Protective Effect of EBF Transcription Factor 1 (EBF1) Polymorphism in Sporadic and Familial Spontaneous Preterm Birth: Insights from a Case-Control Study
Abstract
:1. Introduction
2. Results
2.1. Genetic Association Between ASTN1, EBF1, EEFSEC, MAST1, and TNF-α Gene Polymorphisms and sPTB
2.2. Genetic Association of ASTN1, EBF1, and TNF-α SNPs with Famliar sPTB vs. Sporadic sPTB vs. Controls
2.3. Association of ASTN1, EBF1, and TNF-α Gene Polymorphisms with Maternal and Fetal Characteristics
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. DNA Isolation and Genotyping
4.3. Statistical Anlysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Billy, A.; Lecomte, A.; Pastore, J.; Weber, G. European Perinatal Health Report: Core Indicators of the Health and Care of Pregnant Women and Babies in Europe from 2015 to 2019. Luxembourg. 2022. Available online: https://www.europeristat.com/index.php/reports/ephr-2019.html (accessed on 25 September 2024).
- Morniroli, D.; Tiraferri, V.; Maiocco, G.; De Rose, D.U.; Cresi, F.; Coscia, A.; Mosca, F.; Giannì, M.L. Beyond survival: The lasting effects of premature birth. Front. Pediatr. 2023, 11, 1213243. [Google Scholar] [CrossRef]
- Bhattacharjee, E.; Maitra, A. Spontaneous preterm birth: The underpinnings in the maternal and fetal genomes. NPJ Genom. Med. 2021, 6, 43. [Google Scholar] [CrossRef]
- Raja, E.M.A.; Mirazo, E.L.R.; Campbell, D.M.M.; Lee, A.J.M.; Norman, J.E.M.; Bhattacharya, S.M. Inherited Predisposition to Spontaneous Preterm Delivery. Obstet. Gynecol. 2010, 115, 1125–1133. [Google Scholar] [CrossRef]
- Koire, A.; Chu, D.M.; Aagaard, K. Family history is a predictor of current preterm birth. Am. J. Obstet. Gynecol. MFM 2021, 3, 100277. [Google Scholar] [CrossRef]
- York, T.P.; Eaves, L.J.; Lichtenstein, P.; Neale, M.C.; Svensson, A.; Latendresse, S.; Långström, N.; Strauss, J.F. Fetal and maternal genes’ influence on gestational age in a quantitative genetic analysis of 244,000 swedish births. Am. J. Epidemiol. 2013, 178, 543–550. [Google Scholar] [CrossRef]
- Svensson, A.C.; Sandin, S.; Cnattingius, S.; Reilly, M.; Pawitan, Y.; Hultman, C.M.; Lichtenstein, P. Maternal effects for preterm birth: A genetic epidemiologic study of 630,000 families. Am. J. Epidemiol. 2009, 170, 1365–1372. [Google Scholar] [CrossRef]
- Mladenić, T.; Barišić, A.; Pereza, N.; Ostojić, S.; Peterlin, B.; Dević Pavlić, S. Preprint: Maternal genetic risk factors for spontaneous preterm birth: A systematic review and meta-analysis. Authorea 2024. [Google Scholar] [CrossRef]
