Exploring the Shared Pathogenesis Mechanisms of Endometriosis and Cancer: Stemness and Targeted Treatments of Its Molecular Pathways—A Narrative Review
Abstract
:1. Introduction
2. Pathogenesis Hypotheses
- Various hypotheses have been proposed, the only generally accepted one being that of menstrual reflux; we present them below.
- The first theory, proposed by Sampson in 1927, is an implantation hypothesis which also includes dissemination through blood and lymph system [1,2,5,9,14]. The endometrial-like tissue must adhere, implant, and differentiate while avoiding the immune system. This is demonstrated by the presence of large amounts of adhesion molecules such as VCAM (vascular cell adhesion molecule), ICAM (intracellular adhesion molecule), and metalloproteinases, with mechanical transplantation [2,22].
- Müllerian transformation: Remnant Müllerian embryonic rest cells must be present at the ectopic site and are induced to differentiate into functioning endometrial cells under certain influences [1,2,18,37]. The theory of embryonic remnants’ induction would explain instances of endometriosis found in men [38,39]. Also, endometriosis can occur in women with Mayer–Rokitansky–Küster–Hauser syndrome with uterus remnants or Müllerian embryonic rests [40,41].
- Via the lymphatic or blood vessels, the unusual occurrence of lesions in other places, e.g., the lungs, brain, eyes, pleura, and nerve tissue, explained by Sampson’s theory [2,18,42]. The cells must be able to migrate, implant, and differentiate into endometrial-like tissue and evade the immune system [1,2,3,5,17,22]. Cells derived from endometriosis with stem-cell-like properties may also enter the blood circulation to migrate and implant into distant tissues [43].
- According to other authors, deep infiltrating endometriosis (DIE) is histologically characterized by well-differentiated glandular cells and stromal cells, mixed differentiated cells, and pure undifferentiated glandular cells. These undifferentiated cells from the endometriotic lesions result from cell resistance to the suppressive effects of the immune system in the peritoneal cavity; this process allows these endometrial undifferentiated cells to infiltrate more deeply. Therefore, deep endometriosis occurs due to different pathogenetic pathways, including inflammation, neo-angiogenesis, and differentiation of undifferentiated cells, in order to adapt better and to proliferate in inhospitable anatomical sites, which is consistent with Sampson’s theory [45]. Although some authors have claimed that this hypothesis cannot explain the presence of endometriotic lesions in men subjected to hormonal treatment for prostate or bladder cancer, it has not yet been clarified whether these men are pure XY genotypes or possibly XXY chimeras or also have embryonic remnants. Similarly, endometriosis after hysterectomy was suggested to disprove the theory of Sampson; however, it can be explained by, for example, lymphatic blood spread of unremoved ectopic endometrial lesions to other locations [23,38,46,47,48]. Some authors have claimed that endometriosis is not similar to eutopic endometrium and differs in many ways such as histologic and morphologic characteristics, origin of clonality, protein expression, hormone response, or enzymatic activity, and is thus not an autotransplant. However, ectopic endometrium consists of endometrial glands and endometrial stroma and is thus histologically very similar to eutopic endometrium [49,50]. Even so, we agree in our review with Sampson’s theory, and as such we added it as the first and most accepted theory, with other authors emphasizing the importance of immunohistochemistry in demonstrating the presence of estrogen receptor (ER) and progesterone receptor (PR) in the ectopic lesions, very similar with those in eutopic endometrium [42,50].
- The connection of endometriosis and endometriosis-associated ovarian cancers with the presence of stem cells in endometriotic lesions raises questions about the possible involvement of endometrial stem cells in the carcinogenesis of some endometriosis-associated ovarian cancers [23]. Different biomarkers were sought, and the researchers found that the concentration of soluble CD44 in the sera and endometrial fluid of endometriosis patients was higher than that of healthy women. Furthermore, similar disturbances in galectins or miRNA have been observed in endometrial tissue and ovarian or endometrial cancer [23,51]. Endometriosis development involves endometrial stem/progenitor cells, a notion compatible with Sampson’s retrograde menstruation theory and supported by the demonstration of eMSCs in menstrual blood, even if there is no evidence that eMSCs are responsible for the de novo formation of ectopic endometrial glands/stroma. Evidence of cancer stem cells (CSC) in endometrial cancer indicates that new avenues for developing therapeutic options targeting CSC may become available [52].
- (a)
- Altered immune system
- (b)
- The involvement of stem cells
3. Similarities with Cancer
4. Future Personalized Treatment Options Have Emerged from Molecular Pathology Mechanisms
- -
- Hypoxia: The oxygen levels in the tumor microenvironment (TME) may regulate the stemness status of CSCs. Cells cultivated under hypoxic conditions show significantly higher proliferation and infiltration capabilities.
- -
- Some cytokines in the TME may stimulate stemness, e.g., granulocyte-stimulating factor (G-CSF), TNF (tumor necrosis factor)-alpha, or IL6.
- -
- Mitochondrial deoxyribonucleic acid (mtDNA) blocking.
- -
- Sex hormone stimulation may contribute to stemness [133].
- -
- Wnt signaling plays a critical role in multiple biological processes, including cell differentiation and proliferation, survival, migration, tumorigenesis, stemness, and chemoresistance. The CSC markers are often related to hypoxic activation of the WNT/b-catenin pathway. By inhibiting these pathways to kill the CSC population, or forcing them out of dormancy and transforming them into active cells, they became more susceptible to classical therapy [134].
