Comprehensive Analysis of BrDUF506 Genes Across the Brassica rapa Genome Uncovers Potential Functions in Sexual Reproduction and Abiotic Stress Tolerance
Abstract
:1. Introduction
2. Results
2.1. Identification and Physicochemical Characterization of DUF506 Gene Family in B. rapa
2.2. Chromosomal Distribution and Phylogenetic Relationships of BrDUF506s
2.3. Collinearity Analysis of BrDUF506 Members
2.4. Characterization and Conserved Motifs of BrDUF506s
2.5. Analysis of Cis-Acting Elements of BrDUF506s Promoter
2.6. Analysis of Abiotic Stress Transcript Levels of BrDUF506s
2.7. Expression Pattern of BrDUF506 Members in Different Tissues
2.8. Sexual Reproduction-Related Expression Profiling of BrDUF506s
2.9. Prediction of Protein-Protein Interaction (PPI) Network
3. Discussion
4. Materials and Methods
4.1. Identification of DUF506 Members in B. rapa
4.2. Chromosomal Distribution, Phylogenetic Relationship, and Collinearity Analysis
4.3. Conserved Motif, Gene Structure, and Cis-Element Prediction of BrDUF506 Family Genes
4.4. Gene Expression Analysis
4.5. Plant Growth Conditions, Abiotic Stress Treatments, and Transcriptome
4.6. Prediction of Protein-Protein Interaction Networks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bateman, A.; Coggill, P.; Finn, R.D. DUFs: Families in search of function. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2010, 66 Pt 10, 1148–1152. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, B.R.; Pena, M.J.; Ratnaparkhe, S.; Avci, U.; Backe, J.; Steet, H.F.; Foston, M.; Li, H.; O’Neill, M.A.; Ragauskas, A.J.; et al. 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proc. Natl. Acad. Sci. USA 2012, 109, 14253–14258. [Google Scholar] [CrossRef] [PubMed]
- Mewalal, R.; Mizrachi, E.; Coetzee, B.; Mansfield, S.D.; Myburg, A.A. The Arabidopsis Domain of Unknown Function 1218 (DUF1218) Containing Proteins, MODIFYING WALL LIGNIN-1 and 2 (At1g31720/MWL-1 and At4g19370/MWL-2) Function Redundantly to Alter Secondary Cell Wall Lignin Content. PLoS ONE 2016, 11, e0150254. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Wen, Y.; Wang, D.; Liu, H.; Li, Y.; Zhao, J.; An, L.; Yu, F.; Liu, X. The domain of unknown function 4005 (DUF4005) in an Arabidopsis IQD protein functions in microtubule binding. J. Biol. Chem. 2021, 297, 100849. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Nong, X.; Zhang, Y.; Tang, T.; Chen, Y.; Shen, Q.; Yan, C.; Lu, B. Characterization and in silico analysis of the domain unknown function DUF568-containing gene family in rice (Oryza sativa L.). BMC Genom. 2023, 24, 544. [Google Scholar] [CrossRef]
- Kaur, V.; Yadav, S.K.; Wankhede, D.P.; Pulivendula, P.; Kumar, A.; Chinnusamy, V. Cloning and characterization of a gene encoding MIZ1, a domain of unknown function protein and its role in salt and drought stress in rice. Protoplasma 2020, 257, 475–487. [Google Scholar] [CrossRef]
- Xin, Z.; Mandaokar, A.; Chen, J.; Last, R.L.; Browse, J. Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant J. 2007, 49, 786–799. [Google Scholar] [CrossRef] [PubMed]