- Romero, R.; Espinoza, J.; Gonçalves, L.F.; Kusanovic, J.P.; Friel, L.A.; Nien, J.K. Inflammation in preterm and term labour and delivery. Semin. Fetal Neonatal Med. 2006, 11, 317–326. [Google Scholar] [CrossRef]
- Hogan, C.; Perkins, A.V. Selenoproteins in the Human Placenta: How Essential Is Selenium to a Healthy Start to Life? Nutrients 2022, 14, 628. [Google Scholar] [CrossRef]
- Zhou, G.; Holzman, C.; Heng, Y.J.; Kibschull, M.; Lye, S.J.; Vazquez, A. EBF1 Gene mRNA Levels in Maternal Blood and Spontaneous Preterm Birth. Reprod. Sci. 2020, 27, 316–324. [Google Scholar] [CrossRef]
- Gupta, J.K.; Alfirevic, A. Systematic review of preterm birth multi-omic biomarker studies. Expert Rev. Mol. Med. 2022, 24, e18. [Google Scholar] [CrossRef]
- Tripathy, R.; Leca, I.; van Dijk, T.; Weiss, J.; van Bon, B.W.; Sergaki, M.C.; Gstrein, T.; Breuss, M.; Tian, G.; Bahi-Buisson, N.; et al. Mutations in MAST1 Cause Mega-Corpus-Callosum Syndrome with Cerebellar Hypoplasia and Cortical Malformations. Neuron 2018, 100, 1354–1368.e5. [Google Scholar] [CrossRef]
- Zhang, G.; Feenstra, B.; Bacelis, J.; Liu, X.; Muglia, L.M.; Juodakis, J.; Miller, D.E.; Litterman, N.; Jiang, P.-P.; Russell, L.; et al. Genetic Associations with Gestational Duration and Spontaneous Preterm Birth. N. Engl. J. Med. 2017, 377, 1156–1167. [Google Scholar] [CrossRef]
- Pasanen, A.; Karjalainen, M.K.; Gen, F.; Zhang, G.; Tiensuu, H.; Haapalainen, A.M.; Ojaniemi, M.; Feenstra, B.; Jacobsson, B.; Palotie, A.; et al. Meta-analysis of genome-wide association studies of gestational duration and spontaneous preterm birth identifies new maternal risk loci. PLoS Genet. 2023, 19, e1010982. [Google Scholar] [CrossRef]
- Solé-Navais, P.; Flatley, C.; Steinthorsdottir, V.; Vaudel, M.; Juodakis, J.; Chen, J.; Laisk, T.; LaBella, A.L.; Westergaard, D.; Bacelis, J.; et al. Genetic effects on the timing of parturition and links to fetal birth weight. Nat. Genet. 2023, 55, 559–567. [Google Scholar] [CrossRef]
- Vilagos, B.; Hoffmann, M.; Souabni, A.; Sun, Q.; Werner, B.; Medvedovic, J.; Bilic, I.; Minnich, M.; Axelsson, E.; Jaritz, M.; et al. Essential role of EBF1 in the generation and function of distinct mature B cell types. J. Exp. Med. 2012, 209, 775–792. [Google Scholar] [CrossRef]
- Zhou, G.; Holzman, C.; Chen, B.; Wang, P.; Heng, Y.J.; Kibschull, M.; Lye, S.J.; Kasten, E.P. EBF1-Correlated Long Non-coding RNA Transcript Levels in 3rd Trimester Maternal Blood and Risk of Spontaneous Preterm Birth. Reprod. Sci. 2020, 28, 541–549. [Google Scholar] [CrossRef]
- Gebhardt, S.; Bruiners, N.; Hillermann, R. A novel exonic variant (221delT) in the LGALS13 gene encoding placental protein 13 (PP13) is associated with preterm labour in a low risk population. J. Reprod. Immunol. 2009, 82, 166–173. [Google Scholar] [CrossRef]
