Natural Products and Their Neuroprotective Effects in Degenerative Brain Diseases: A Comprehensive Review
Abstract
:1. Introduction
Diseases | Main Symptoms | Pathological Mechanisms | Genetic Factors | Diagnostic Methods | Treatment Approaches | Life Expectancy (After Diagnosis Years) |
---|---|---|---|---|---|---|
Alzheimer’s Disease [16] | Memory loss, cognitive impairment, behavioral changes | Amyloid plaques and tau protein tangles | APOE ε4 allele | Clinical diagnosis, MRI, PET, cerebrospinal fluid tests | Symptomatic relief medications (cholinesterase inhibitors, NMDA receptor antagonists) | 3–10 [17] |
Parkinson’s Disease [18] | Tremors, rigidity, bradykinesia, balance problems | Loss of dopaminergic neurons, Lewy body formation | LRRK2, PARK7, PINK1, SNCA mutations | Clinical diagnosis, DAT scan | Dopamine replacement therapy, dopamine agonists, physical therapy | 9– [19] |
Huntington’s Disease [20] | Chorea (involuntary movements), cognitive decline, psychiatric symptoms | Abnormal accumulation of huntingtin protein | HTT gene mutation | Genetic testing | Symptomatic relief medications, behavioral therapy, physical therapy | 15–20 [21] |
Amyotrophic Lateral Sclerosis [22] | Muscle weakness, atrophy, respiratory difficulty | Loss of motor neurons | SOD1, C9orf72, TARDBP, FUS mutations | Clinical diagnosis, electromyography (EMG), nerve conduction studies | Symptomatic relief medications, respiratory support, physical therapy | 3–5 [23] |
2. Degenerative Brain Diseases
2.1. Alzheimer’s Disease
2.2. Parkinson’s Disease
2.3. Huntington’s Disease
2.4. Amyotrophic Lateral Sclerosis
2.5. Limitations of Current Pharmacotherapies in Degenerative Brain Diseases
3. Oxidative Stress and Neuronal Damage in Neurodegenerative Diseases
4. Neuroprotective Activity of Medicinal Plants
4.1. Allium cepa
4.2. Arctium lappa
4.3. Panax ginseng
4.4. Stephania japonica
4.5. Cucuma longa
4.6. Withania somnifera
4.7. Moringa oleifera
4.8. Melissa officinalis
4.9. Salvia officinalis
4.10. Rhodiola crenulata
4.11. Cinnamomum verum
4.12. Vitis vinifera
4.13. Magnolia officinalis
4.14. Myristica fragrans
4.15. Vaccinium angustifolium
4.16. Tinospora cordifolia
4.17. Arbutus unedo
4.18. Juglans regia
4.19. Acanthopanax senticosus
4.20. Rosmarinus officinalis
Source | Active Compounds | Main Effect | Mechanism | Animal Model | Ref |
---|---|---|---|---|---|
Allium cepa (flesh and peel) | Quercetin-4′-glucoside Quercetin |
|
|
| [92] |
Arctium lappa (root) | Arctigenin |
|
|
| [96] |
Panax ginseng | Ginsenoside |
|
|
| [99] |
Stephania japonica (stems) | Chloroform fraction of S. japonica |
|
|
| [102] |
Cucuma longa | Curcuminoids |
|
|
| [107] |
Withania somnifera (root) | Withanone |
|
|
| [114] |
Moringa oleifera (leaf) | Methanol fraction of M. oleifera |
|
|
| [119] |
Melissa officinalis | Rosmarinic acid |
|
|
| [127] |
Salvia officinalis (leaf) | Ethanol fraction of S. officinalis |
|
|
| [131] |
Rhodiola crenulata (root) | salidroside |
|
|
| [141] |
Cinnamomum verum | Eugenol |
|
|
| [145] |
Vitis vinifera (stembark) | Vitisin A |
|
|
| [150] |
Magnolia officinalis | Honokiol |
|
|
| [152] |
Myristica fragrans | Gallic acid |
|
|
| [158,190] |