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xie, C.; Lu, C.; Liu, Y. Diagnostic gene biomarkers for predicting immune infiltration in endometriosis. BMC Women’s Health 2022, 184, 22. [Google Scholar] [CrossRef] [PubMed]
- Hudson, Q.J.; Perricos, A.; Wenzl, R.; Yotova, I. Challenges in uncovering non-invasive biomarkers of endometriosis. Exp. Biol. Med. 2020, 245, 437–447. [Google Scholar] [CrossRef]
- Bouquet de Joliniere, J.; Major, A.; Ayoubi, J.M.; Cabry, R.; Khomsi, F.; Lesec, G.; Frydman, R.; Feki, A. It Is Necessary to Purpose an Add-on to the American Classification of Endometriosis? This Disease Can Be Compared to a Malignant Proliferation While Remaining Benign in Most Cases. EndoGram® Is a New Profile Witness of Its Evolutionary Potential. Front. Surg. 2019, 6, 27. [Google Scholar] [CrossRef]
- Camboni, A.; Marbaix, E. Ectopic Endometrium: The Pathologist’s Perspective. Int. J. Mol. Sci. 2021, 22, 10974. [Google Scholar] [CrossRef]
- Nisenblat, V.; Bossuyt, P.M.; Shaikh, R.; Farquhar, C.; Jordan, V.; Scheffers, C.S.; Mol, B.W.; Johnson, N.; Hull, M.L. Blood biomarkers for the non-invasive diagnosis of endometriosis. Cochrane Database Syst. Rev. 2016, 2016, CD012179. [Google Scholar] [CrossRef] [PubMed]
- Vanhie, A.; O, D.; Peterse, D.; Beckers, A.; Cuéllar, A.; Fassbender, A.; Meuleman, C.; Mestdagh, P.; D’Hooghe, T. Plasma miRNAs as biomarkers for endometriosis. Hum. Reprod. 2019, 34, 1650–1660. [Google Scholar] [CrossRef]
- Sobstyl, M.; Niedźwiedzka-Rystwej, P.; Grywalska, E.; Korona-Głowniak, I.; Sobstyl, A.; Bednarek, W.; Roliński, J. Toll-Like Receptor 2 Expression as a New Hallmark of Advanced Endometriosis. Cells 2020, 9, 1813. [Google Scholar] [CrossRef] [PubMed]
- Kalaitzopoulos, D.R.; Mitsopoulou, A.; Iliopoulou, S.M.; Daniilidis, A.; Samartzis, E.P.; Economopoulos, K.P. Association between endometriosis and gynecological cancers: A critical review of the literature. Arch. Gynecol. Obstet. 2020, 301, 355–367. [Google Scholar] [CrossRef]
- Coutinho, L.M.; Ferreira, M.C.; Rocha, A.L.L.; Carneiro, M.M.; Reis, F.M. New biomarkers in endometriosis. Adv. Clin. Chem. 2019, 89, 59–77. [Google Scholar] [CrossRef]
- Penciu, R.C.; Steriu, L.; Izvoranu, S.I.; Postolache, I.U.; Tica, A.A.; Mocanu, D.I.; Tica, O.S.; Sarbu, V.; Deacu, M.A.; Baltatescu, G.A.; et al. CD10, CD34 and Ki67 Immunohistochemical Markers Expression in Endometriosis and Adenomyosis. Rev. Chim. 2019, 70, 1323–1327. [Google Scholar] [CrossRef]
- Saridogan, E.; Becker, C.M.; Feki, A.; Grimbizis, G.F.; Hummelshoj, L.; Keckstein, J.; Nisolle, M.; Tanos, V.; Ulrich, U.A.; Vermeulen, N.; et al. Recommendations for the Surgical Treatment of Endometriosis. Part 1: Ovarian Endometrioma. Hum. Reprod. Open 2017, 2017, hox016. [Google Scholar] [CrossRef] [PubMed]
- Capilna, E.M.; Bela, S.; Puscasiu, L.; Toma, A.; Rugina, C. Endometriosis and Gynecological Cancer. Curr. Women’s Health Rev. 2012, 8, 150–157. [Google Scholar] [CrossRef]
- Terzic, M.; Aimagambetova, G.; Kunz, J.; Bapayeva, G.; Aitbayeva, B.; Terzic, S.; Laganà, A.S. Molecular Basis of Endometriosis and Endometrial Cancer: Current Knowledge and Future Perspectives. Int. J. Mol. Sci. 2021, 22, 9274. [Google Scholar] [CrossRef]
- Sampson, J.A. The development of the implantation theory for the origin of peritoneal endometriosis. Am. J. Obstet. Gynecol. 1940, 40, 549–557. [Google Scholar]
- Králíčková, M.; Laganà, A.S.; Ghezzi, F.; Vetvicka, V. Endometriosis and risk of ovarian cancer: What do we know. Arch. Gynecol. Obstet. 2020, 301, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Varma, R.; Rollason, T.; Gupta, J.K.; Maher, E.R. Endometriosis and the neoplastic process. Reproduction 2004, 127, 293–304. [Google Scholar] [CrossRef]
- Ahn, S.H.; Singh, V.; Tayade, C. Biomarkers in endometriosis: Challenges and opportunities. Fertil. Steril. 2017, 107, 523–532. [Google Scholar] [CrossRef]
- Hegazy, A.A. A new look at the theoretical causes of endometriosis: Narrative review. Int. J. Reprod. Biomed. 2024, 22, 343. [Google Scholar] [CrossRef]
- Becker, C. Diagnosis and management of endometriosis. Prescriber 2015, 26, 17–21. [Google Scholar] [CrossRef]
- Vermeulen, N.; Abrao, M.S.; Einarsson, J.I.; Horne, A.W.; Johnson, N.P.; Lee, T.T.M.; Missmer, S.; Petrozza, J.; Tomassetti, C.; Zondervan, K.T.; et al. Endometriosis Classification, Staging and Reporting Systems: A Review on the Road to a Universally Accepted Endometriosis Classification. J. Minim. Invasive Gynecol. 2021, 28, 1822–1848. [Google Scholar] [CrossRef]
- Keckstein, J.; Becker, C.M.; Canis, M.; Feki, A.; Grimbizis, G.F.; Hummelshoj, L.; Nisolle, M.; Roman, H.; Saridogan, E.; Tanos, V.; et al. Recommendations for the surgical treatment of endometriosis. Part 2: Deep endometriosis. Hum. Reprod. Open 2020, 2020, hoaa002. [Google Scholar] [CrossRef] [PubMed]
- Özçelik, K.; Çapar, M.; Gazi Uçar, M.; Çakιr, T.; Özçelik, F.; Tuyan Ilhan, T. Are cytokine levels in serum, endometrial tissue, and peritoneal fluid a promising predictor to diagnosis of endometriosis-adenomyosis. Clin. Exp. Obstet. Gynecol. 2016, 43, 569–572. [Google Scholar] [CrossRef]
- Wilczyński, J.R.; Szubert, M.; Paradowska, E.; Wilczyński, M. Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers 2022, 15, 111. [Google Scholar] [CrossRef]
- Irimia, T.; Pușcașiu, L.; Mitranovici, M.I.; Crișan, A.; Budianu, M.A.; Bănescu, C.; Chiorean, D.M.; Niculescu, R.; Sabău, A.H.; Cocuz, I.G.; et al. Oxidative-Stress Related Gene Polymorphism in Endometriosis-Associated Infertility. Medicina 2022, 58, 1105. [Google Scholar] [CrossRef]