- Menon, R.; Velez, D.R.; Thorsen, P.; Vogel, I.; Jacobsson, B.; Williams, S.M.; Fortunato, S.J. Ethnic differences in key candidate genes for spontaneous preterm birth: TNF-α and its receptors. Hum. Hered. 2006, 62, 107–118. [Google Scholar] [CrossRef]
- Roberts, A.K.; Monzon-Bordonaba, F.; Van Deerlin, P.G.; Holder, J.; Macones, G.A.; Morgan, M.A.; Strauss, J.F.; Parry, S. Association of polymorphism within the promoter of the tumor necrosis factor α gene with increased risk of preterm premature rupture of the fetal membranes. Am. J. Obstet. Gynecol. 1999, 180, 1297–1302. [Google Scholar] [CrossRef]
- Ramos, B.R.d.A.; Mendes, N.D.; Tanikawa, A.A.; Amador, M.A.T.; dos Santos, N.P.C.; dos Santos, S.E.B.; Castelli, E.C.; Witkin, S.S.; da Silva, M.G. Ancestry informative markers and selected single nucleotide polymorphisms in immunoregulatory genes on preterm labor and preterm premature rupture of membranes: A case control study. BMC Pregnancy Childbirth 2016, 16, 30. [Google Scholar] [CrossRef]
- Kadivnik, M.; Plečko, D.; Kralik, K.; Arvaj, N.; Wagner, J. Role of IL-6, IL-10 and TNFα Gene Variants in Preterm Birth. J. Clin. Med. 2024, 13, 2429. [Google Scholar] [CrossRef]
- Belousova, V.S.; Svitich, O.A.; Timokhina, E.V.; Strizhakov, A.N.; Bogomazova, I.M. Polymorphism of the IL-1β, TNF, IL-1RA and IL-4 Cytokine Genes Significantly Increases the Risk of Preterm Birth. Biochemistry 2019, 84, 1040–1046. [Google Scholar] [CrossRef]
- Awasthi, S.; Pandey, M. Association of TLR4 and TNF-α α α α α Gene Polymorphisms and TLR4 mRNA Levels in Preterm Birth in a Northern Indian Population. Indian Pediatr. 2019, 56, 202–204. [Google Scholar] [CrossRef]
- Moura, E.; Mattar, R.; de Souza, E.; Torloni, M.R.; Gonçalves-Primo, A.; Daher, S. Inflammatory cytokine gene polymorphisms and spontaneous preterm birth. J. Reprod. Immunol. 2009, 80, 115–121. [Google Scholar] [CrossRef]
- Dai, F.-F.; Hu, M.; Zhang, Y.-W.; Zhu, R.-H.; Chen, L.-P.; Li, Z.-D.; Huang, Y.-J.; Hu, W.; Cheng, Y.-X. TNF-α/anti-TNF-α drugs and its effect on pregnancy outcomes. Expert Rev. Mol. Med. 2022, 24, e26. [Google Scholar] [CrossRef]
- El-Raheem, T.A.; Mahmoud, R.H.; Hefzy, E.M.; Masoud, M.; Ismail, R.; Aboraia, N.M.M. Tumor necrosis factor (TNF)-α- 308 G/A gene polymorphism (rs1800629) in Egyptian patients with alopecia areata and vitiligo, a laboratory and in silico analysis. PLoS ONE 2020, 15, e0240221. [Google Scholar] [CrossRef]
