The Composition of the HDL Particle and Its Capacity to Remove Cellular Cholesterol Are Associated with a Reduced Risk of Developing Active Inflammatory Rheumatoid Arthritis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Evaluation of Inflammatory Activity in Individuals with RA
4.2. Blood Collection and Plasma Lipid Determination
4.3. Isolation of Lipoproteins
4.4. Acetylation of LDL
4.5. Obtaining Bone Marrow-Derived Macrophages from Mice
4.6. Determination of HDL Anti-Inflammatory Activity in Macrophages
4.7. Determination of Cholesterol Removal from Macrophages by HDL
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van der Woude, D.; van der Helm-van, A.H. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best. Pract. Res. Clin. Rheumatol. 2018, 32, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, K.; Nossent, J.; Preen, D.; Keen, H.; Inderjeeth, C. The global prevalence of rheumatoid arthritis: A meta-analysis based on a systematic review. Rheumatol. Int. 2020, 41, 863–877. [Google Scholar] [CrossRef] [PubMed]
- Da Mota, L.M.H.; Cruz, B.A.; Brenol, C.V.; Pereira, I.A.; Fronza, L.S.R.; Bertolo, M.B.; De Freitas, M.V.C.; Da Silva, N.A.; Louzada-Junior, P.; Giorgi, R.D.N.; et al. Consensus of the Brazilian Society of Rheumatology for diagnosis and early assessment of rheumatoid arthritis. Rev. Bras. Reumatol. 2011, 51, 199–219. [Google Scholar] [PubMed]
- Aviña-Zubieta, J.A.; Choi, H.K.; Sadatsafavi, M.; Etminan, M.; Esdaile, J.M.; Lacaille, D. Risk of cardiovascular mortality in patients with rheumatoid arthritis: A meta-analysis of observational studies. Arthritis Care Res. 2008, 59, 1690–1697. [Google Scholar] [CrossRef]
- Liao, K.P.; Liu, J.; Lu, B.; Solomon, D.H.; Kim, S.C. Association Between Lipid Levels and Major Adverse Cardiovascular Events in Rheumatoid Arthritis Compared to Non–Rheumatoid Arthritis Patients. Arthritis Rheumatol. 2015, 67, 2004–2010. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Delzell, E.; Muntner, P.; Hillegass, W.B.; Safford, M.M.; Millan, I.Y.N.; Crowson, C.S.; Curtis, J.R. The association between inflammatory markers, serum lipids and the risk of cardiovascular events in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2014, 73, 1301–1308. [Google Scholar] [CrossRef]
- Navarro-Millán, I.; Yang, S.; DuVall, S.L.; Chen, L.; Baddley, J.; Cannon, G.W.; Delzell, E.S.; Zhang, J.; Safford, M.M.; Patkar, N.M.; et al. Association of hyperlipidaemia, inflammation and serological status and coronary heart disease among patients with rheumatoid arthritis: Data from the National Veterans Health Administration. Ann. Rheum. Dis. 2015, 75, 341–347. [Google Scholar] [CrossRef]
- Myasoedova, E.; Crowson, C.S.; Kremers, H.M.; Roger, V.L.; Fitz-Gibbon, P.D.; Therneau, T.M.; Gabriel, S.E. Lipid paradox in rheumatoid arthritis: The impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Ann. Rheum. Dis. 2011, 70, 482–487. [Google Scholar] [CrossRef]
- Karpouzas, G.A.; Ormseth, S.R.; Ronda, N.; Hernandez, E.; Budoff, M.J. Lipoprotein oxidation may underlie the paradoxical association of low cholesterol with coronary atherosclerotic risk in rheumatoid arthritis. J. Autoimmun. 2022, 129, 102815. [Google Scholar] [CrossRef]