- Sakata, M.; Takano-Kai, N.; Miyazaki, Y.; Kanamori, H.; Wu, J.; Matsumoto, T.; Doi, K.; Yasui, H.; Yoshimura, A.; Yamagata, Y. Domain Unknown Function DUF1668-Containing Genes in Multiple Lineages Are Responsible for F(1) Pollen Sterility in Rice. Front. Plant Sci. 2020, 11, 632420. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xiong, H.; Zhao, P.; Peng, X.; Sun, M.X. DMP8 and 9 regulate HAP2/GCS1 trafficking for the timely acquisition of sperm fusion competence. Proc. Natl. Acad. Sci. USA 2022, 119, e2207608119. [Google Scholar] [CrossRef]
- Knizewski, L.; Kinch, L.N.; Grishin, N.V.; Rychlewski, L.; Ginalski, K. Realm of PD-(D/E)XK nuclease superfamily revisited: Detection of novel families with modified transitive meta profile searches. BMC Struct. Biol. 2007, 7, 40. [Google Scholar] [CrossRef]
- Ying, S.; Scheible, W.R. A novel calmodulin-interacting Domain of Unknown Function 506 protein represses root hair elongation in Arabidopsis. Plant Cell Environ. 2022, 45, 1796–1812. [Google Scholar] [CrossRef] [PubMed]
- Ying, S. Genome-Wide Identification and Transcriptional Analysis of Arabidopsis DUF506 Gene Family. Int. J. Mol. Sci. 2021, 22, 11442. [Google Scholar] [CrossRef]
- Dong, W.; Tu, J.; Deng, W.; Zhang, J.; Xu, Y.; Gu, A.; An, H.; Fan, K.; Wang, R.; Zhang, J.; et al. Genome-wide identification of DUF506 gene family in Oryzasativa and expression profiling under abiotic stresses. PeerJ 2023, 11, e16168. [Google Scholar] [CrossRef] [PubMed]
- Fedoroff, N.V.; Battisti, D.S.; Beachy, R.N.; Cooper, P.J.; Fischhoff, D.A.; Hodges, C.N.; Knauf, V.C.; Lobell, D.; Mazur, B.J.; Molden, D.; et al. Radically rethinking agriculture for the 21st century. Science 2010, 327, 833–834. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Li, Q.; Yin, H.; Qi, K.; Li, L.; Wang, R.; Zhang, S.; Paterson, A.H. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol. 2019, 20, 38. [Google Scholar] [CrossRef] [PubMed]
- Danino, Y.M.; Even, D.; Ideses, D.; Juven-Gershon, T. The core promoter: At the heart of gene expression. Biochim. Biophys. Acta 2015, 1849, 1116–1131. [Google Scholar] [CrossRef]
- Sych, T.; Levental, K.R.; Sezgin, E. Lipid-Protein Interactions in Plasma Membrane Organization and Function. Annu. Rev. Biophys. 2022, 51, 135–156. [Google Scholar] [CrossRef]
- Arora, B.; Tandon, R.; Attri, P.; Bhatia, R. Chemical Crosslinking: Role in Protein and Peptide Science. Curr. Protein Pept. Sci. 2017, 18, 946–955. [Google Scholar] [CrossRef]
- Hsu, K.H.; Liu, C.C.; Wu, S.J.; Kuo, Y.Y.; Lu, C.A.; Wu, C.R.; Lian, P.J.; Hong, C.Y.; Ke, Y.T.; Huang, J.H.; et al. Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening. Plant Mol. Biol. 2014, 86, 125–137. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, L.; Hu, H.; Tang, N.; Shi, L.; Xu, F.; Wang, S. Arabidopsis ERF012 Is a Versatile Regulator of Plant Growth, Development and Abiotic Stress Responses. Int. J. Mol. Sci. 2022, 23, 6841. [Google Scholar] [CrossRef]
- Zizelski Valenci, G.; Raveh, D.; Bar-Zvi, D. The activity of the stress modulated Arabidopsis ubiquitin ligases PUB46 and PUB48 is partially redundant. Plant Signal Behav. 2022, 17, 2072111. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Wan, X.; Huang, K.; Pei, L.; Xiong, J.; Li, X.; Wang, J. AtPUB48 E3 ligase plays a crucial role in the thermotolerance of Arabidopsis. Biochem. Biophys. Res. Commun. 2019, 509, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Brasil, J.N.; Cabral, L.M.; Eloy, N.B.; Primo, L.M.; Barroso-Neto, I.L.; Grangeiro, L.P.; Gonzalez, N.; Inze, D.; Ferreira, P.C.; Hemerly, A.S. AIP1 is a novel Agenet/Tudor domain protein from Arabidopsis that interacts with regulators of DNA replication, transcription and chromatin remodeling. BMC Plant Biol. 2015, 15, 270. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhi, F.; Min, Y.; Ma, R.; Ge, A.; Wang, S.; Wang, J.; Liu, Z.; Guo, Y.; Chen, M. The MYB59 transcription factor negatively regulates salicylic acid- and jasmonic acid-mediated leaf senescence. Plant Physiol. 2023, 192, 488–503. [Google Scholar] [CrossRef] [PubMed]