- Trisnawati, E.; Nontji, W.; Nurasni, S. Tumour necrosis factor-α (TNF-α) serum levels in preeclampsia pregnant women and pregnant women at risk with preeclampsia. Enferm. Clin. 2020, 30, 27–30. [Google Scholar] [CrossRef]
- Elfayomy, A.K.; Habib, F.A.; Almasry, S.M.; Safwat, M.D.; Eldomiaty, M.A. Serum levels of adrenomedullin and inflammatory cytokines in women with term idiopathic intrauterine growth restriction. J. Obstet. Gynaecol. 2013, 33, 135–139. [Google Scholar] [CrossRef]
- Fink, J.M.; Hirsch, B.A.; Zheng, C.; Dietz, G.; Hatten, M.E.; Ross, M. Astrotactin (ASTN), a Gene for Glial-Guided Neuronal Migration, Maps to Human Chromosome 1q25.2. Genomics 1997, 40, 202–205. [Google Scholar] [CrossRef]
- Gupta, J.K.; Care, A.; Goodfellow, L.; Alfirevic, Z.; Müller-Myhsok, B.; Alfirevic, A. Genome and transcriptome profiling of spontaneous preterm birth phenotypes. Sci. Rep. 2022, 12, 1003. [Google Scholar] [CrossRef]
- Barišić, A.; Stanković, A.; Stojković, L.; Pereza, N.; Ostojić, S.; Peterlin, A.; Peterlin, B.; Vraneković, J. Maternal LINE-1 DNA Methylation in Early Spontaneous Preterm Birth. Biol. Res. Nurs. 2021, 24, 85–93. [Google Scholar] [CrossRef]
- Barišić, A.; Kolak, M.; Peterlin, A.; Tul, N.; Krpina, M.G.; Ostojić, S.; Peterlin, B.; Pereza, N. DNMT3B rs1569686 and rs2424913 gene polymorphisms are associated with positive family history of preterm birth and smoking status. Croat. Med. J. 2020, 61, 8–17. [Google Scholar] [CrossRef]
- Blondel, B.; Morin, I.; Platt, R.W.; Kramer, M.S.; Usher, R.; Bréart, G. Algorithms for combining menstrual and ultrasound estimates of gestational age: Consequences for rates of preterm and postterm birth. BJOG Int. J. Obstet. Gynaecol. 2002, 109, 718–720. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
Cases (N = 292) | Controls (N = 281) | p | ||
---|---|---|---|---|
Familiar sPTB (N = 44) | Sporadic sPTB (N = 248) | |||
Maternal characteristics | ||||
Mean age at delivery/median (range) | 31 (22–40) | 31 (16–44) | 30 (19–43) | 0.128 1 |
Prepregnancy BMI/median (range) | 23 (17–32) | 25 (19–39) | 24 (16–39) | 0.202 2 |
Gestational age at delivery/median (range) | 34 (24–36) | 35 (21–36) | 40 (37–41) | 0.000 2 |
Extremely preterm < 28 weeks/N (%) | 5 (11.4) | 20 (8.3) | ||
Very preterm 32–28 weeks/N (%) | 6 (13.6) | 37 (15.2) | ||
Moderate to late preterm 32–36 weeks/N (%) | 33 (75.0) | 186 (76.5) | ||
Smoking during pregnancy Yes/N (%) No/N (%) | 6 (13.6) 38 (86.4) | 46 (18.9) 197 (81.1) | 40 (18.4) 177 (81.6) | 0.702 3 |
Parity Nulliparous/N (%) Multiparous/N (%) | 15 (35.7) 27 (64.3) | 46 (20.1) 183 (79.9) | 33 (15.2) 184 (84.8) | 0.008 3 |
Previous sPTB Yes/N (%) No/N (%) | 11 (25.0) 33 (75.0) | 24 (9.9) 218 (90.1) | 0.005 3 | |