- Cooney, M.; Dudina, A.; De Bacquer, D.; Wilhelmsen, L.; Sans, S.; Menotti, A.; De Backer, G.; Jousilahti, P.; Keil, U.; Thomsen, T.; et al. HDL cholesterol protects against cardiovascular disease in both genders, at all ages and at all levels of risk. Atherosclerosis 2009, 206, 611–616. [Google Scholar] [CrossRef]
- Zhu, X.; Parks, J.S. New Roles of HDL in Inflammation and Hematopoiesis. Annu. Rev. Nutr. 2012, 32, 161–182. [Google Scholar] [CrossRef] [PubMed]
- Canfrán-Duque, A.; Lin, C.-S.; Goedeke, L.; Suárez, Y.; Fernández-Hernando, C. Micro-RNAs and High-Density Lipoprotein Metabolism. Arter. Thromb. Vasc. Biol. 2016, 36, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- England, B.R.; Thiele, G.M.; Anderson, D.R.; Mikuls, T.R. Increased cardiovascular risk in rheumatoid arthritis: Mechanisms and implications. BMJ 2018, 361, k1036. [Google Scholar] [CrossRef] [PubMed]
- Van Lenten, B.J.; Hama, S.Y.; de Beer, F.C.; Stafforini, D.M.; McIntyre, T.M.; Prescott, S.M.; La Du, B.N.; Fogelman, A.M.; Navab, M. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J. Clin. Investig. 1995, 96, 2758–2767. [Google Scholar] [CrossRef] [PubMed]
- Rohatgi, A.; Westerterp, M.; von Eckardstein, A.; Remaley, A.; Rye, K.-A. HDL in the 21st Century: A Multifunctional Roadmap for Future HDL Research. Circulation 2021, 143, 2293–2309. [Google Scholar] [CrossRef]
- Georgiadis, A.N.; Papavasiliou, E.C.; Lourida, E.S.; Alamanos, Y.; Kostara, C.; Tselepis, A.D.; A Drosos, A. Atherogenic lipid profile is a feature characteristic of patients with early rheumatoid arthritis: Effect of early treatment–a prospective, controlled study. Arthritis Res. Ther. 2006, 8, R82. [Google Scholar] [CrossRef]
- Yan, J.; Yang, S.; Han, L.; Ba, X.; Shen, P.; Lin, W.; Li, T.; Zhang, R.; Huang, Y.; Huang, Y.; et al. Dyslipidemia in rheumatoid arthritis: The possible mechanisms. Front. Immunol. 2023, 14, 1254753. [Google Scholar] [CrossRef]
- Dursunoğlu, D.; Evrengül, H.; Polat, B.; Tanrıverdi, H.; Çobankara, V.; Kaftan, A.; Kılıç, M. Lp(a) lipoprotein and lipids in patients with rheumatoid arthritis: Serum levels and relationship to inflammation. Rheumatol. Int. 2004, 25, 241–245. [Google Scholar] [CrossRef]
- Filippatos, T.; Derdemezis, C.; Voulgari, P.; Tsimihodimos, V.; Elisaf, M.S.; Tselepis, A.; Drosos, A. Effects of 12 months of treatment with disease-modifying anti-rheumatic drugs on low and high density lipoprotein subclass distribution in patients with early rheumatoid arthritis: A pilot study. Scand. J. Rheumatol. 2013, 42, 169–175. [Google Scholar] [CrossRef]
- Boers, M.; Nurmohamed, M.T.; Doelman, C.J.A.; Lard, L.R.; Verhoeven, A.C.; Voskuyl, A.E.; Huizinga, T.W.J.; van de Stadt, R.J.; Dijkmans, B.A.C.; van der Linden, S. Influence of glucocorticoids and disease activity on total and high density lipoprotein cholesterol in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2003, 62, 842–845. [Google Scholar] [CrossRef]
