Variants rs3804099 and rs3804100 in the TLR2 Gene Induce Different Profiles of TLR-2 Expression and Cytokines in Response to Spike of SARS-CoV-2
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Genotype, Allele, and Haplotype Association in Variants of TLR2
2.3. COVID-19 Patients’ Carriers of the Allele C Do Not Modify the Frequency of TLR-2+ Monocytes with Spike Stimulus
2.4. COVID-19 Patients of the Reference Group Decreased the TLR-2 Frequency in Non-Switched B-Cells
2.5. The C Allele to TLR2 Does Not Affect the Frequency of TLR-2+ Cytotoxic T Cells
2.6. PBMCs from COVID-19 Patients with the C Allele Have a Low Capacity to Produce Inflammatory Cytokines by Spike Stimulus
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. DNA Extraction, Quantification, and Genotyping
4.3. In Vitro Assays
4.4. Flow Cytometry Staining and Soluble Molecules Evaluation
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Tali, S.H.S.; LeBlanc, J.J.; Sadiq, Z.; Oyewunmi, O.D.; Camargo, C.; Nikpour, B.; Armanfard, N.; Sagan, S.M.; Jahanshahi-Anbuhi, S. Tools and techniques for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/COVID-19 detection. Clin. Microbiol. Rev. 2021, 34, e00228-20. [Google Scholar] [CrossRef]
- V’Kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2020, 19, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Karki, R.; Williams, E.P.; Yang, D.; Fitzpatrick, E.; Vogel, P.; Jonsson, C.B.; Kanneganti, T.-D. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat. Immunol. 2021, 22, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Wang, Y.; Wang, H.; Gao, Z.; Wang, Y.; Fang, M.; Shi, S.; Zhang, P.; Wang, H.; Su, Y.; et al. Toll-Like Receptor Signaling in Severe Acute Respiratory Syndrome Coronavirus 2-Induced Innate Immune Responses and the Potential Application Value of Toll-Like Receptor Immunomodulators in Patients with Coronavirus Disease 2019. Front. Microbiol. 2022, 13, 948770. [Google Scholar] [CrossRef]
- Khan, S.; Shafiei, M.S.; Longoria, C.; Schoggins, J.W.; Savani, R.C.; Zaki, H.; States, U. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. eLife 2021, 10, e68563. [Google Scholar] [CrossRef] [PubMed]
- Meliț, L.E.; Mărginean, C.O.; Săsăran, M.O.; Mocanu, S.; Ghiga, D.V.; Crișan, A.; Bănescu, C. Innate Immune Responses in Pediatric Patients with Gastritis—A Trademark of Infection or Chronic Inflammation? Children 2022, 9, 121. [Google Scholar] [CrossRef]
- Semlali, A.; Parine, N.R.; Al-Numair, N.S.; Almutairi, M.; Hawsawi, Y.M.; Al Amri, A.; Aljebreen, A.M.; Arafah, M.; Almadi, M.; Azzam, N.A.; et al. Potential role of toll-like receptor 2 expression and polymorphisms in colon cancer susceptibility in the Saudi Arabian population. OncoTargets Ther. 2018, 11, 8127–8141. [Google Scholar] [CrossRef]
- Fang, J.; Hu, R.; Hou, S.; Ye, Z.; Xiang, Q.; Qi, J.; Zhou, Y.; Kijlstra, A.; Yang, P. Association of TLR2 gene polymorphisms with ocular Behcet’s disease in a Chinese Han population. Investig. Opthalmology Vis. Sci. 2013, 54, 8384–8392. [Google Scholar] [CrossRef]
- Zhang, F.; Gao, X.-D.; Wu, W.-W.; Gao, Y.; Zhang, Y.-W.; Wang, S.-P. Polymorphisms in toll-like receptors 2, 4 and 5 are associated with Legionella pneumophila infection. Infection 2013, 41, 941–948. [Google Scholar] [CrossRef]