- Walankiewicz, M.; Grywalska, E.; Polak, G.; Korona-Glowniak, I.; Witt, E.; Surdacka, A.; Kotarski, J.; Rolinski, J. The Increase of Circulating PD-1- and PD-L1-Expressing Lymphocytes in Endometriosis: Correlation with Clinical and Laboratory Parameters. Mediators Inflamm. 2018, 2018, 7041342. [Google Scholar] [CrossRef] [PubMed]
- Kamrani, S.; Amirchaghmaghi, E.; Ghaffari, F.; Shahhoseini, M.; Ghaedi, K. Altered gene expression of VEGF, IGFs and H19 lncRNA and epigenetic profile of H19-DMR region in endometrial tissues of women with endometriosis. Reprod. Health 2022, 19, 100. [Google Scholar] [CrossRef] [PubMed]
- Ozhan, E.; Kokcu, A.; Yanik, K.; Gunaydin, M. Investigation of diagnostic potentials of nine different biomarkers in endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 178, 128–133. [Google Scholar] [CrossRef]
- Stocks, M.M.; Crispens, M.A.; Ding, T.; Mokshagundam, S.; Bruner-Tran, K.L.; Osteen, K.G. Therapeutically Targeting the Inflammasome Product in a Chimeric Model of Endometriosis-Related Surgical Adhesions. Reprod. Sci. 2017, 24, 1121–1128. [Google Scholar] [CrossRef]
- Meggyes, M.; Szereday, L.; Bohonyi, N.; Koppan, M.; Szegedi, S.; Marics-Kutas, A.; Marton, M.; Totsimon, A.; Polgar, B. Different Expression Pattern of TIM-3 and Galectin-9 Molecules by Peripheral and Peritoneal Lymphocytes in Women with and without Endometriosis. Int. J. Mol. Sci. 2020, 21, 2343. [Google Scholar] [CrossRef]
- Streuli, I.; Santulli, P.; Chouzenoux, S.; Chapron, C.; Batteux, F. Serum Osteopontin Levels Are Decreased in Focal Adenomyosis. Reprod. Sci. 2017, 24, 773–782. [Google Scholar] [CrossRef]
- Konrad, L.; Fruhmann Berger, L.M.; Maier, V.; Horné, F.; Neuheisel, L.M.; Laucks, E.V.; Riaz, M.A.; Oehmke, F.; Meinhold-Heerlein, I.; Zeppernick, F. Predictive model for the non-invasive diagnosis of endometriosis based on clinical parameters. J. Clin. Med. 2023, 12, 4231. [Google Scholar] [CrossRef] [PubMed]
- Soylu Karapinar, O.; Pinar, N.; Özgür, T.; Özcan, O.; Bayraktar, H.S.; Kurt, R.K.; Nural, O. The protective role of dexpanthenol on the endometrial implants in an experimentally induced rat endometriosis model. Reprod. Sci. 2017, 24, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Higashiura, Y.; Kajihara, H.; Shigetomi, H.; Kobayashi, H. Identification of multiple pathways involved in the malignant transformation of endometriosis (Review). Oncol. Lett. 2012, 4, 3–9. [Google Scholar] [CrossRef] [PubMed]
- McCluggage, W.G. Pathologic Staging of Endometrial Carcinomas: Selected Areas of Difficulty. Adv. Anat. Pathol. 2018, 25, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Oală, I.E.; Mitranovici, M.I.; Chiorean, D.M.; Irimia, T.; Crișan, A.I.; Melinte, I.M.; Cotruș, T.; Tudorache, V.; Moraru, L.; Moraru, R.; et al. Endometriosis and the role of pro-inflammatory and anti-inflammatory cytokines in pathophysiology: A narrative review of the literature. Diagnostics 2024, 14, 312. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372. [Google Scholar] [CrossRef]
- Chan, R.W.S.; Ng, E.H.Y.; Yeung, W.S.B. Identification of cells with colony-forming activity, self-renewal capacity, and multipotency in ovarian endometriosis. Am. J. Pathol. 2011, 178, 2832–2844. [Google Scholar] [CrossRef]
- Rei, C.; Williams, T.; Feloney, M. Endometriosis in a man as a rare source of abdominal pain: A case report and review of the literature. Case Rep. Obstet. Gynecol. 2018, 2018, 2083121. [Google Scholar] [CrossRef]
- Jabr, F.I.; Mani, V. An unusual cause of abdominal pain in a male patient: Endometriosis. Avicenna J. Med. 2014, 4, 99–101. [Google Scholar] [CrossRef]
- Konrad, L.; Dietze, R.; Kudipudi, P.K.; Horné, F.; Meinhold-Heerlein, I. Endometriosis in MRKH cases as a proof for the coelomic metaplasia hypothesis? Reproduction 2019, 158, R41–R47. [Google Scholar] [CrossRef]
- Lih Yuan, T.; Sulaiman, N.; Nur Azurah, A.G.; Maarof, M.; Razali, R.A.; Yazid, M.D. Oestrogen-induced epithelial-mesenchymal transition (EMT) in endometriosis: Aetiology of vaginal agenesis in Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. Front. Physiol. 2022, 13, 937988. [Google Scholar] [CrossRef] [PubMed]
- Yovich, J.L.; Rowlands, P.K.; Lingham, S.; Sillender, M.; Srinivasan, S. Pathogenesis of endometriosis: Look no further than John Sampson. Reprod. Biomed. Online 2020, 40, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Shao, Y.; Ren, C.; Yang, G. Endometrial stem/progenitor cells and their roles in immunity, clinical application, and endometriosis. Stem Cell Res. Ther. 2021, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Chiorean, D.M.; Mitranovici, M.I.; Toru, H.S.; Cotoi, T.C.; Tomuț, A.N.; Turdean, S.G.; Cotoi, O.S. New Insights into Genetics of Endometriosis—A Comprehensive Literature Review. Diagnostics 2023, 13, 2265. [Google Scholar] [CrossRef] [PubMed]
- Imperiale, L.; Nisolle, M.; Noël, J.C.; Fastrez, M. Three types of endometriosis: Pathogenesis, diagnosis and treatment. State of the art. J. Clin. Med. 2023, 12, 994. [Google Scholar] [CrossRef]
- Sarkar, P.K.; Koslowski, M.; Streeter, E. Vesical Endometriosis in a male patient on treatment for papillary urothelial carcinoma. J. West Afr. Coll. Surg. 2024, 14, 345–347. [Google Scholar] [CrossRef]
- Lamceva, J.; Uljanovs, R.; Strumfa, I. The main theories on the pathogenesis of endometriosis. Int. J. Mol. Sci. 2023, 24, 4254. [Google Scholar] [CrossRef]
- Artemova, D.; Vishnyakova, P.; Gantsova, E.; Elchaninov, A.; Fatkhudinov, T.; Sukhikh, G. The prospects of cell therapy for endometriosis. J. Assist. Reprod. Genet. 2023, 40, 955–967. [Google Scholar] [CrossRef]
