Eutopic and Ectopic Endometrial Interleukin-17 and Interleukin-17 Receptor Expression at the Endometrial—Myometrial Interface in Women with Adenomyosis: Possible Pathophysiology Implications
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Ethical Disclosure and Tissue Sampling Methodology
4.2. Treatments for Specimens
4.3. Immunohistochemistry Study of IL-17A in EMI
4.4. Immunohistochemistry Study of IL-17A and IL-17R in Paired Tissues of EMI
4.5. Quantitative Study for IL-17 mRNA Expression Using Real-Time RT-PCR
4.6. IL-17 mRNA Expression Determined by Quantitative RT-PCR (qRT-PCR)
4.7. Data Interpretation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Upson, K.; Missmer, S.A. Epidemiology of Adenomyosis. Semin. Reprod. Med. 2020, 38, 89–107. [Google Scholar] [CrossRef]
- Bulun, S.E.; Yildiz, S.; Adli, M.; Wei, J.J. Adenomyosis Pathogenesis: Insights from Next-Generation Sequencing. Hum. Reprod. Update 2021, 27, 1086–1097. [Google Scholar] [CrossRef]
- García-Solares, J.; Donnez, J.; Donnez, O.; Dolmans, M.M. Pathogenesis of Uterine Adenomyosis: Invagination or Metaplasia? Fertil. Steril. 2018, 109, 371–379. [Google Scholar] [CrossRef]
- Bird, C.C.; McElin, T.W.; Manalo-Estrella, P. The Elusive Adenomyosis of the Uterus--Revisited. Am. J. Obstet. Gynecol. 1972, 112, 583–593. [Google Scholar] [CrossRef]
- Zhai, J.; Vannuccini, S.; Petraglia, F.; Giudice, L.C. Adenomyosis: Mechanisms and Pathogenesis. Semin. Reprod. Med. 2020, 38, 129–143. [Google Scholar] [CrossRef]
- Struble, J.; Reid, S.; Bedaiwy, M.A. Adenomyosis: A Clinical Review of a Challenging Gynecologic Condition. J. Minim. Invasive Gynecol. 2016, 23, 164–185. [Google Scholar] [CrossRef]
- Benagiano, G.; Brosens, I. The Endometrium in Adenomyosis. Womens Health 2012, 8, 301–312. [Google Scholar] [CrossRef]
- Marcus, C.C. Relationship of Adenomyosis Uteri to Endometrial Hyperplasia and Endometrial Carcinoma. Am. J. Obstet. Gynecol. 1961, 82, 408–416. [Google Scholar] [CrossRef]
- Benagiano, G.; Habiba, M.; Brosens, I. The Pathophysiology of Uterine Adenomyosis: An Update. Fertil. Steril. 2012, 98, 572–579. [Google Scholar] [CrossRef]
- Uduwela, A.S.; Perera, M.A.; Aiqing, L.; Fraser, I.S. Endometrial-Myometrial Interface: Relationship to Adenomyosis and Changes in Pregnancy. Obstet. Gynecol. Surv. 2000, 55, 390–400. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Yoshihara, K.; Suda, K.; Nakaoka, H.; Yachida, N.; Ueda, H.; Sugino, K.; Mori, Y.; Yamawaki, K.; Tamura, R.; et al. Three-Dimensional Understanding of the Morphological Complexity of the Human Uterine Endometrium. iScience 2021, 24, 102258. [Google Scholar] [CrossRef]
- Harada, T.; Iwabe, T.; Terakawa, N. Role of Cytokines in Endometriosis. Fertil. Steril. 2001, 76, 1–10. [Google Scholar] [CrossRef]
- Lebovic, D.I.; Mueller, M.D.; Taylor, R.N. Immunobiology of Endometriosis. Fertil. Steril. 2001, 75, 1–10. [Google Scholar] [CrossRef]
- Bourdon, M.; Santulli, P.; Marcellin, L.; Maignien, C.; Maitrot-Mantelet, L.; Bordonne, C.; Plu Bureau, G.; Chapron, C. Adenomyosis: An Update Regarding Its Diagnosis and Clinical Features. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 102228. [Google Scholar] [CrossRef]
