, K.; Wang, J. Interaction of Organic Cations with a Newly Identified Plasma Membrane Monoamine Transporter. Mol. Pharmacol. 2005, 68, 1397. [Google Scholar] [CrossRef]
- Haenisch, B.; Bönisch, H. Interaction of the human plasma membrane monoamine transporter (hPMAT) with antidepressants and antipsychotics. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2010, 381, 33–39. [Google Scholar] [CrossRef]
- Koepsell, H. General Overview of Organic Cation Transporters in Brain. Handb. Exp. Pharmacol. 2021, 1–39. [Google Scholar] [CrossRef]
- Viaro, R.; Longo, F.; Vincenzi, F.; Varani, K.; Morari, M. l-DOPA promotes striatal dopamine release through D1 receptors and reversal of dopamine transporter. Brain Res. 2021, 1768, 147583. [Google Scholar] [CrossRef]
- Lidow, M.S.; Goldman-Rakic, P.S. A common action of clozapine, haloperidol, and remoxipride on D1- and D2-dopaminergic receptors in the primate cerebral cortex. Proc. Natl. Acad. Sci. USA 1994, 91, 4353–4356. [Google Scholar] [CrossRef]
- Carbone, F.; Djamshidian, A.; Seppi, K.; Poewe, W. Apomorphine for Parkinson’s Disease: Efficacy and Safety of Current and New Formulations. CNS Drugs 2019, 33, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Jenner, P.; Katzenschlager, R. Apomorphine—Pharmacological properties and clinical trials in Parkinson’s disease. Park. Relat. Disord. 2016, 33, S13–S21. [Google Scholar] [CrossRef]
- Yang, F.; Liu, Y.; Tu, J.; Wan, J.; Zhang, J.; Wu, B.; Chen, S.; Zhou, J.; Mu, Y.; Wang, L. Activated astrocytes enhance the dopaminergic differentiation of stem cells and promote brain repair through bFGF. Nat. Commun. 2014, 5, 5627. [Google Scholar] [CrossRef]
- Hoenicka, J.; Quiñones-Lombraña, A.; España-Serrano, L.; Alvira-Botero, X.; Kremer, L.; Pérez-González, R.; Rodríguez-Jiménez, R.; Jiménez-Arriero, M.Á.; Ponce, G.; Palomo, T. The ANKK1 Gene Associated with Addictions Is Expressed in Astroglial Cells and Upregulated by Apomorphine. Biol. Psychiatry 2010, 67, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Reuss, B.; Unsicker, K. Atypical neuroleptic drugs downregulate dopamine sensitivity in rat cortical and striatal astrocytes. Mol. Cell Neurosci. 2001, 18, 197–209. [Google Scholar] [CrossRef]
- Nardin, P.; Tramontina, A.C.; Quincozes-Santos, A.; Tortorelli, L.S.; Lunardi, P.; Klein, P.R.; Wartchow, K.M.; Bobermin, L.D.; Gottfried, C.; Elisabetsky, E.; et al. In vitro S100B secretion is reduced by apomorphine: Effects of antipsychotics and antioxidants. Progress. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 1291–1296. [Google Scholar] [CrossRef]
- Asanuma, M.; Miyazaki, I. 3-O-Methyldopa inhibits astrocyte-mediated dopaminergic neuroprotective effects of L-DOPA. BMC Neurosci. 2016, 17, 52. [Google Scholar] [CrossRef]
- Del-Bel, E.; Bortolanza, M.; Dos-Santos-Pereira, M.; Bariotto, K.; Raisman-Vozari, R. l-DOPA-induced dyskinesia in Parkinson’s disease: Are neuroinflammation and astrocytes key elements? Synapse 2016, 70, 479–500. [Google Scholar] [CrossRef]