- Jiang, Y.-K.; Wu, J.-Q.; Zhao, H.-Z.; Wang, X.; Wang, R.-Y.; Zhou, L.-H.; Yip, C.-W.; Huang, L.-P.; Cheng, J.-H.; Chen, Y.-H.; et al. Genetic influence of Toll-like receptors on non-HIV cryptococcal meningitis: An observational cohort study. EBioMedicine 2018, 37, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Santana, N.d.L.; Rêgo, J.L.; Oliveira, J.M.; de Almeida, L.F.; Braz, M.; Machado, L.M.M.; Machado, P.R.L.; Castellucci, L.C. Polymorphisms in genes TLR1, 2 and 4 are associated with differential cytokine and chemokine serum production in patients with leprosy. Mem. Inst. Oswaldo Cruz 2017, 112, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Li, W.; Wang, T.; Ran, D.; Davalos, V.; Planas-Serra, L.; Pujol, A.; Esteller, M.; Wang, X.; Yu, H. Accelerated biological aging in COVID-19 patients. Nat. Commun. 2022, 13, 2135. [Google Scholar] [CrossRef]
- Mabrey, F.L.; Morrell, E.D.; Wurfel, M.M. TLRs in COVID-19: How they drive immunopathology and the rationale for modulation. J. Endotoxin Res. 2021, 27, 503–513. [Google Scholar] [CrossRef]
- Silva, M.J.A.; Silva, C.S.; Marinho, R.L.; Cabral, J.G.; Gurrão, E.P.d.C.; dos Santos, P.A.S.; Casseb, S.M.M.; Lima, K.V.B.; Lima, L.N.G.C. Analysis of Epidemiological Factors and SNP rs3804100 of TLR2 for COVID-19 in a Cohort of Professionals Who Worked in the First Pandemic Wave in Belém-PA, Brazil. Genes 2023, 14, 1907. [Google Scholar] [CrossRef]
- Elgedawy, G.A.; Elabd, N.S.; Salem, R.H.; Awad, S.M.; Amer, A.A.; Torayah, M.M.; El-Koa, A.A.; Abozeid, M.; Montaser, B.A.; Aboshabaan, H.S.; et al. FURIN, IFNL4, and TLR2 gene polymorphisms in relation to COVID-19 severity: A case–control study in Egyptian patients. Infection 2024, 1–7. [Google Scholar] [CrossRef]
- Newell, K.L.; Clemmer, D.C.; Cox, J.B.; Kayode, Y.I.; Zoccoli-Rodriguez, V.; Taylor, H.E.; Endy, T.P.; Wilmore, J.R.; Winslow, G.M. Switched and unswitched memory B cells detected during SARS-CoV-2 convalescence correlate with limited symptom duration. PLoS ONE 2021, 16, e0244855. [Google Scholar] [CrossRef] [PubMed]
- Ait-Belkacem, I.; García, C.C.; Millet-Wallisky, E.; Izquierdo, N.; Loosveld, M.; Arnoux, I.; Morange, P.-E.; Galland, F.; Lambert, N.; Malergue, F.; et al. SARS-CoV-2 spike protein induces a differential monocyte activation that may contribute to age bias in COVID-19 severity. Sci. Rep. 2022, 12, 20824. [Google Scholar] [CrossRef]
- Landolina, N.; Ricci, B.; Veneziani, I.; Alicata, C.; Mariotti, F.R.; Pelosi, A.; Quatrini, L.; Mortari, E.P.; Carsetti, R.; Vacca, P.; et al. TLR2/4 are novel activating receptors for SARS-CoV-2 spike protein on NK cells. Front. Immunol. 2024, 15, 1368946. [Google Scholar] [CrossRef]
- Flores-Gonzalez, J.; Chavez-Galan, L.; Falfán-Valencia, R.; Roldán, I.B.; Fricke-Galindo, I.; Veronica-Aguilar, A.; Martínez-Morales, A.; Hernández-Zenteno, R.d.J.; Guzmán-Guzmán, I.P.; Pérez-Rubio, G. Variant rs4986790 of toll-like receptor 4 affects the signaling and induces cell dysfunction in patients with severe COVID-19. Int. J. Infect. Dis. 2024, 138, 102–109. [Google Scholar] [CrossRef]