- Redwine, D.B. Was Sampson wrong? Fertil. Steril. 2002, 78, 686–693. [Google Scholar] [CrossRef]
- Boyle, D.P.; McCluggage, W.G. Peritoneal stromal endometriosis: A detailed morphological analysis of a large series of cases of a common and under-recognised form of endometriosis. J. Clin. Pathol. 2009, 62, 530–533. [Google Scholar] [CrossRef]
- Pazhohan, A.; Amidi, F.; Akbari-Asbagh, F.; Seyedrezazadeh, E.; Aftabi, Y.; Abdolalizadeh, J.; Khodarahmian, M.; Khanlarkhani, N.; Sobhani, A. Expression and Shedding of CD44 in the Endometrium of Women with Endometriosis and Modulating Effects of Vitamin D: A Randomized Exploratory Trial. J. Steroid Biochem. Mol. Biol. 2018, 178, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Gargett, C.E.; Masuda, H. Adult stem cells in the endometrium. Mol. Hum. Reprod. 2010, 16, 818–834. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, T. A revised stem cell theory for the pathogenesis of endometriosis. J. Pers. Med. 2022, 12, 216. [Google Scholar] [CrossRef]
- de Miguel-Gómez, L.; López-Martínez, S.; Francés-Herrero, E.; Rodríguez-Eguren, A.; Pellicer, A.; Cervelló, I. Stem cells and the endometrium: From the discovery of adult stem cells to pre-clinical models. Cells 2021, 10, 595. [Google Scholar] [CrossRef] [PubMed]
- Dhesi, A.S.; Morelli, S.S. Endometriosis: A role for stem cells. Women’s Health 2015, 11, 35–49. [Google Scholar] [CrossRef]
- Matsuzaki, S.; Darcha, C. Epithelial to mesenchymal transition-like and mesenchymal to epithelial transition-like processes might be involved in the pathogenesis of pelvic endometriosis. Hum. Reprod. 2012, 27, 712–721. [Google Scholar] [CrossRef]
- Yang, Y.M.; Yang, W.X. Epithelial-to-mesenchymal transition in the development of endometriosis. Oncotarget 2017, 8, 41679. [Google Scholar] [CrossRef]
- Riaz, M.A.; Mecha, E.O.; Omwandho, C.O.; Zeppernick, F.; Meinhold-Heerlein, I.; Konrad, L. The Different Gene Expression Profile in the Eutopic and Ectopic Endometrium Sheds New Light on the Endometrial Seed in Endometriosis. Biomedicines 2024, 12, 1276. [Google Scholar] [CrossRef]
- Schutt, A.K.; Atkins, K.A.; Slack-Davis, J.K.; Stovall, D.W. VCAM-1 on peritoneum and α4β1 integrin in endometrium and their implications in endometriosis. Int. J. Gynecol. Pathol. 2015, 34, 85–89. [Google Scholar] [CrossRef]
- Brubel, R.; Bokor, A.; Pohl, A.; Schilli, G.K.; Szereday, L.; Bacher-Szamuel, R.; Rigo, J.; Polgar, B. Serum galectin-9 as a noninvasive biomarker for the detection of endometriosis and pelvic pain or infertility-related gynecologic disorders. Fertil. Steril. 2017, 108, 1016–1025.e2. [Google Scholar] [CrossRef]
- Lupatov, A.Y.; Saryglar, R.Y.; Vtorushina, V.V.; Poltavtseva, R.A.; Bystrykh, O.A.; Chuprynin, V.D.; Krechetova, L.V.; Pavlovich, S.V.; Yarygin, K.N.; Sukhikh, G.T. Mesenchymal stromal cells isolated from ectopic but not eutopic endometrium display pronounced immunomodulatory activity in vitro. Biomedicines 2021, 9, 1286. [Google Scholar] [CrossRef] [PubMed]
- Laganà, A.S.; Naem, A. The pathogenesis of endometriosis: Are endometrial stem/progenitor cells involved? In Stem Cells in Reproductive Tissues and Organs: From Fertility to Cancer; Springer: Berlin/Heidelberg, Germany, 2022; pp. 193–216. [Google Scholar]
- Cressoni, A.C.L.; Penariol, L.B.; Padovan, C.C.; Orellana, M.D.; Rosa-e-Silva, J.C.; Poli-Neto, O.B.; Ferriani, R.A.; de Paz, C.C.P.; Meola, J. Downregulation of DROSHA: Could It Affect miRNA Biogenesis in Endometriotic Menstrual Blood Mesenchymal Stem Cells? Int. J. Mol. Sci. 2023, 24, 5963. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Z.; Yang, F.; Wang, H.; Liang, S.; Wang, H.; Yang, J.; Lin, J. The role of endometrial stem cells in the pathogenesis of endometriosis and their application to its early diagnosis. Biol. Reprod. 2020, 102, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
- Gołąbek-Grenda, A.; Olejnik, A. In vitro modeling of endometriosis and endometriotic microenvironment–Challenges and recent advances. Cell. Signal. 2022, 97, 110375. [Google Scholar] [CrossRef] [PubMed]
- Wee-Stekly, W.W.; Kew, C.C.Y.; Chern, B.S.M. Endometriosis: A review of the diagnosis and pain management. Gynecol. Minim. Invasive Therapy 2015, 4, 106–109. [Google Scholar] [CrossRef]
- Tal, R.; Shaikh, S.; Pallavi, P.; Tal, A.; López-Giráldez, F.; Lyu, F.; Fang, Y.Y.; Chinchanikar, S.; Liu, Y.; Kliman, H.J.; et al. Adult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy. PLoS Biol. 2019, 17, e3000421. [Google Scholar] [CrossRef]
- Eid, R.A.; Alaa Edeen, M.; Shedid, E.M.; Kamal, A.S.S.; Warda, M.M.; Mamdouh, F.; Khedr, S.A.; Soltan, M.A.; Jeon, H.W.; Zaki, M.S.A.; et al. Targeting cancer stem cells as the key driver of carcinogenesis and therapeutic resistance. Int. J. Mol. Sci. 2023, 24, 1786. [Google Scholar] [CrossRef]
- Bahramy, A.; Zafari, N.; Izadi, P.; Soleymani, F.; Kavousi, S.; Noruzinia, M. The Role of miRNAs 340-5p, 92a-3p, and 381-3p in Patients with Endometriosis: A Plasma and Mesenchymal Stem-Like Cell Study. BioMed Res. Int. 2021, 2021, 5298006. [Google Scholar] [CrossRef]
- Hogg, C.; Horne, A.W.; Greaves, E. Endometriosis-associated macrophages: Origin, phenotype, and function. Front. Endocrinol. 2020, 11, 507486. [Google Scholar] [CrossRef]
- Artemova, D.; Vishnyakova, P.; Khashchenko, E.; Elchaninov, A.; Sukhikh, G.; Fatkhudinov, T. Endometriosis and cancer: Exploring the role of macrophages. Int. J. Mol. Sci. 2021, 22, 5196. [Google Scholar] [CrossRef]