- Wang, F.; Li, H.; Yang, Z.; Du, X.; Cui, M.; Wen, Z. Expression of Interleukin-10 in Patients with Adenomyosis. Fertil. Steril. 2009, 91, 1681–1685. [Google Scholar] [CrossRef]
- Long, Z.; Zhang, W.; Jiang, P.; Wan, A.; Zhou, L. Comparative Serum Proteomic Analysis of Adenomyosis Using the Isobaric Tags for Relative and Absolute Quantitation Technique. Fertil. Steril. 2013, 100, 505–510. [Google Scholar]
- Zhang, X.; Xu, H.; Lin, J.; Qian, Y.; Deng, L. Peritoneal Fluid Concentrations of Interleukin-17 Correlate with the Severity of Endometriosis and Infertility of This Disorder. BJOG 2005, 112, 1153–1155. [Google Scholar] [CrossRef]
- Hirata, T.; Osuga, Y.; Hamasaki, K.; Yoshino, O.; Ito, M.; Hasegawa, A.; Takemura, Y.; Hirota, Y.; Nose, E.; Morimoto, C.; et al. Interleukin (Il)-17a Stimulates Il-8 Secretion, Cyclooxygensase-2 Expression, and Cell Proliferation of Endometriotic Stromal Cells. Endocrinology 2008, 149, 1260–1267. [Google Scholar] [CrossRef]
- Aarvak, T.; Chabaud, M.; Miossec, P.; Natvig, J.B. Il-17 Is Produced by Some Proinflammatory Th1/Th0 Cells but Not by Th2 Cells. J. Immunol. 1999, 162, 1246–1251. [Google Scholar] [CrossRef]
- Albanesi, C.; Cavani, A.; Girolomoni, G. Il-17 Is Produced by Nickel-Specific T Lymphocytes and Regulates Icam-1 Expression and Chemokine Production in Human Keratinocytes: Synergistic or Antagonist Effects with Ifn-Gamma and Tnf-Alpha. J. Immunol. 1999, 162, 494–502. [Google Scholar] [CrossRef]
- Beringer, A.; Noack, M.; Miossec, P. Il-17 in Chronic Inflammation: From Discovery to Targeting. Trends Mol. Med. 2016, 22, 230–241. [Google Scholar] [CrossRef]
- Harrington, L.E.; Hatton, R.D.; Mangan, P.R.; Turner, H.; Murphy, T.L.; Murphy, K.M.; Weaver, C.T. Interleukin 17-Producing Cd4+ Effector T Cells Develop Via a Lineage Distinct from the T Helper Type 1 and 2 Lineages. Nat. Immunol. 2005, 6, 1123–1132. [Google Scholar] [CrossRef]
- Zou, W.; Restifo, N.P. T(H)17 Cells in Tumour Immunity and Immunotherapy. Nat. Rev. Immunol. 2010, 10, 248–256. [Google Scholar] [CrossRef]
- Fossiez, F.; Djossou, O.; Chomarat, P.; Flores-Romo, L.; Ait-Yahia, S.; Maat, C.; Pin, J.J.; Garrone, P.; Garcia, E.; Saeland, S.; et al. T Cell Interleukin-17 Induces Stromal Cells to Produce Proinflammatory and Hematopoietic Cytokines. J. Exp. Med. 1996, 183, 2593–2603. [Google Scholar] [CrossRef]
- Rouvier, E.; Luciani, M.F.; Mattéi, M.G.; Denizot, F.; Golstein, P. Ctla-8, Cloned from an Activated T Cell, Bearing Au-Rich Messenger Rna Instability Sequences, and Homologous to a Herpesvirus Saimiri Gene. J. Immunol. 1993, 150, 5445–5456. [Google Scholar] [CrossRef]
- Patel, D.D.; Kuchroo, V.K. Th17 Cell Pathway in Human Immunity: Lessons from Genetics and Therapeutic Interventions. Immunity 2015, 43, 1040–1051. [Google Scholar] [CrossRef]
- Miossec, P.; Kolls, J.K. Targeting Il-17 and Th17 Cells in Chronic Inflammation. Nat. Rev. Drug Discov. 2012, 11, 763–776. [Google Scholar] [CrossRef]
- Toy, D.; Kugler, D.; Wolfson, M.; Vanden Bos, T.; Gurgel, J.; Derry, J.; Tocker, J.; Peschon, J. Cutting Edge: Interleukin 17 Signals through a Heteromeric Receptor Complex. J. Immunol. 2006, 177, 36–39. [Google Scholar] [CrossRef]