- ARDS Definition of Task Force; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Kendall, E.A.; Tarique, A.A.; Hossain, A.; Alam, M.M.; Arifuzzaman, M.; Akhtar, N.; Chowdhury, F.; Khan, A.I.; LaRocque, R.C.; Harris, J.B.; et al. Development of immunoglobulin M memory to both a T-cell-independent and a T-cell-dependent antigen following in-fection with Vibrio cholerae O1 in Bangladesh. Infect. Immun. 2010, 78, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Graffelman, J.; Jain, D.; Weir, B. A genome-wide study of Hardy–Weinberg equilibrium with next generation sequence data. Hum. Genet. 2017, 136, 727–741. [Google Scholar] [CrossRef]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed]
Variable | ARDS Severe (n = 413) | ARDS Mild-Moderate (n = 605) | p-Value |
---|---|---|---|
Age (years) | 59 (51–68) | 58 (49.5–67) | 0.270 |
Male, n (%) | 294 (71.2) | 413 (68.3) | 0.355 |
BMI (kg/m2) | 30 (27–34) | 29 (26–33) | 0.166 |
Hospital stay (days) | 21 (15–35) | 18 (11.5–28) | 6.0 × 10−7 |
PaO2/FiO2 (mmHg) | 73 (61–86) | 174 (136–216) | 2.2 × 10−16 |
IMV, n (%) | 413 (100.0) | 367 (60.6) | <0.001 * |
Days with IMV | 16 (9–27) | 12 (0–22) | 3.7 × 10−10 |
Deceased, n (%) | 205 (49.6) | 186 (30.7) | <0.001 * |
Cytokine pg/mL | Spike + LPS | Unstimulated | p-Value |
---|---|---|---|
IL-10 | 237 (115–313) | 0 (0–0) | 0.0286 |
IL-6 | 756 (420–957) | 12 (0–34) | 0.0286 |
TNF-α | 245 (137–338) | 25 (4–41) | 0.0286 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-González, J.; Monroy-Rodríguez, Z.; Falfán-Valencia, R.; Buendía-Roldán, I.; Fricke-Galindo, I.; Hernández-Zenteno, R.; Herrera-Sicairos, R.; Chávez-Galán, L.; Pérez-Rubio, G. Variants rs3804099 and rs3804100 in the TLR2 Gene Induce Different Profiles of TLR-2 Expression and Cytokines in Response to Spike of SARS-CoV-2. Int. J. Mol. Sci. 2024, 25, 11063. https://doi.org/10.3390/ijms252011063
Flores-González J, Monroy-Rodríguez Z, Falfán-Valencia R, Buendía-Roldán I, Fricke-Galindo I, Hernández-Zenteno R, Herrera-Sicairos R, Chávez-Galán L, Pérez-Rubio G. Variants rs3804099 and rs3804100 in the TLR2 Gene Induce Different Profiles of TLR-2 Expression and Cytokines in Response to Spike of SARS-CoV-2. International Journal of Molecular Sciences. 2024; 25(20):11063. https://doi.org/10.3390/ijms252011063
Chicago/Turabian StyleFlores-González, Julio, Zurisadai Monroy-Rodríguez, Ramcés Falfán-Valencia, Ivette Buendía-Roldán, Ingrid Fricke-Galindo, Rafael Hernández-Zenteno, Ricardo Herrera-Sicairos, Leslie Chávez-Galán, and Gloria Pérez-Rubio. 2024. "Variants rs3804099 and rs3804100 in the TLR2 Gene Induce Different Profiles of TLR-2 Expression and Cytokines in Response to Spike of SARS-CoV-2" International Journal of Molecular Sciences 25, no. 20: 11063. https://doi.org/10.3390/ijms252011063
APA StyleFlores-González, J., Monroy-Rodríguez, Z., Falfán-Valencia, R., Buendía-Roldán, I., Fricke-Galindo, I., Hernández-Zenteno, R., Herrera-Sicairos, R., Chávez-Galán, L., & Pérez-Rubio, G. (2024). Variants rs3804099 and rs3804100 in the TLR2 Gene Induce Different Profiles of TLR-2 Expression and Cytokines in Response to Spike of SARS-CoV-2. International Journal of Molecular Sciences, 25(20), 11063. https://doi.org/10.3390/ijms252011063