- Li, T.; Li, R.H.; Ng, E.H.; Yeung, W.S.; Chiu, P.C.; Chan, R.W. Interleukin 6 at menstruation promotes the proliferation and self-renewal of endometrial mesenchymal stromal/stem cells through the WNT/β-catenin signaling pathway. Front. Immunol. 2024, 15, 1378863. [Google Scholar] [CrossRef] [PubMed]
- Savant, S.S.; Sriramkumar, S.; O’Hagan, H.M. The role of inflammation and inflammatory mediators in the development, progression, metastasis, and chemoresistance of epithelial ovarian cancer. Cancers 2018, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Mitranovici, M.I.; Chiorean, D.M.; Moraru, L.; Moraru, R.; Caravia, L.; Tiron, A.T.; Cotoi, T.C.; Toru, H.S.; Cotoi, O.S. Shared Pathogenic and Therapeutic Characteristics of Endometriosis, Adenomyosis, and Endometrial Cancer: A Comprehensive Literature Review. Pharmaceuticals 2024, 17, 311. [Google Scholar] [CrossRef] [PubMed]
- Wolff, E.F.; Wolff, A.B.; Du, H.; Taylor, H.S. Demonstration of multipotent stem cells in the adult human endometrium by in vitro chondrogenesis. Reprod. Sci. 2007, 14, 524–533. [Google Scholar] [CrossRef]
- Dimitrov, R.; Timeva, T.; Kyurkchiev, D.; Stamenova, M.; Shterev, A.; Kostova, P.; Zlatkov, V.; Kehayov, I.; Kyurkchiev, S. Characterization of clonogenic stromal cells isolated from human endometrium. Reproduction 2008, 135, 551–558. [Google Scholar] [CrossRef]
- Hong, I.S. Endometrial stem/progenitor cells: Properties, origins, and functions. Genes Dis. 2023, 10, 931–947. [Google Scholar] [CrossRef]
- Chang, J.H.; Au, H.K.; Lee, W.C.; Chi, C.C.; Ling, T.Y.; Wang, L.M.; Kao, S.H.; Huang, Y.H.; Tzeng, C.R. Expression of the pluripotent transcription factor OCT4 promotes cell migration in endometriosis. Fertil. Steril. 2013, 99, 1332–1339. [Google Scholar] [CrossRef]
- Moggio, A.; Pittatore, G.; Cassoni, P.; Marchino, G.L.; Revelli, A.; Bussolati, B. Sorafenib inhibits growth, migration, and angiogenic potential of ectopic endometrial mesenchymal stem cells derived from patients with endometriosis. Fertil. Steril. 2012, 98, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Metodiev, D.; Parvanov, D.; Ruseva, M.; Ganeva, R.; Handzhiyska, M.; Vidolova, N.; Chavoushian, A.; Hadjidekova, S.; Stamenov, G. NOTCH1-and CD117-Positive Stem Cells in Human Endometriosis and Adenomyosis Lesions. Diagnostics 2024, 14, 1642. [Google Scholar] [CrossRef]
- Yang, J.; Huang, F. Stem cell and endometriosis: New knowledge may be producing novel therapies. Int. J. Clin. Exp. Med. 2014, 7, 3853. [Google Scholar]
- Sun, Y.; Yoshida, T.; Okabe, M.; Zhou, K.; Wang, F.; Soko, C.; Saito, S.; Nikaido, T. Isolation of stem-like cancer cells in primary endometrial cancer using cell surface markers CD133 and CXCR4. Transl. Oncol. 2017, 10, 976–987. [Google Scholar] [CrossRef] [PubMed]
- Ajmeera, D.; Ajumeera, R. Drug repurposing: A novel strategy to target cancer stem cells and therapeutic resistance. Genes Dis. 2024, 11, 148–175. [Google Scholar] [CrossRef] [PubMed]
- Napoletano, C.; Bellati, F.; Ruscito, I.; Pernice, M.; Zizzari, I.G.; Caponnetto, S.; Tomao, F.; Frigerio, L.; Liberati, M.; Rughetti, A.; et al. Immunological and clinical impact of cancer stem cells in vulvar cancer: Role of CD133/CD24/ABCG2-expressing cells. Anticancer. Res. 2016, 36, 5109–5116. [Google Scholar] [CrossRef]
- Nazari-Shafti, T.Z.; Neuber, S.; Duran, A.G.; Exarchos, V.; Beez, C.M.; Meyborg, H.; Krüger, K.; Wolint, P.; Buschmann, J.; Böni, R.; et al. MiRNA profiles of extracellular vesicles secreted by mesenchymal stromal cells—Can they predict potential off-target effects? Biomolecules 2020, 10, 1353. [Google Scholar] [CrossRef]
- Brown, T.J.; James, V. The role of extracellular vesicles in the development of a cancer stem cell microenvironment niche and potential therapeutic targets: A systematic review. Cancers 2021, 13, 2435. [Google Scholar] [CrossRef] [PubMed]
- Nowicki, A.; Kulus, M.; Wieczorkiewicz, M.; Pieńkowski, W.; Stefańska, K.; Skupin-Mrugalska, P.; Bryl, R.; Mozdziak, P.; Kempisty, B.; Piotrowska-Kempisty, H. Ovarian Cancer and Cancer Stem Cells—Cellular and Molecular Characteristics, Signaling Pathways, and Usefulness as a Diagnostic Tool in Medicine and Oncology. Cancers 2021, 13, 4178. [Google Scholar] [CrossRef]
- Kong, W.; Huang, Y.; Jiang, P.; Tu, Y.; Li, N.; Wang, J.; Zhou, Q.; Zheng, Y.; Gou, S.; Tian, C.; et al. YAP1 affects the prognosis through the regulation of stemness in endometrial cancer. PeerJ 2023, 11, e15891. [Google Scholar] [CrossRef]
- Chan, R.W.; Li, T.Q.; Zhang, S.S.; Fang, Y.; Xu, J.W. The perivascular niche of endometrial mesenchymal stromal/stem-like cells. Reprod. Dev. Med. 2022, 6, 208–214. [Google Scholar]
- Zhang, Y.; Sun, X.; Li, Z.; Han, X.; Wang, W.; Xu, P.; Liu, Y.; Xue, Y.; Wang, Z.; Xu, S.; et al. Interactions between miRNAs and the Wnt/β-catenin signaling pathway in endometriosis. Biomed. Pharmacother. 2024, 171, 116182. [Google Scholar] [CrossRef]
- Song, Y.; Xiao, L.; Fu, J.; Huang, W.; Wang, Q.; Zhang, X.; Yang, S. Increased expression of the pluripotency markers sex-determining region Y-box 2 and Nanog homeobox in ovarian endometriosis. Reprod. Biol. Endocrinol. 2014, 12, 1–7. [Google Scholar] [CrossRef]
- Shetty, D.; Chaudhari, U.; Sachdeva, G. Cells with “Stemness”: Seeds for endometriosis? J. Reprod. Health Med. 2016, 2, S55–S62. [Google Scholar] [CrossRef]
- Di Claudio, K.A. Endometriosis: Involvement of Stem Cells and Clinical Impact. Ph.D. Thesis, Karolinska Institutet, Stockholm, Sweden, 2016. [Google Scholar]
- Baba, A.; Yamazoe, S.; Dogru, M.; Ogawa, M.; Takamatsu, K.; Miyauchi, J. Clear cell adenocarcinoma arising from adenomyotic cyst: A case report and literature review. J. Obstet. Gynaecol. Res. 2016, 42, 217–223. [Google Scholar] [CrossRef]