- Luo, Y.; Tall, A.R. Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element. J. Clin. Investig. 2000, 105, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Södergren, A.; Karp, K.; Bengtsson, C.; Möller, B.; Rantapää-Dahlqvist, S.; Wållberg-Jonsson, S. Is Lipoprotein-Associated Phospholipase A2 a Link between Inflammation and Subclinical Atherosclerosis in Rheumatoid Arthritis? BioMed Res. Int. 2015, 2015, 673018. [Google Scholar] [CrossRef] [PubMed]
- Blaho, V.A.; Galvani, S.; Engelbrecht, E.; Liu, C.; Swendeman, S.L.; Kono, M.; Proia, R.L.; Steinman, L.; Han, M.H.; Hla, T. HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature 2015, 523, 342–346. [Google Scholar] [CrossRef]
- Westerterp, M.; Gautier, E.L.; Ganda, A.; Molusky, M.M.; Wang, W.; Fotakis, P.; Wang, N.; Randolph, G.J.; D’Agati, V.D.; Yvan-Charvet, L.; et al. Cholesterol Accumulation in Dendritic Cells Links the Inflammasome to Acquired Immunity. Cell Metab. 2017, 25, 1294–1304.e6. [Google Scholar] [CrossRef]
- Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Low HDL Cholesterol and High Risk of Autoimmune Disease: Two Population-Based Cohort Studies Including 117341 Individuals. Clin. Chem. 2019, 65, 644–652. [Google Scholar] [CrossRef]
- McMahon, M.; Grossman, J.; FitzGerald, J.; Dahlin-Lee, E.; Wallace, D.J.; Thong, B.Y.; Badsha, H.; Kalunian, K.; Charles, C.; Navab, M.; et al. Proinflammatory high-density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 2006, 54, 2541–2549. [Google Scholar] [CrossRef]
- Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Novel Insights From Human Studies on the Role of High-Density Lipoprotein in Mortality and Noncardiovascular Disease. Arter. Thromb. Vasc. Biol. 2021, 41, 128–140. [Google Scholar] [CrossRef]
- Charles-Schoeman, C.; Watanabe, J.; Lee, Y.Y.; Furst, D.E.; Amjadi, S.; Elashoff, D.; Park, G.; McMahon, M.; Paulus, H.E.; Fogelman, A.M.; et al. Abnormal function of high-density lipoprotein is associated with poor disease control and an altered protein cargo in rheumatoid arthritis. Arthritis Rheum. 2009, 60, 2870–2879. [Google Scholar] [CrossRef]
- Malerød, L.; Sporstøl, M.; Juvet, L.K.; Mousavi, A.; Gjøen, T.; Berg, T. Hepatic scavenger receptor class B, type I is stimulated by peroxisome proliferator-activated receptor γ and hepatocyte nuclear factor 4α. Biochem. Biophys. Res. Commun. 2003, 305, 557–565. [Google Scholar] [CrossRef]
- Lambert, G.; Amar, M.J.A.; Guo, G.; Brewer, H.B.; Gonzalez, F.J.; Sinal, C.J. The Farnesoid X-receptor Is an Essential Regulator of Cholesterol Homeostasis. J. Biol. Chem. 2003, 278, 2563–2570. [Google Scholar] [CrossRef]
- Khovidhunkit, W.; Moser, A.H.; Shigenaga, J.K.; Grunfeld, C.; Feingold, K.R. Regulation of scavenger receptor class B type I in hamster liver and Hep3B cells by endotoxin and cytokines. J. Lipid Res. 2001, 42, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Khovidhunkit, W.; Memon, R.A.; Feingold, K.R.; Grunfeld, C. Infection and Inflammation-Induced Proatherogenic Changes of Lipoproteins. J. Infect. Dis. 2000, 181, S462–S472. [Google Scholar] [CrossRef] [PubMed]