Fetal characteristics | ||||
Birth weight (grams)/median (range) | 2170 (650–3400) | 2269 (576–3550) | 3460 (2380–4740) | 0.000 2 |
Cases (N = 292) | Controls (N = 281) | χ2 * | p | p adj ** | ||
---|---|---|---|---|---|---|
ASTN1 rs146756455 G/C | ||||||
genotype | GG | 277 (95.85) | 264 (95.31) | 1.23 | 0.542 | 3.276 |
GC | 11 (3.81) | 13 (4.69) | ||||
AC | 1 (0.34) | 0 | ||||
allele | G | 564 (97.58) | 538 (97.11) | 0.24 | 0.626 | 2.136 |
A | 14 (2.42) | 16 (2.89) | ||||
EBF1 SNP rs2963463 T/C | ||||||
genotype | TT | 25 (8.68) | 17 (6.09) | 10.47 | 0.005 | 0.030 |
TC | 156 (54.1) | 121 (43.37) | ||||
CC | 107 (37.22) | 141 (50.54) | ||||
allele | T | 182 (31.60) | 155 (27.78) | 1.98 | 0.160 | 0.960 |
C | 394 (68.40) | 403 (72.22) | ||||
EBF1 rs2946169 C/T | ||||||
genotype | CC | 165 (57.10) | 180 (64.52) | 4.78 | 0.092 | 0.552 |
CT | 103 (35.64) | 88 (31.54) | ||||
TT | 21 (7.26) | 11 (3.94) | ||||
allele | C | 433 (74.91) | 450 (80.65) | 5.38 | 0.020 | 0.120 |
T | 145 (25.09) | 108 (19.35) | ||||
TNF-α rs1800629 G/A | ||||||
genotype | GG | 208 (71.23) | 213 (75.80) | 7.68 | 0.104 | 0.624 |
GA | 70 (23.97) | 59 (21.00) | ||||
AA | 14 (4.80) | 9 (3.20) | ||||
allele | G | 486 (83.22) | 485 (86.47) | 2.10 | 0.148 | 0.888 |
A | 98 (16.78) | 77 (13.70) |
Cases | Controls (N = 281) | χ2 | p | p adj * | |||
---|---|---|---|---|---|---|---|
Familiar sPTB (N = 44) | Sporadic sPTB (N = 248) | ||||||
EBF1 SNP rs2963463 T/C | |||||||
genotype | TT | 6 (13.64) | 19 (7.79) | 17 (6.09) | 12.34 | 0.015 a | 0.300 |
TC | 23 (52.27) | 133 (54.51) | 121 (43.37) | ||||
CC | 15 (34.09) | 92 (37.70) | 141 (50.54) | ||||
allele | T | 35 (39.77) | 147 (30.12) | 155 (27.78) | 10.85 | 0.210 | 1.260 |
C | 53 (60.23) | 341 (69.88) | 403 (72.22) |
Genetic Models | Familial sPTB vs. Sporadic sPTB | Familial sPTB vs. Controls | Sporadic sPTB vs. Controls | ||||||
---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | p | p adj * | OR (95% CI) | p | p adj * | OR (95% CI) | p | p adj * | |
ASTN1 rs146756455 | |||||||||
GG vs. GC+CC | 4.76 (0.28–81.95) | 0.282 | 1.692 | 4.54 (0.27–77.79) | 0.296 | 1.776 | 0.96 (0.43–2.14) | 0.913 | 5.478 |
GG+GC vs. CC | 0.55 (0.02–13.62) | 0.712 | 4.272 | 0.16 (0.00–8.19) | 0.362 | 2.172 | 0.03 (0.00–0.57) | 0.019 | 0.114 |
GG vs. GC | 4.38 (0.25–75.74) | 0.309 | 1.854 | 4.54 (0.27–77.79) | 0.296 | 1.776 | 1.04 (0.46–2.37) | 0.920 | 5.520 |
GG vs. CC | 0.57 (0.00–14.26) | 0.733 | 4.398 | 0.17 (0.00–8.89) | 0.374 | 2.244 | 0.29 (0.01–7.26) | 0.455 | 2.730 |
CC vs. GC | 7.67 (0.11–550.17) | 0.350 | 2.100 | 27.00 (0.22–3382.54) | 0.181 | 1.086 | 3.52 (0.13–95.09) | 0.454 | 2.724 |