- Fasani, E.; DalCorso, G.; Costa, A.; Zenoni, S.; Furini, A. The Arabidopsis thaliana transcription factor MYB59 regulates calcium signalling during plant growth and stress response. Plant Mol. Biol. 2019, 99, 517–534. [Google Scholar] [CrossRef]
- Rasheed, S.; Bashir, K.; Kim, J.M.; Ando, M.; Tanaka, M.; Seki, M. The modulation of acetic acid pathway genes in Arabidopsis improves survival under drought stress. Sci. Rep. 2018, 8, 7831. [Google Scholar] [CrossRef]
- Gan, Y.; Filleur, S.; Rahman, A.; Gotensparre, S.; Forde, B.G. Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta 2005, 222, 730–742. [Google Scholar] [CrossRef]
- Du, B.; Haensch, R.; Alfarraj, S.; Rennenberg, H. Strategies of plants to overcome abiotic and biotic stresses. Biol. Rev. Camb. Philos. Soc. 2024, 99, 1524–1536. [Google Scholar] [CrossRef]
- Martienssen, R.A. Heterochromatin, small RNA and post-fertilization dysgenesis in allopolyploid and interploid hybrids of Arabidopsis. New Phytol. 2010, 186, 46–53. [Google Scholar] [CrossRef]
- Yang, J.L.; Chen, W.W.; Chen, L.Q.; Qin, C.; Jin, C.W.; Shi, Y.Z.; Zheng, S.J. The 14-3-3 protein GENERAL REGULATORY FACTOR11 (GRF11) acts downstream of nitric oxide to regulate iron acquisition in Arabidopsis thaliana. New Phytol. 2013, 197, 815–824. [Google Scholar] [CrossRef]
- Urzica, E.I.; Casero, D.; Yamasaki, H.; Hsieh, S.I.; Adler, L.N.; Karpowicz, S.J.; Blaby-Haas, C.E.; Clarke, S.G.; Loo, J.A.; Pellegrini, M.; et al. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. Plant Cell 2012, 24, 3921–3948. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.X.; Zhu, X.F.; Xue, D.W.; Zheng, S.J.; Jin, C.W. Beyond iron-storage pool: Functions of plant apoplastic iron during stress. Trends Plant Sci. 2023, 28, 941–954. [Google Scholar] [CrossRef] [PubMed]
- Rabiger, D.S.; Drews, G.N. MYB64 and MYB119 are required for cellularization and differentiation during female gametogenesis in Arabidopsis thaliana. PLoS Genet. 2013, 9, e1003783. [Google Scholar] [CrossRef] [PubMed]
- Makkena, S.; Lee, E.; Sack, F.D.; Lamb, R.S. The R2R3 MYB transcription factors FOUR LIPS and MYB88 regulate female reproductive development. J. Exp. Bot. 2012, 63, 5545–5558. [Google Scholar] [CrossRef]
- Kasahara, R.D.; Portereiko, M.F.; Sandaklie-Nikolova, L.; Rabiger, D.S.; Drews, G.N. MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 2005, 17, 2981–2992. [Google Scholar] [CrossRef]
- Cai, H.; Liu, L.; Zhang, M.; Chai, M.; Huang, Y.; Chen, F.; Yan, M.; Su, Z.; Henderson, I.; Palanivelu, R.; et al. Spatiotemporal control of miR398 biogenesis, via chromatin remodeling and kinase signaling, ensures proper ovule development. Plant Cell 2021, 33, 1530–1553. [Google Scholar] [CrossRef]
- Zhang, S.; Mohanty, D.; Muzaffar, A.; Ni, M. Two MADS-box proteins, AGL9 and AGL15, recruit the FIS-PRC2 complex to trigger the phase transition from endosperm proliferation to embryo development in Arabidopsis. Mol. Plant 2024, 17, 1110–1128. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