- Carta, A.R.; Mulas, G.; Bortolanza, M.; Duarte, T.; Pillai, E.; Fisone, G.; Vozari, R.R.; Del-Bel, E. l-DOPA-induced dyskinesia and neuroinflammation: Do microglia and astrocytes play a role? Eur. J. Neurosci. 2017, 45, 73–91. [Google Scholar] [CrossRef]
- Damask, S.P.; Bovenkerk, K.A.; de la Pena, G.; Hoversten, K.M.; Peters, D.B.; Valentine, A.M.; Meador-Woodruff, J.H. Differential effects of clozapine and haloperidol on dopamine receptor mRNA expression in rat striatum and cortex. Mol. Brain Res. 1996, 41, 241–249. [Google Scholar] [CrossRef]
- D’Souza, U.; McGuffin, P.; Buckland, P.R. Antipsychotic regulation of dopamine D1, D2 and D3 receptor mRNA. Neuropharmacology 1997, 36, 1689–1696. [Google Scholar] [CrossRef]
- Nikolić, B.; Trnski Levak, S.; Kosic, K.; Drlje, M.; Banovac, I.; Hranilovic, D.; Jovanov Milosevic, N. Lasting mesothalamic dopamine imbalance and altered exploratory behavior in rat after mild neonatal hypoxic event. Front. Integr. Neurosci. 2023, 17, 1304338. [Google Scholar] [CrossRef]
- Krzan, M.; Schwartz, J.P. Histamine transport in neonatal and adult astrocytes. Inflamm. Res. 2006, 55 (Suppl. 1), S36–S37. [Google Scholar] [CrossRef]
- Schwartz, J.P.; Wilson, D.J. Preparation and characterization of type 1 astrocytes cultured from adult rat cortex, cerebellum, and striatum. Glia 1992, 5, 75–80. [Google Scholar] [CrossRef]
- Ruijter, J.M.; Ramakers, C.; Hoogaars, W.M.; Karlen, Y.; Bakker, O.; van den Hoff, M.J.; Moorman, A.F. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009, 37, e45. [Google Scholar] [CrossRef]
Transporter | PMAT | NET | ||||||
---|---|---|---|---|---|---|---|---|
Brain Region | Cortex | Striatum | Cortex | Striatum | ||||
Fold Change | p Value | Fold Change | p Value | Fold Change | p Value | Fold Change | p Value | |
Control | 1 ± 0.4 | 1 ± 0.5 | 1 ± 0.2 | 1 ± 0.3 | ||||
Apomorphine | 2.3 ± 0.7 | 0.0008 | 1.3 ± 0.5 | 0.8 | 4.5 ± 1.3 | 0.02 | 3.5 ± 1.0 | 0.03 |
Haloperidol | 0.6 ± 0.2 | 0.7 | 0.9 ± 0.4 | 1.0 | 1.4 ± 0.5 | 0.8 | 0.8 ± 0.3 | 0.9 |
L-DOPA | 0.5 ± 0.2 | 0.4 | 0.5 ± 0.2 | 0.4 | 1.5 ± 0.5 | 0.6 | 1.0 ± 0.2 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sočan, V.; Dolinar, K.; Kržan, M. Cortical and Striatal Astrocytes of Neonatal Rats Display Distinct Molecular and Pharmacological Characteristics of Dopamine Uptake. Int. J. Mol. Sci. 2024, 25, 911. https://doi.org/10.3390/ijms25020911
Sočan V, Dolinar K, Kržan M. Cortical and Striatal Astrocytes of Neonatal Rats Display Distinct Molecular and Pharmacological Characteristics of Dopamine Uptake. International Journal of Molecular Sciences. 2024; 25(2):911. https://doi.org/10.3390/ijms25020911
Chicago/Turabian StyleSočan, Vesna, Klemen Dolinar, and Mojca Kržan. 2024. "Cortical and Striatal Astrocytes of Neonatal Rats Display Distinct Molecular and Pharmacological Characteristics of Dopamine Uptake" International Journal of Molecular Sciences 25, no. 2: 911. https://doi.org/10.3390/ijms25020911
APA StyleSočan, V., Dolinar, K., & Kržan, M. (2024). Cortical and Striatal Astrocytes of Neonatal Rats Display Distinct Molecular and Pharmacological Characteristics of Dopamine Uptake. International Journal of Molecular Sciences, 25(2), 911. https://doi.org/10.3390/ijms25020911