G vs. C | 5.39 (0.32–91.12) | 0.243 | 1.458 | 5.42 (0.32–91.22) | 0.240 | 1.440 | 1.01 (0.49–2.09) | 0.976 | 5.856 |
EBF1 SNP rs2963463 | |||||||||
TT vs. TC+CC | 1.87 (0.70–4.98) | 0.211 | 1.266 | 2.43 (0.90–6.56) | 0.079 | 0.474 | 1.30 (0.66–2.56) | 0.446 | 2.676 |
TT+TC vs. CC | 1.170 (0.60–2.30) | 0.648 | 3.888 | 3.91 (2.03–7.53) | 0.000 | 0.000 | 3.34(2.40–4.64) | 0.000 | 0.000 |
TT vs. TC | 1.83 (0.66–5.06) | 0.247 | 1.482 | 1.86 (0.66–5.21) | 0.240 | 1.440 | 0.98 (0.49–1.98) | 0.963 | 5.778 |
TT vs. CC | 1.94 (0.67–5.63) | 0.225 | 1.350 | 3.32 (1.14–9.70) | 0.028 | 0.168 | 1.71 (0.85–3.47) | 0.135 | 0.810 |
CC vs. TC | 0.94 (0.47–1.90) | 0.870 | 5.220 | 0.56 (0.28–1.12) | 0.101 | 0.606 | 0.594 (0.41–0.85) | 0.005 | 0.030 |
T vs. C | 1.57 (1.02–2.44) | 0.043 | 0.258 | 2.21(1.42–3.42) | 0.000 | 0.000 | 1.40 (1.08–1.82) | 0.012 | 0.072 |
EBF1 rs2946169 | |||||||||
CC vs. CT+TT | 0.71 (0.37–1.58) | 0.303 | 1.818 | 0.55 (0.29–1.04) | 0.067 | 0.402 | 0.77 (0.54–1.10) | 0.149 | 0.894 |
CC+CT vs. TT | 1.08 (0.31–3.85) | 0.901 | 5.406 | 0.56 (0.15–2.10) | 0.390 | 2.340 | 0.52 (0.24–1.12) | 0.094 | 0.564 |
CC vs. CT | 0.68 (0.35–1.33) | 0.260 | 1.560 | 0.57 (0.29–1.10) | 0.093 | 0.558 | 0.83 (0.57–1.21) | 0.332 | 1.992 |
CC vs. TT | 0.92 (0.25–3.39) | 0.904 | 5.424 | 0.45 (0.12–1.73) | 0.244 | 1.464 | 0.49 (0.22–1.06) | 0.070 | 0.420 |
TT vs. CT | 1.36 (0.36–5.08) | 0.650 | 3.900 | 0.79 (0.20–3.11) | 0.738 | 4.428 | 0.58 (0.26–1.31) | 0.191 | 1.146 |
C vs. T | 0.82 (0.49–1.36) | 0.435 | 2.610 | 0.60 (0.36–1.01) | 0.052 | 0.312 | 0.74 (0.55–0.99) | 0.045 | 0.270 |
TNF-α rs1800629 | |||||||||
GG vs. GA+AA | 0.75 (0.38–1.47) | 0.398 | 2.388 | 0.62 (0.31–1.22) | 0.165 | 0.990 | 0.83 (0.56- 1.22) | 0.343 | 2.058 |
GG+GA vs. AA | 0.29 (0.09–0.92) | 0.036 | 0.216 | 0.26 (0.08–0.81) | 0.020 | 0.120 | 0.88 (0.34- 2.25) | 0.787 | 4.722 |
GG vs. GA | 0.97 (0.45- 2.11) | 0.943 | 5.658 | 0.80 (0.37–1.74) | 0.579 | 3.474 | 0.83 (0.55- 1.25) | 0.363 | 2.178 |
GG vs. AA | 0.29 (0.09–0.93) | 0.038 | 0.228 | 0.25 (0.08–0.78) | 0.018 | 0.108 | 0.84 (0.33- 2.16) | 0.718 | 4.308 |
AA vs. GA | 3.33 (0.93- 12.01) | 0.066 | 0.396 | 3.28 (0.91–11.82) | 0.070 | 0.420 | 0.98 (0.36–2.65) | 0.974 | 5.844 |
G vs. A | 0.63 (0.36–1.10) | 0.108 | 0.648 | 0.54 (0.31–0.94) | 0.029 | 0.174 | 0.85 (0.61–1.20) | 0.353 | 2.118 |
Extremely Preterm (<28 Weeks) (N = 26) | Very Preterm (32–28 Weeks) (N = 42) | Moderate to Late Preterm (32–37 Weeks) (N = 217) | χ2 * | p | p adj ** | ||
---|---|---|---|---|---|---|---|
ASTN1 rs146756455 | |||||||
genotype | GG | 24 (8.79) | 39 (14.29) | 210 (76.92) | 11.45 | 0.022 | 0.132 |