Gene ID | Chromosome (Chr) | Start | End | pI | Molecular Weight (Average) | Subcellular Location | Protein Length (aa) | A. thaliana DUF506 Genes |
---|---|---|---|---|---|---|---|---|
Bra026262 | A01 | 10,328,544 | 10,330,239 | 6.96 | 33,655.44 | nucl | 299 | AT4G32480 |
Bra036877 | A01 | 12,460,526 | 12,461,742 | 5.69 | 39,571.58 | cyto | 354 | AT4G14620 |
Bra040373 | A01 | 27,947,913 | 27,948,491 | 10.78 | 21,600.19 | chlo | 192 | AT3G07350 |
Bra000098 | A03 | 9,236,560 | 9,237,656 | 8.38 | 34,659.74 | nucl | 309 | AT2G38820 |
Bra000140 | A03 | 9,501,674 | 9,503,552 | 7.04 | 33,728.35 | nucl | 302 | AT2G39650 |
Bra001897 | A03 | 19,213,110 | 19,214,189 | 5.55 | 36,930.09 | cyto | 333 | AT3G22970 |
Bra013223 | A03 | 19,776,413 | 19,777,261 | 6.55 | 31,935.97 | nucl | 282 | AT3G25240 |
Bra024209 | A03 | 26,866,824 | 26,868,136 | 6.99 | 33,163.73 | nucl | 295 | AT4G32480 |
Bra017099 | A04 | 16,615,630 | 16,616,603 | 8.7 | 33,762.84 | nucl | 300 | AT2G38820 |
Bra033896 | A05 | 14,926,740 | 14,927,979 | 5.34 | 40,567.86 | cyto | 367 | AT3G22970 |
Bra029641 | A05 | 22,850,133 | 22,851,035 | 6.54 | 33,558.79 | nucl | 300 | AT3G07350 |
Bra019736 | A06 | 4,719,393 | 4,720,920 | 6.21 | 33,768.01 | cyto | 293 | AT1G12030 |
Bra036492 | A07 | 88,234 | 89,597 | 6.9 | 33,380.91 | nucl | 297 | AT2G20670 |
Bra015691 | A07 | 21,336,474 | 21,337,545 | 8.76 | 30,140.59 | nucl | 263 | AT1G77145 |
Bra015690 | A07 | 21,338,681 | 21,339,754 | 8.69 | 30,837.18 | nucl | 268 | AT1G77145 |
Bra015689 | A07 | 21,345,306 | 21,346,318 | 8.76 | 29,586.01 | nucl | 257 | AT1G77145 |
Bra016797 | A08 | 20,033,880 | 20,035,821 | 7.56 | 33,604.24 | cyto | 295 | AT1G12030 |
Bra031136 | A09 | 32,332,835 | 32,334,124 | 7.53 | 33,184.72 | nucl, cyto_nucl | 294 | AT2G20670 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, G.; Wang, J.; He, S.; Liang, K.; Zhang, R.; Huang, J.; Yang, X.; Zhang, X. Comprehensive Analysis of BrDUF506 Genes Across the Brassica rapa Genome Uncovers Potential Functions in Sexual Reproduction and Abiotic Stress Tolerance. Int. J. Mol. Sci. 2024, 25, 11087. https://doi.org/10.3390/ijms252011087
Zhu G, Wang J, He S, Liang K, Zhang R, Huang J, Yang X, Zhang X. Comprehensive Analysis of BrDUF506 Genes Across the Brassica rapa Genome Uncovers Potential Functions in Sexual Reproduction and Abiotic Stress Tolerance. International Journal of Molecular Sciences. 2024; 25(20):11087. https://doi.org/10.3390/ijms252011087
Chicago/Turabian StyleZhu, Guangqi, Jingxuan Wang, Shuang He, Kexin Liang, Renyi Zhang, Jiabao Huang, Xueqin Yang, and Xiaojing Zhang. 2024. "Comprehensive Analysis of BrDUF506 Genes Across the Brassica rapa Genome Uncovers Potential Functions in Sexual Reproduction and Abiotic Stress Tolerance" International Journal of Molecular Sciences 25, no. 20: 11087. https://doi.org/10.3390/ijms252011087
APA StyleZhu, G., Wang, J., He, S., Liang, K., Zhang, R., Huang, J., Yang, X., & Zhang, X. (2024). Comprehensive Analysis of BrDUF506 Genes Across the Brassica rapa Genome Uncovers Potential Functions in Sexual Reproduction and Abiotic Stress Tolerance. International Journal of Molecular Sciences, 25(20), 11087. https://doi.org/10.3390/ijms252011087