- Simón, C.; Piquette, G.N.; Frances, A.; Polan, M.L. Localization of Interleukin-1 Type I Receptor and Interleukin-1 Beta in Human Endometrium Throughout the Menstrual Cycle. J. Clin. Endocrinol. Metab. 1993, 77, 549–555. [Google Scholar]
- Simón, C.; Frances, A.; Lee, B.Y.; Mercader, A.; Huynh, T.; Remohi, J.; Polan, M.L.; Pellicer, A. Immunohistochemical Localization, Identification and Regulation of the Interleukin-1 Receptor Antagonist in the Human Endometrium. Hum. Reprod. 1995, 10, 2472–2477. [Google Scholar] [CrossRef]
- Gazvani, R.; Templeton, A. Peritoneal Environment, Cytokines and Angiogenesis in the Pathophysiology of Endometriosis. Reproduction 2002, 123, 217–226. [Google Scholar] [CrossRef]
- Hirata, T.; Osuga, Y.; Takamura, M.; Saito, A.; Hasegawa, A.; Koga, K.; Yoshino, O.; Hirota, Y.; Harada, M.; Taketani, Y. Interleukin-17f Increases the Secretion of Interleukin-8 and the Expression of Cyclooxygenase 2 in Endometriosis. Fertil. Steril. 2011, 96, 113–117. [Google Scholar] [CrossRef]
- Bedaiwy, M.A.; Falcone, T. Peritoneal Fluid Environment in Endometriosis. Clinicopathological Implications. Minerva Ginecol. 2003, 55, 333–345. [Google Scholar]
- Beste, M.T.; Pfäffle-Doyle, N.; Prentice, E.A.; Morris, S.N.; Lauffenburger, D.A.; Isaacson, K.B.; Griffith, L.G. Molecular Network Analysis of Endometriosis Reveals a Role for C-Jun-Regulated Macrophage Activation. Sci. Transl. Med. 2014, 6, 222ra216. [Google Scholar] [CrossRef]
- Shi, J.L.; Zheng, Z.M.; Chen, M.; Shen, H.H.; Li, M.Q.; Shao, J. Il-17: An Important Pathogenic Factor in Endometriosis. Int. J. Med. Sci. 2022, 19, 769–778. [Google Scholar] [CrossRef]
- Miller, J.E.; Ahn, S.H.; Marks, R.M.; Monsanto, S.P.; Fazleabas, A.T.; Koti, M.; Tayade, C. Il-17a Modulates Peritoneal Macrophage Recruitment and M2 Polarization in Endometriosis. Front. Immunol. 2020, 11, 108. [Google Scholar] [CrossRef]
- Okizaki, S.; Ito, Y.; Hosono, K.; Oba, K.; Ohkubo, H.; Amano, H.; Shichiri, M.; Majima, M. Suppressed Recruitment of Alternatively Activated Macrophages Reduces Tgf-Β1 and Impairs Wound Healing in Streptozotocin-Induced Diabetic Mice. Biomed. Pharmacother. 2015, 70, 317–325. [Google Scholar] [CrossRef]
- Weber, C.; Telerman, S.B.; Reimer, A.S.; Sequeira, I.; Liakath-Ali, K.; Arwert, E.N.; Watt, F.M. Macrophage Infiltration and Alternative Activation During Wound Healing Promote Mek1-Induced Skin Carcinogenesis. Cancer Res. 2016, 76, 805–817. [Google Scholar] [CrossRef]
- Wynn, T.A.; Vannella, K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44, 450–462. [Google Scholar] [CrossRef]
- Miljkovic, D.; Trajkovic, V. Inducible Nitric Oxide Synthase Activation by Interleukin-17. Cytokine Growth Factor Rev. 2004, 15, 21–32. [Google Scholar] [CrossRef]
- Sikora, J.; Smycz-Kubańska, M.; Mielczarek-Palacz, A.; Bednarek, I.; Kondera-Anasz, Z. The Involvement of Multifunctional Tgf-Β and Related Cytokines in Pathogenesis of Endometriosis. Immunol. Lett. 2018, 201, 31–37. [Google Scholar] [CrossRef]
- Rafi, U.; Ahmad, S.; Bokhari, S.S.; Iqbal, M.A.; Zia, A.; Khan, M.A.; Roohi, N. Association of Inflammatory Markers/Cytokines with Cardiovascular Risk Manifestation in Patients with Endometriosis. Mediat. Inflamm. 2021, 2021, 3425560. [Google Scholar] [CrossRef]