GC | 1 (9.09) | 3 (27.27) | 7 (63.64) | ||||
CC | 1 (100) | 0 (0) | 0 (0) | ||||
allele | G | 49 (94.23) | 81 (96.43) | 427 (98.39) | 4.34 | 0.114 | 0.684 |
C | 3 (5.77) | 3 (3.57) | 7 (1.61) | ||||
EBF1 SNP rs2963463 | |||||||
genotype | TT | 3 (12) | 3 (12) | 19 (76) | 0.78 | 0.942 | 5.652 |
TC | 13 (8.55) | 22 (14.47) | 117 (77.63) | ||||
CC | 10 (9.35) | 18 (16.82) | 79 (73.83) | ||||
allele | T | 19 (36.54) | 28 (32.56) | 155 (36.05) | 0.40 | 0.817 | 4.902 |
C | 33 (63.46) | 58 (67.44) | 275 (63.95) | ||||
EBF1 rs2946169 | |||||||
genotype | CC | 15 (9.20) | 26 (15.95) | 122 (74.85) | 0.25 | 0.993 | 5.958 |
CT | 9 (8.91) | 14 (13.86) | 78 (77.23) | ||||
TT | 2 (9.52) | 3 (14.29) | 16 (76.19) | ||||
allele | C | 39 (75.00) | 66 (76.74) | 322 (74.54) | 0.19 | 0.911 | 5.466 |
T | 13 (25.00) | 20 (23.26) | 110 (25.46) | ||||
TNF-α rs1800629 | |||||||
genotype | GG | 17 (8.33) | 33 (16.18) | 154 (75.49) | 1.62 | 0.080 | 0.480 |
GA | 7 (10.00) | 9 (12.86) | 54 (77.14) | ||||
AA | 2 (14.29) | 1 (7.14) | 11 (78.57) | ||||
allele | G | 41 (78.85) | 75 (87.21) | 362 (82.65) | 1.75 | 0.416 | 2.496 |
A | 11 (21.15) | 11 (12.79) | 76 (17.35) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mladenić, T.; Wagner, J.; Kadivnik, M.; Pereza, N.; Ostojić, S.; Peterlin, B.; Dević Pavlić, S. Protective Effect of EBF Transcription Factor 1 (EBF1) Polymorphism in Sporadic and Familial Spontaneous Preterm Birth: Insights from a Case-Control Study. Int. J. Mol. Sci. 2024, 25, 11192. https://doi.org/10.3390/ijms252011192
Mladenić T, Wagner J, Kadivnik M, Pereza N, Ostojić S, Peterlin B, Dević Pavlić S. Protective Effect of EBF Transcription Factor 1 (EBF1) Polymorphism in Sporadic and Familial Spontaneous Preterm Birth: Insights from a Case-Control Study. International Journal of Molecular Sciences. 2024; 25(20):11192. https://doi.org/10.3390/ijms252011192
Chicago/Turabian StyleMladenić, Tea, Jasenka Wagner, Mirta Kadivnik, Nina Pereza, Saša Ostojić, Borut Peterlin, and Sanja Dević Pavlić. 2024. "Protective Effect of EBF Transcription Factor 1 (EBF1) Polymorphism in Sporadic and Familial Spontaneous Preterm Birth: Insights from a Case-Control Study" International Journal of Molecular Sciences 25, no. 20: 11192. https://doi.org/10.3390/ijms252011192
APA StyleMladenić, T., Wagner, J., Kadivnik, M., Pereza, N., Ostojić, S., Peterlin, B., & Dević Pavlić, S. (2024). Protective Effect of EBF Transcription Factor 1 (EBF1) Polymorphism in Sporadic and Familial Spontaneous Preterm Birth: Insights from a Case-Control Study. International Journal of Molecular Sciences, 25(20), 11192. https://doi.org/10.3390/ijms252011192