- Kim, S.I.; Yeo, S.G.; Gen, Y.; Ju, H.R.; Kim, S.H.; Park, D.C. Differences in autophagy-associated mRNAs in peritoneal fluid of patients with endometriosis and gynecologic cancers. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2019, 2, 100016. [Google Scholar] [CrossRef] [PubMed]
- Samartzis, E.P.; Labidi-Galy, S.I.; Moschetta, M.; Uccello, M.; Kalaitzopoulos, D.R.; Perez-Fidalgo, J.A.; Boussios, S. Endometriosis-associated ovarian carcinomas: Insights into pathogenesis, diagnostics, and therapeutic targets-a narrative review. Ann. Transl. Med. 2020, 8, 1712. [Google Scholar] [CrossRef]
- Keyvani, V.; Riahi, E.; Yousefi, M.; Esmaeili, S.A.; Shafabakhsh, R.; Moradi Hasan-Abad, A.; Mahjoubin-Tehran, M.; Hamblin, M.R.; Mollazadeh, S.; Mirzaei, H. Gynecologic cancer, cancer stem cells, and possible targeted therapies. Front. Pharmacol. 2022, 13, 823572. [Google Scholar] [CrossRef]
- Baranov, V.; Malysheva, O.; Yarmolinskaya, M. Pathogenomics of endometriosis development. Int. J. Mol. Sci. 2018, 19, 1852. [Google Scholar] [CrossRef]
- Sahraei, S.S.; Kowsari, A.; Sheykhhasan, M.; Naserpoor, L.; Sheikholeslami, A. Conditioned medium from healthy women’s endometrial stem cells improve inflammatory and stemness-expression genes in endometriosis women. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Fan, Y.Y.; Deng, W.G.; Liu, Y.N.; Li, Y.Y.; Deng, S.L.; Fu, Y. Effects of forkhead box C2 on carcinogenesis and lymphatic metastasis in endometrial carcinoma. Genet. Mol. Res. 2015, 14, 5535–5547. [Google Scholar] [CrossRef]
- Dave, B.; Mittal, V.; Tan, N.M.; Chang, J.C. Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Res. 2012, 14, 202. [Google Scholar] [CrossRef]
- Alshamrani, A.A. Roles of microRNAs in ovarian cancer tumorigenesis: Two decades later, what have we learned? Front. Oncol. 2020, 10, 1084. [Google Scholar] [CrossRef]
- Ding, D.; Liu, X.; Guo, S.W. Overexpression of lysine-specific demethylase 1 in ovarian endometriomas and its inhibition reduces cellular proliferation, cell cycle progression, and invasiveness. Fertil. Steril. 2014, 101, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Vaicekauskaitė, I.; Sabaliauskaitė, R.; Lazutka, J.R.; Jarmalaitė, S. The emerging role of chromatin remodeling complexes in ovarian cancer. Int. J. Mol. Sci. 2022, 23, 13670. [Google Scholar] [CrossRef] [PubMed]
- Steinbuch, S.C.; Lüß, A.M.; Eltrop, S.; Götte, M.; Kiesel, L. Endometriosis-Associated Ovarian Cancer: From Molecular Pathologies to Clinical Relevance. Int. J. Mol. Sci. 2024, 25, 4306. [Google Scholar] [CrossRef] [PubMed]
- Ponandai-Srinivasan, S.; Andersson, K.L.; Nister, M.; Saare, M.; Hassan, H.A.; Varghese, S.J.; Peters, M.; Salumets, A.; Gemzell-Danielsson, K.; Lalitkumar, P.G.L. Aberrant expression of genes associated with stemness and cancer in endometria and endometrioma in a subset of women with endometriosis. Hum. Reprod. 2018, 33, 1924–1938. [Google Scholar] [CrossRef]
- Louwen, F.; Kreis, N.N.; Ritter, A.; Friemel, A.; Solbach, C.; Yuan, J. BCL6, a key oncogene, in the placenta, pre-eclampsia and endometriosis. Hum. Reprod. Update 2022, 28, 890–909. [Google Scholar] [CrossRef]
- Caramelo, O.; Marinho, C.; Rebelo, T.; Amaral, N.; Mota, F.; Xavier da Cunha, F.; Torgal, I. A case of endometrial stromal sarcoma with synchronous bilateral adenocarcinoma of ovary. Case Rep. Obstet. Gynecol. 2012, 2012, 687510. [Google Scholar] [CrossRef]
- Sciacovelli, M.; Frezza, C. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J. 2017, 284, 3132–3144. [Google Scholar] [CrossRef]
- Cunnea, P.; Fotopoulou, C.; Ploski, J.; Trillsch, F.; Mahner, S.; Kessler, M. Changes in stem cell regulation and epithelial organisation during carcinogenesis and disease progression in gynaecological malignancies. Cancers 2021, 13, 3349. [Google Scholar] [CrossRef]
- Finicelli, M.; Benedetti, G.; Squillaro, T.; Pistilli, B.; Marcellusi, A.; Mariani, P.; Santinelli, A.; Latini, L.; Galderisi, U.; Giordano, A. Expression of stemness genes in primary breast cancer tissues: The role of SOX2 as a prognostic marker for detection of early recurrence. Oncotarget 2014, 5, 9678. [Google Scholar] [CrossRef]
- Forte, A.; Schettino, M.T.; Finicelli, M.; Cipollaro, M.; Colacurci, N.; Cobellis, L.; Galderisi, U. Expression pattern of stemness-related genes in human endometrial and endometriotic tissues. Mol. Med. 2009, 15, 392–401. [Google Scholar] [CrossRef]
- Argentati, C.; Tortorella, I.; Bazzucchi, M.; Morena, F.; Martino, S. Harnessing the potential of stem cells for disease modeling: Progress and promises. J. Pers. Med. 2020, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Fan, H. In-vitro models of human endometriosis. Exp. Ther. Med. 2020, 19, 1617–1625. [Google Scholar]
- Guo, S.W.; Groothuis, P.G. Is it time for a paradigm shift in drug research and development in endometriosis/adenomyosis? Hum. Reprod. Update 2018, 24, 577–598. [Google Scholar] [CrossRef] [PubMed]
- Donnez, J.; Dolmans, M.M. Endometriosis and Medical Therapy: From Progestogens to Progesterone Resistance to GnRH Antagonists: A Review. J. Clin. Med. 2021, 10, 1085. [Google Scholar] [CrossRef] [PubMed]
- Flores, V.A.; Vanhie, A.; Dang, T.; Taylor, H.S. Progesterone receptor status predicts response to progestin therapy in endometriosis. J. Clin. Endocrinol. Metab. 2018, 103, 4561–4568. [Google Scholar] [CrossRef] [PubMed]
- Lučić, I.; Kurtović, M.; Mlinarić, M.; Piteša, N.; Čipak Gašparović, A.; Sabol, M.; Milković, L. Deciphering Common Traits of Breast and Ovarian Cancer Stem Cells and Possible Therapeutic Approaches. Int. J. Mol. Sci. 2023, 24, 10683. [Google Scholar] [CrossRef]