- Guo, S.W. The Pathogenesis of Adenomyosis Vis-À-Vis Endometriosis. J. Clin. Med. 2020, 9, 485. [Google Scholar] [CrossRef]
- Bourdon, M.; Santulli, P.; Jeljeli, M.; Vannuccini, S.; Marcellin, L.; Doridot, L.; Petraglia, F.; Batteux, F.; Chapron, C. Immunological Changes Associated with Adenomyosis: A Systematic Review. Hum. Reprod. Update 2021, 27, 108–129. [Google Scholar] [CrossRef]
- Li, C.; Chen, R.; Jiang, C.; Chen, L.; Cheng, Z. Correlation of Lox-5 and Cox-2 Expression with Inflammatory Pathology and Clinical Features of Adenomyosis. Mol. Med. Rep. 2019, 19, 727–733. [Google Scholar] [CrossRef]
- Lai, T.H.; Wu, P.H.; Wu, W.B. Involvement of Nadph Oxidase and Nf-Κb Activation in Cxcl1 Induction by Vascular Endothelial Growth Factor in Human Endometrial Epithelial Cells of Patients with Adenomyosis. J. Reprod. Immunol. 2016, 118, 61–69. [Google Scholar] [CrossRef]
- Huang, H.Y.; Yu, H.T.; Chan, S.H.; Lee, C.L.; Wang, H.S.; Soong, Y.K. Eutopic Endometrial Interleukin-18 System Mrna and Protein Expression at the Level of Endometrial-Myometrial Interface in Adenomyosis Patients. Fertil. Steril. 2010, 94, 33–39. [Google Scholar] [CrossRef]
- Chen, L.H.; Chan, S.H.; Li, C.J.; Wu, H.M.; Huang, H.Y. Altered Expression of Interleukin-18 System Mrna at the Level of Endometrial Myometrial Interface in Women with Adenomyosis. Curr. Issues Mol. Biol. 2022, 44, 5550–5561. [Google Scholar] [CrossRef]
- Kurschus, F.C.; Moos, S. Il-17 for Therapy. J. Dermatol. Sci. 2017, 87, 221–227. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative Pcr and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, L.-T.; Lu, P.-C.; Wang, Y.-W.; Wu, H.-M.; Chen, I.-J.; Huang, H.-Y. Eutopic and Ectopic Endometrial Interleukin-17 and Interleukin-17 Receptor Expression at the Endometrial—Myometrial Interface in Women with Adenomyosis: Possible Pathophysiology Implications. Int. J. Mol. Sci. 2024, 25, 11155. https://doi.org/10.3390/ijms252011155
Hsu L-T, Lu P-C, Wang Y-W, Wu H-M, Chen I-J, Huang H-Y. Eutopic and Ectopic Endometrial Interleukin-17 and Interleukin-17 Receptor Expression at the Endometrial—Myometrial Interface in Women with Adenomyosis: Possible Pathophysiology Implications. International Journal of Molecular Sciences. 2024; 25(20):11155. https://doi.org/10.3390/ijms252011155
Chicago/Turabian StyleHsu, Le-Tien, Pei-Chen Lu, Yi-Wen Wang, Hsien-Ming Wu, I-Ju Chen, and Hong-Yuan Huang. 2024. "Eutopic and Ectopic Endometrial Interleukin-17 and Interleukin-17 Receptor Expression at the Endometrial—Myometrial Interface in Women with Adenomyosis: Possible Pathophysiology Implications" International Journal of Molecular Sciences 25, no. 20: 11155. https://doi.org/10.3390/ijms252011155
APA StyleHsu, L.-T., Lu, P.-C., Wang, Y.-W., Wu, H.-M., Chen, I.-J., & Huang, H.-Y. (2024). Eutopic and Ectopic Endometrial Interleukin-17 and Interleukin-17 Receptor Expression at the Endometrial—Myometrial Interface in Women with Adenomyosis: Possible Pathophysiology Implications. International Journal of Molecular Sciences, 25(20), 11155. https://doi.org/10.3390/ijms252011155