- Canyelles, M.; García-Osuna, Á.; Junza, A.; Yanes, O.; Puig, N.; Ordóñez-Llanos, J.; Sionis, A.; Sans-Roselló, J.; Alquézar-Arbé, A.; Santos, D.; et al. The Capacity of APOB-Depleted Plasma in Inducing ATP-Binding Cassette A1/G1- Mediated Macrophage Cholesterol Efflux-But Not Gut Microbial-Derived Metabolites-Is Independently Associated with Mortality in Patients with ST-Segment Elevation Myocardial Infarction. Biomedicines 2021, 9, 1336. [Google Scholar] [CrossRef] [PubMed]
- Ronda, N.; Favari, E.; Borghi, M.O.; Ingegnoli, F.; Gerosa, M.; Chighizola, C.; Zimetti, F.; Adorni, M.P.; Bernini, F.; Meroni, P.L. Impaired serum cholesterol efflux capacity in rheumatoid arthritis and systemic lupus erythematosus. Ann. Rheum. Dis. 2013, 73, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Karpouzas, G.A.; Papotti, B.; Ormseth, S.R.; Palumbo, M.; Hernandez, E.; Adorni, M.P.; Zimetti, F.; Budoff, M.J.; Ronda, N. Inflammation and immunomodulatory therapies influence the relationship between ATP-binding cassette A1 membrane transporter-mediated cholesterol efflux capacity and coronary atherosclerosis in rheumatoid arthritis. J. Transl. Autoimmun. 2023, 7, 100209. [Google Scholar] [CrossRef]
- Weber, B.; He, Z.; Yang, N.; Playford, M.P.; Weisenfeld, D.; Iannaccone, C.; Coblyn, J.; Weinblatt, M.; Shadick, N.; Di Carli, M.; et al. Divergence of Cardiovascular Biomarkers of Lipids and Subclinical Myocardial Injury Among Rheumatoid Arthritis Patients With Increased Inflammation. Arthritis Rheumatol. 2021, 73, 970–979. [Google Scholar] [CrossRef]
- Liao, K.P.; Playford, M.P.; Frits, M.; Coblyn, J.S.; Iannaccone, C.; Weinblatt, M.E.; Shadick, N.S.; Mehta, N.N. The Association Between Reduction in Inflammation and Changes in Lipoprotein Levels and HDL Cholesterol Efflux Capacity in Rheumatoid Arthritis. J. Am. Heart Assoc. 2015, 4, e001588. [Google Scholar] [CrossRef]
- Xie, B.; He, J.; Liu, Y.; Liu, T.; Liu, C. A meta-analysis of HDL cholesterol efflux capacity and concentration in patients with rheumatoid arthritis. Lipids Health Dis. 2021, 20, 1–12. [Google Scholar] [CrossRef]
- Charles-Schoeman, C.; Lee, Y.Y.; Grijalva, V.; Amjadi, S.; FitzGerald, J.; Ranganath, V.K.; Taylor, M.; McMahon, M.; Paulus, H.E.; Reddy, S.T. Cholesterol efflux by high density lipoproteins is impaired in patients with active rheumatoid arthritis. Ann. Rheum. Dis. 2012, 71, 1157–1162. [Google Scholar] [CrossRef]
- Bonacina, F.; Pirillo, A.; Catapano, A.L.; Norata, G.D. HDL in Immune-Inflammatory Responses: Implications beyond Cardiovascular Diseases. Cells 2021, 10, 1061. [Google Scholar] [CrossRef]
- Catapano, A.L.; Pirillo, A.; Bonacina, F.; Norata, G.D. HDL in innate and adaptive immunity. Cardiovasc. Res. 2014, 103, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Gomaraschi, M.; Basilico, N.; Sisto, F.; Taramelli, D.; Eligini, S.; Colli, S.; Sirtori, C.R.; Franceschini, G.; Calabresi, L. High-density lipoproteins attenuate interleukin-6 production in endothelial cells exposed to pro-inflammatory stimuli. Biochim. Biophys. Acta (BBA)–Mol. Cell Biol. Lipids 2005, 1736, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, S.; Zhang, G.; Wu, S.; Yan, Y.; Dong, Q.; Liu, B. Anti-Inflammatory Effects of HDL in Mice With Rheumatoid Arthritis Induced by Collagen. Front. Immunol. 2018, 9, 1013. [Google Scholar] [CrossRef] [PubMed]