- Rosner, M.; Horer, S.; Feichtinger, M.; Hengstschläger, M. Multipotent fetal stem cells in reproductive biology research. Stem Cell Res. Ther. 2023, 14, 157. [Google Scholar] [CrossRef]
- Lv, H.; Hu, Y.; Cui, Z.; Jia, H. Human menstrual blood: A renewable and sustainable source of stem cells for regenerative medicine. Stem Cell Res. Ther. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Alcayaga-Miranda, F.; Cuenca, J.; Luz-Crawford, P.; Aguila-Díaz, C.; Fernandez, A.; Figueroa, F.E.; Khoury, M. Characterization of menstrual stem cells: Angiogenic effect, migration and hematopoietic stem cell support in comparison with bone marrow mesenchymal stem cells. Stem Cell Res. Ther. 2015, 6, 1–14. [Google Scholar] [CrossRef]
- Masuda, H.; Maruyama, T.; Gargett, C.E.; Miyazaki, K.; Matsuzaki, Y.; Okano, H.; Tanaka, M. Endometrial side population cells: Potential adult stem/progenitor cells in endometrium. Biol. Reprod. 2015, 93, 84-1. [Google Scholar] [CrossRef]
- Gargett, C.E.; Schwab, K.E.; Deane, J.A. Endometrial stem/progenitor cells: The first 10 years. Hum. Reprod. Update 2016, 22, 137–163. [Google Scholar] [CrossRef] [PubMed]
- Silvestris, E.; Minoia, C.; Guarini, A.; Opinto, G.; Negri, A.; Dellino, M.; Tinelli, R.; Cormio, G.; Paradiso, A.V.; De Palma, G. Ovarian Stem Cells (OSCs) from the Cryopreserved Ovarian Cortex: A Potential for Neo-Oogenesis in Women with Cancer-Treatment Related Infertility: A Case Report and a Review of Literature. Curr. Issues Mol. Biol. 2022, 44, 2309–2320. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Z.; Tang, H.; Shen, Y.; Gong, Z.; Xie, N.; Zhang, X.; Wang, W.; Kong, W.; Zhou, Y.; et al. The N 6-methyladenosine (m6A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA. Am. J. Physiol.-Cell Physiol. 2019, 317, C762–C775. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M.; Cavallaro, U. Different shades of L1CAM in the pathophysiology of cancer stem cells. J. Clin. Med. 2020, 9, 1502. [Google Scholar] [CrossRef]
- Masuda, H.; Anwar, S.S.; Bühring, H.J.; Rao, J.R.; Gargett, C.E. A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant. 2012, 21, 2201–2214. [Google Scholar] [CrossRef]
- Lam, E.W.; Brosens, J.J.; Gomes, A.R.; Koo, C.Y. Forkhead box proteins: Tuning forks for transcriptional harmony. Nat. Rev. Cancer 2013, 13, 482–495. [Google Scholar] [CrossRef]
- Ishaq, M.; Ojha, R.; Sharma, A.P.; Singh, S.K. Autophagy in cancer: Recent advances and future directions. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2020; Volume 66. [Google Scholar]
- Du, J.; Zhu, X.; Guo, R.; Xu, Z.; Cheng, F.F.; Liu, Q.; Yang, F.; Guan, L.; Liu, Y.; Lin, J. Autophagy induces G0/G1 arrest and apoptosis in menstrual blood-derived endometrial stem cells via GSK3-β/β-catenin pathway. Stem Cell Res. Ther. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Weigel, M.T.; Krämer, J.; Schem, C.; Wenners, A.; Alkatout, I.; Jonat, W.; Maass, N.; Mundhenke, C. Differential expression of MMP-2, MMP-9 and PCNA in endometriosis and endometrial carcinoma. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 160, 74–78. [Google Scholar] [CrossRef]
- Gammaitoni, L.; Giraudo, L.; Leuci, V.; Todorovic, M.; Mesiano, G.; Picciotto, F.; Pisacane, A.; Zaccagna, A.; Volpe, M.G.; Gallo, S. Effective activity of cytokine-induced killer cells against autologous metastatic melanoma including cells with stemness features. Clin. Cancer Res. 2013, 19, 4347–4358. [Google Scholar] [CrossRef]
- Huang, R. An Ovarian Cancer Stem Cell Study: Regulation of Cell Stemness and the Role of Cancer Stem Cell-Related Markers in Patient Outcome. Ph.D. Thesis, Oslo University, Oslo, Norway, 2015. [Google Scholar]
- ALHulais, R.A.; Ralph, S.J. Cancer stem cells, stemness markers and selected drug targeting: Metastatic colorectal cancer and cyclooxygenase-2/prostaglandin E2 connection to WNT as a model system. J. Cancer Metastasis Treat. 2019, 5, 3. [Google Scholar] [CrossRef]
- Varier, L.; Sundaram, S.M.; Gamit, N.; Warrier, S. An overview of ovarian cancer: The role of cancer stem cells in chemoresistance and a precision medicine approach targeting the Wnt pathway with the antagonist sFRP4. Cancers 2023, 15, 1275. [Google Scholar] [CrossRef]
- McMellen, A.; Woodruff, E.R.; Corr, B.R.; Bitler, B.G.; Moroney, M.R. Wnt signaling in gynecologic malignancies. Int. J. Mol. Sci. 2020, 21, 4272. [Google Scholar] [CrossRef] [PubMed]
- Giannone, G.; Attademo, L.; Scotto, G.; Genta, S.; Ghisoni, E.; Tuninetti, V.; Aglietta, M.; Pignata, S.; Valabrega, G. Endometrial cancer stem cells: Role, characterization and therapeutic implications. Cancers 2019, 11, 1820. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, X.; Cheng, Y.; Wang, J. LGR5, a prognostic stem cell target, promotes endometrial cancer proliferation through autophagy activation. Transl. Oncol. 2024, 40, 101853. [Google Scholar] [CrossRef] [PubMed]
- Dragu, D.L.; Necula, L.G.; Bleotu, C.; Diaconu, C.C.; Chivu-Economescu, M. Therapies targeting cancer stem cells: Current trends and future challenges. World J. Stem Cells 2015, 7, 1185. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Huang, Y.; Wang, H.; Jadhav, S.; Yue, Z.; Tiwari, A.K.; Babu, R.J. Tumor-Associated Macrophage Targeting of Nanomedicines in Cancer Therapy. Pharmaceutics 2023, 16, 61. [Google Scholar] [CrossRef] [PubMed]
- Ronsini, C.; Fumiento, P.; Iavarone, I.; Greco, P.F.; Cobellis, L.; De Franciscis, P. Liquid biopsy in endometriosis: A systematic review. Int. J. Mol. Sci. 2023, 24, 6116. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, P.; Liu, X.; Sakuragi, N.; Guo, S.W. Enhancer of Zeste homolog 2 (EZH2) induces epithelial-mesenchymal transition in endometriosis. Sci. Rep. 2017, 7, 6804. [Google Scholar] [CrossRef]