- Fotakis, P.; Kothari, V.; Thomas, D.G.; Westerterp, M.; Molusky, M.M.; Altin, E.; Abramowicz, S.; Wang, N.; He, Y.; Heinecke, J.W.; et al. Anti-Inflammatory Effects of HDL (High-Density Lipoprotein) in Macrophages Predominate Over Proinflammatory Effects in Atherosclerotic Plaques. Arter. Thromb. Vasc. Biol. 2019, 39, E253–E272. [Google Scholar] [CrossRef]
- Charles-Schoeman, C.; Lee, Y.Y.; Shahbazian, A.; Wang, X.; Elashoff, D.; Curtis, J.R.; Navarro-Millán, I.; Yang, S.; Chen, L.; Cofield, S.S.; et al. Improvement of High-Density Lipoprotein Function in Patients With Early Rheumatoid Arthritis Treated With Methotrexate Monotherapy or Combination Therapies in a Randomized Controlled Trial. Arthritis Rheumatol. 2016, 69, 46–57. [Google Scholar] [CrossRef]
- Daïen, C.I.; Duny, Y.; Barnetche, T.; Daurès, J.-P.; Combe, B.; Morel, J. Effect of TNF inhibitors on lipid profile in rheumatoid arthritis: A systematic review with meta-analysis. Ann. Rheum. Dis. 2012, 71, 862–868. [Google Scholar] [CrossRef]
- Charles-Schoeman, C.; Gugiu, G.; Ge, H.; Shahbazian, A.; Lee, Y.; Wang, X.; Furst, D.; Ranganath, V.; Maldonado, M.; Lee, T.; et al. Remodeling of the HDL proteome with treatment response to abatacept or adalimumab in the AMPLE trial of patients with rheumatoid arthritis. Atherosclerosis 2018, 275, 107–114. [Google Scholar] [CrossRef]
- Ronda, N.; Greco, D.; Adorni, M.P.; Zimetti, F.; Favari, E.; Hjeltnes, G.; Mikkelsen, K.; Borghi, M.O.; Favalli, E.G.; Gatti, R.; et al. Newly Identified Antiatherosclerotic Activity of Methotrexate and Adalimumab: Complementary Effects on Lipoprotein Function and Macrophage Cholesterol Metabolism. Arthritis Rheumatol. 2015, 67, 1155–1164. [Google Scholar] [CrossRef]
- Rempenault, C.; Combe, B.; Barnetche, T.; Gaujoux-Viala, C.; Lukas, C.; Morel, J.; Hua, C. Metabolic and cardiovascular benefits of hydroxychloroquine in patients with rheumatoid arthritis: A systematic review and meta-analysis. Ann. Rheum. Dis. 2017, 77, 98–103. [Google Scholar] [CrossRef]
- Raterman, H.G.; Levels, H.; E Voskuyl, A.; Lems, W.F.; A Dijkmans, B.; Nurmohamed, M.T. HDL protein composition alters from proatherogenic into less atherogenic and proinflammatory in rheumatoid arthritis patients responding to rituximab. Ann. Rheum. Dis. 2012, 72, 560–565. [Google Scholar] [CrossRef]
- Qiu, C.; Zhao, X.; She, L.; Shi, Z.; Deng, Z.; Tan, L.; Tu, X.; Jiang, S.; Tang, B. Baricitinib induces LDL-C and HDL-C increases in rheumatoid arthritis: A meta-analysis of randomized controlled trials. Lipids Health Dis. 2019, 18, 11. [Google Scholar] [CrossRef] [PubMed]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 2010, 69, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I. Fredrickson DS. Estimation of the concentration of low- density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Havel, R.J.; Eder, H.A.; Bragdon, J.H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Investig. 1955, 34, 1345–1353. [Google Scholar] [CrossRef]