- Torres-Reverón, A.; Palermo, K.; Hernández-López, A.; Hernández, S.; Cruz, M.L.; Thompson, K.J.; Flores, I.; Appleyard, C.B. Endometriosis Is Associated With a Shift in MU Opioid and NMDA Receptor Expression in the Brain Periaqueductal Gray. Reprod. Sci. 2016, 23, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Albaghdadi, A.J.; Kan, F.W. Therapeutic potentials of low-dose tacrolimus for aberrant endometrial features in polycystic ovary syndrome. Int. J. Mol. Sci. 2021, 22, 2872. [Google Scholar] [CrossRef]
- Yang, H.L.; Zhou, W.J.; Gu, C.J.; Meng, Y.H.; Shao, J.; Li, D.J.; Li, M.Q. Pleiotropic roles of melatonin in endometriosis, recurrent spontaneous abortion, and polycystic ovary syndrome. Am. J. Reprod. Immunol. 2018, 80, e12839. [Google Scholar] [CrossRef] [PubMed]
- Pace, L.; Markovic, D.; Buyalos, R.; Bril, F.; Azziz, R. Economic Burden of Endometrial Cancer Associated With Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2024, dgae527. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, U.; Mukherjee, S.; Ali, S.; Siddiqui, A.J.; Iqbal, D.; Almalki, S.G.; Alsagaby, S.A.; Jahan, S.; Ansari, U.A. 19 Novel Phytochemicals Targeting the Signaling Pathways of Anticancer Stem Cell. In Ethnobotany and Ethnopharmacology of Medicinal and Aromatic Plants; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Rütten, H.; Verhoef, C.; van Weelden, W.J.; Smits, A.; Dhanis, J.; Ottevanger, N.; Pijnenborg, J.M.A. Recurrent Endometrial Cancer: Local and Systemic Treatment Options. Cancers 2021, 13, 6275. [Google Scholar] [CrossRef] [PubMed]
- Androutsopoulos, G.; Decavalas, G. Standard and Novel Therapies in Endometrial Cancer. J. Gynecol. Women’s Health 2016, 1, 555–564. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S. Is It the Best Option? Robotic Surgery for Endometriosis. Life 2024, 14, 982. [Google Scholar] [CrossRef]
- Wang, E.B.; Chang, S.; Bossa, D.; Rosero, E.B.; Kho, K.A. Association between Endometriosis and Surgical Complications among Benign Hysterectomies. J. Minim. Invasive Gynecol. 2023, 30, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Mortlock, S.; Corona, R.I.; Kho, P.F.; Pharoah, P.; Seo, J.H.; Freedman, M.L.; Gayther, S.A.; Siedhoff, M.T.; Rogers, P.A.W.; Leuchter, R.; et al. A multi-level investigation of the genetic relationship between endometriosis and ovarian cancer histotypes. Cell Rep. Med. 2022, 3, 100542. [Google Scholar] [CrossRef]
- Bouaziz, J.; Mashiach, R.; Cohen, S.; Kedem, A.; Baron, A.; Zajicek, M.; Feldman, I.; Seidman, D.; Soriano, D. How Artificial Intelligence Can Improve Our Understanding of the Genes Associated with Endometriosis: Natural Language Processing of the PubMed Database. Biomed. Res. Int. 2018, 2018, 6217812. [Google Scholar] [CrossRef]
1. Etiopathogenic Mechanisms [2,3,13,14,15,16,17] |
| ||||
2. Diagnostic Methods [1,3,5,6,8,9,10,13,14,15,16,18,19,20,21,23,54,55,59,94,95,96,108] | Clinical |
| |||
Imaging |
| ||||
Laparoscopy with Samples Laparotomy |
| ||||
Biomarkers (under study: not validated for endometriosis; some validated for cancer) |
| ||||
3. Staging [1,21] | In endometriosis: rASRM in minimal (I), mild (II), moderate (III), severe (IV) disease. | In cancer: FIGO/TNM | |||
4. Metastases or Recurrences [2,5,6,11,20,96,101] |
| ||||
5. Disease Management [2,5,6,11,13,16,20,21,22,25,96,101,108] | Current Management
| Treatments First Administered in Cancer, Currently also Used in Endometriosis/Adenomyosis: GNRH agonists and antagonists, progesterone | Future Therapy:
| Resistance to Therapy
| Management of Fertility:
|
6. Prognosis/Follow-up [2,5,13,14,15] |
| ||||
7. Common Risk Factors [13,14,15] |
| ||||
8. The Most Distinct Metabolic Alteration in Both Diseases [109] |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitranovici, M.-I.; Costachescu, D.; Voidazan, S.; Munteanu, M.; Buicu, C.-F.; Oală, I.E.; Ivan, V.; Apostol, A.; Melinte, I.M.; Crisan, A.; et al. Exploring the Shared Pathogenesis Mechanisms of Endometriosis and Cancer: Stemness and Targeted Treatments of Its Molecular Pathways—A Narrative Review. Int. J. Mol. Sci. 2024, 25, 12749. https://doi.org/10.3390/ijms252312749
Mitranovici M-I, Costachescu D, Voidazan S, Munteanu M, Buicu C-F, Oală IE, Ivan V, Apostol A, Melinte IM, Crisan A, et al. Exploring the Shared Pathogenesis Mechanisms of Endometriosis and Cancer: Stemness and Targeted Treatments of Its Molecular Pathways—A Narrative Review. International Journal of Molecular Sciences. 2024; 25(23):12749. https://doi.org/10.3390/ijms252312749
Chicago/Turabian StyleMitranovici, Melinda-Ildiko, Dan Costachescu, Septimiu Voidazan, Mihai Munteanu, Corneliu-Florin Buicu, Ioan Emilian Oală, Viviana Ivan, Adrian Apostol, Ioana M. Melinte, Andrada Crisan, and et al. 2024. "Exploring the Shared Pathogenesis Mechanisms of Endometriosis and Cancer: Stemness and Targeted Treatments of Its Molecular Pathways—A Narrative Review" International Journal of Molecular Sciences 25, no. 23: 12749. https://doi.org/10.3390/ijms252312749
APA StyleMitranovici, M.-I., Costachescu, D., Voidazan, S., Munteanu, M., Buicu, C.-F., Oală, I. E., Ivan, V., Apostol, A., Melinte, I. M., Crisan, A., Pușcașiu, L., & Micu, R. (2024). Exploring the Shared Pathogenesis Mechanisms of Endometriosis and Cancer: Stemness and Targeted Treatments of Its Molecular Pathways—A Narrative Review. International Journal of Molecular Sciences, 25(23), 12749. https://doi.org/10.3390/ijms252312749