- Basu, S.K.; Goldstein, J.L.; Anderson, G.W.; Brown, M.S. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc. Natl. Acad. Sci. USA 1976, 73, 3178–3182. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Minanni, C.A.; Machado-Lima, A.; Iborra, R.T.; Okuda, L.S.; Pinto, R.d.S.; Santana, M.d.F.M.; Lira, A.L.d.A.; Nakandakare, E.R.; Côrrea-Giannella, M.L.C.; Passarelli, M. Persistent Effect of Advanced Glycated Albumin Driving Inflammation and Disturbances in Cholesterol Efflux in Macrophages. Nutrients 2021, 13, 3633. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
CTR n = 50 | RA n = 56 | p | |
---|---|---|---|
Age (years) | 56.5 (49.8–65.3) | 62.5 (54.5–6.0) | 0.116 |
Female | 46 (92.0) | 52 (92.9) | 1.000 |
BMI (Kg/m2) | 28.2 (25.9–31.3) | 28.6 (25.4–31.7) | 0.651 |
WC (cm) | 96.0 (91.0–102.5) | 96.0 (89.3–106.0) | 0.761 |
Obesity | 16 (32.0) | 21 (37.5) | 0.684 |
Dyslipidemia | 22 (44.0) | 18 (32.1) | 0.233 |
Statin use | 10 (20.0) | 10 (17.9) | 0.808 |
Post-menopausal | 34 (73.9) | 45 (86.5) | 0.132 |
HRT | 5 (10.9) | 10 (19.2) | 0.277 |
HC | 3 (6.5) | 0 (0.0) | 0.100 |
Physical activity ≥ 150 min/wk | 10 (20.0) | 10 (17.9) | 0.808 |
DAS28 | 4.15 (3.28–5.03) | ||
Disease remission | 7 (12.5) | ||
Low-activity disease | 6 (10.7) | ||
Moderate-activity disease | 31 (55.4) | ||
High-activity disease | 12 (21.4) |
Drug | n (%) |
---|---|
Prednisone | 8 (14.3) |
Prednisone dose ≥ 7.5 mg/day | 2 (3.6) |
Conventional synthetic DMARDs | 48 (85.7) |
Hydroxychloroquine | 10 (17.9) |
Leflunomide | 15 (26.8) |
Methotrexate | 40 (71.4) |
Biological DMARDs | 21 (37.5) |
Anti-TNF | 16 (28.6) |
Abatacept | 1 (1.8) |
Tocilizumab | 2 (3.6) |
Rituximab | 2 (3.6) |
Target-specific synthetic DMARDs | 2 (3.6) |
Tofacitinib | 2 (3.6) |
Total | 53 (94.6) |
CTR n = 50 | RA n = 56 | p | |
---|---|---|---|
TC (mg/dL) | 174 (147–195) | 194 (171–206) | 0.007 |
HDLc (mg/dL) | 47 (38–54) | 55 (43–62) | 0.015 |
LDLc (mg/dL) | 103 (83–128) | 117 (98–127) | 0.125 |
apoB (mg/dL) | 35 (28–40) | 35 (30–40) | 0.874 |
non-HDLc (mg/dL) | 122 (103–145) | 139 (118–148) | 0.630 |
TG (mg/dL) | 87 (64–119) | 96 (71–122) | 0.362 |
TG/HDLc | 1.8 (1.2–3.1) | 1.8 (1.2–2.4) | 0.735 |
TC/apoB | 5.0 (4.6–5.7) | 5.5 (5.0–6.0) | 0.002 |
HDL particle composition | |||
HDL-TC (mg/dL) | 42 (32–53) | 46 (39–54) | 0.216 |
HDL-TG (mg/dL) | 8 (6–10) | 8 (6–11) | 0.401 |
HDL-PL (mg/dL) | 84 (67–111) | 103 (83–116) | 0.002 |
HDL-apoA-1 (mg/dL) | 44 (34–54) | 53 (42–60) | 0.009 |
Remission/Low-Activity Disease DAS28 < 3.2 (n = 13) | Active Disease DAS28 ≥ 3.2 (n = 43) | p | |
---|---|---|---|
Age (years) | 61 (42.5–63.0) | 63 (56.0–68.0) | 0.105 |
Female | 11 (84.6) | 41 (95.3) | 0.227 |
BMI (Kg/m2) | 26.5 (23.6–28.8) | 29.2 (26.3–33.4) | 0.032 |
WC (cm) | 91 (89.5–97.5) | 97 (89.0–108.0) | 0.072 |
Obesity | 2 (15.4) | 19 (44.2) | 0.101 |
Dyslipidemia | 4 (30.8) | 14 (32.6) | 1.000 |
Statin use | 1 (7.7) | 9 (20.9) | 0.424 |
Post-menopausal | 9 (81.8) | 36 (87.8) | 0.630 |
HRT | 0 | 10 (24.4) | 0.096 |
HC | 0 | 0 | - |
Physical activity ≥ 150 min/wk | 3 (23.1) | 7 (16.3) | 0.682 |
Remission/Low-Activity Disease DAS28 < 3.2 (n = 13) | Active Disease DAS28 ≥ 3.2 (n = 43) | p | |
---|---|---|---|
TC (mg/dL) | 192 (177–211) | 194 (169–204) | 0.719 |
HDLc (mg/dL) | 60 (51–75) | 50 (43–60) | 0.021 |
LDLc (mg/dL) | 109 (100–132) | 122 (96–126) | 0.662 |
apoB (mg/dL) | 34 (28–37) | 35 (30–41) | 0.196 |
non-HDLc (mg/dL) | 121 (115–146) | 140 (120–149) | 0.221 |
TG (mg/dL) | 80 (56–88) | 104 (77–135) | 0.007 |
TG/HDLc | 1.1 (0.9–1.7) | 1.9 (1.5–3.2) | 0.003 |
TC/apoB | 5.8 (5.4–6.7) | 5.3 (4.9–5.8) | 0.014 |
HDL particle composition | |||
HDL-TC (mg/dL) | 54 (47–68) | 44 (34–51) | 0.005 |
HDL-TG (mg/dL) | 7 (6–12) | 9 (6–11) | 0.696 |
HDL-PL (mg/dL) | 108 (90–128) | 99 (79–116) | 0.114 |
HDL-apoA-1 (mg/dL) | 61 (47–69) | 49 (39–58) | 0.014 |
Active Disease (DAS28 ≥ 3.2) n = 43 | ||||
---|---|---|---|---|
Cox–Snell R2 | OR | CI 95% | p | |
BMI (Kg/m2) | 0.078 | 1.169 | 1.004–1.360 | 0.044 |
HDLc (mg/dL) | 0.137 | 0.931 | 0.882–0.984 | 0.011 |
TG (mg/dL) | 0.137 | 1.031 | 1.005–1.057 | 0.020 |
TC/apoB | 0.139 | 0.314 | 0.126–0.781 | 0.013 |
HDL-TC (mg/dL) | 0.181 | 0.912 | 0.853–0.976 | 0.007 |
HDL-PL (mg/dL) | 0.074 | 0.973 | 0.947–1.000 | 0.048 |
HDL-apoA-1 (mg/dL) | 0.127 | 0.932 | 0.882–0.985 | 0.013 |
HDL-mediated cholesterol efflux | 0.165 | 0.738 | 0.591–0.921 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giacaglia, M.B.; Felix, V.P.; Santana, M.d.F.M.; Amendola, L.S.; Lerner, P.G.; Fernandes, S.D.E.; Camacho, C.P.; Passarelli, M. The Composition of the HDL Particle and Its Capacity to Remove Cellular Cholesterol Are Associated with a Reduced Risk of Developing Active Inflammatory Rheumatoid Arthritis. Int. J. Mol. Sci. 2024, 25, 10980. https://doi.org/10.3390/ijms252010980
Giacaglia MB, Felix VP, Santana MdFM, Amendola LS, Lerner PG, Fernandes SDE, Camacho CP, Passarelli M. The Composition of the HDL Particle and Its Capacity to Remove Cellular Cholesterol Are Associated with a Reduced Risk of Developing Active Inflammatory Rheumatoid Arthritis. International Journal of Molecular Sciences. 2024; 25(20):10980. https://doi.org/10.3390/ijms252010980
Chicago/Turabian StyleGiacaglia, Marcia Benacchio, Vitoria Pires Felix, Monique de Fatima Mello Santana, Leonardo Szalos Amendola, Perola Goberstein Lerner, Sibelle D. Elia Fernandes, Cleber Pinto Camacho, and Marisa Passarelli. 2024. "The Composition of the HDL Particle and Its Capacity to Remove Cellular Cholesterol Are Associated with a Reduced Risk of Developing Active Inflammatory Rheumatoid Arthritis" International Journal of Molecular Sciences 25, no. 20: 10980. https://doi.org/10.3390/ijms252010980
APA StyleGiacaglia, M. B., Felix, V. P., Santana, M. d. F. M., Amendola, L. S., Lerner, P. G., Fernandes, S. D. E., Camacho, C. P., & Passarelli, M. (2024). The Composition of the HDL Particle and Its Capacity to Remove Cellular Cholesterol Are Associated with a Reduced Risk of Developing Active Inflammatory Rheumatoid Arthritis. International Journal of Molecular Sciences, 25(20), 10980. https://doi.org/10.3390/ijms252010980