Vaccinium angustifolium | Chlorogenic acid |
|
|
| [191] |
Tinospora cordifolia | Tinosporicide |
|
|
| [168] |
Arbutus unedo (leaf) |
|
|
| [192] | |
Juglans regia | Pedunculagin, casuarinin isomer |
|
|
| [176] |
Acanthopanax senticosus |
|
|
| [183] | |
Rosmarinus officinalis | Eucalyptol (1,8-Cineole) |
|
|
| [187] |
5. Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wimo, A.; Seeher, K.; Cataldi, R.; Cyhlarova, E.; Dielemann, J.L.; Frisell, O.; Guerchet, M.; Jönsson, L.; Malaha, A.K.; Nichols, E.; et al. The Worldwide Costs of Dementia in 2019. Alzheimer’s Dement. 2023, 19, 2865–2873. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Zehra, M.; Fatima, T.; Nadeem, A. Advancing Dementia Care in Pakistan: Challenges and the Way Forward. Front. Dement. 2023, 2, 1241927. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Chang, H.Y.; Sang, T.K. Neuronal Cell Death Mechanisms in Major Neurodegenerative Diseases. Int. J. Mol. Sci. 2018, 19, 3082. [Google Scholar] [CrossRef] [PubMed]
- Pathak, N.; Vimal, S.K.; Tandon, I.; Agrawal, L.; Hongyi, C.; Bhattacharyya, S. Neurodegenerative Disorders of Alzheimer, Parkinsonism, Amyotrophic Lateral Sclerosis and Multiple Sclerosis: An Early Diagnostic Approach for Precision Treatment. Metab. Brain Dis. 2022, 37, 67–104. [Google Scholar] [CrossRef]
- Boldyrev, A.; Bulygina, E.; Makhro, A. Glutamate Receptors Modulate Oxidative Stress in Neuronal Cells. A Mini-Review. Neurotox. Res. 2004, 6, 581–587. [Google Scholar] [CrossRef]
- Miller, E.; Morel, A.; Saso, L.; Saluk, J. Isoprostanes and Neuroprostanes as Biomarkers of Oxidative Stress in Neurodegenerative Diseases. Oxidative Med. Cell. Longev. 2014, 2014, 572491. [Google Scholar] [CrossRef]
- Sharma, C.; Kim, S.R. Linking Oxidative Stress and Proteinopathy in Alzheimer’s Disease. Antioxidants 2021, 10, 1231. [Google Scholar] [CrossRef]
- Schousboe, A. Glutamate Neurotoxicity Related to Energy Failure. In Handbook of Neurotoxicity, 2nd ed.; Springer Science+Business Media: New York, NY, USA, 2023; ISBN 9783031150807. [Google Scholar]
- Casado, Á.; Encarnación López-Fernández, M.; Concepción Casado, M.; De La Torre, R. Lipid Peroxidation and Antioxidant Enzyme Activities in Vascular and Alzheimer Dementias. Neurochem. Res. 2008, 33, 450–458. [Google Scholar] [CrossRef]
- Crichton, G.E.; Bryan, J.; Murphy, K.J. Dietary Antioxidants, Cognitive Function and Dementia—A Systematic Review. Plant Foods Hum. Nutr. 2013, 68, 279–292. [Google Scholar] [CrossRef]
- Scheltens, P.; Twisk, J.W.R.; Blesa, R.; Scarpini, E.; Von Arnim, C.A.F.; Bongers, A.; Harrison, J.; Swinkels, S.H.N.; Stam, C.J.; De Waal, H.; et al. Efficacy of Souvenaid in Mild Alzheimer’s Disease: Results from a Randomized, Controlled Trial. J. Alzheimer’s Dis. 2012, 31, 225–236. [Google Scholar] [CrossRef]
- Li, I.C.; Chang, H.H.; Lin, C.H.; Chen, W.P.; Lu, T.H.; Lee, L.Y.; Chen, Y.W.; Chen, Y.P.; Chen, C.C.; Lin, D.P.C. Prevention of Early Alzheimer’s Disease by Erinacine A-Enriched Hericium erinaceus Mycelia Pilot Double-Blind Placebo-Controlled Study. Front. Aging Neurosci. 2020, 12, 155. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.C.; Su, K.P.; Cheng, T.C.; Liu, H.C.; Chang, C.J.; Dewey, M.E.; Stewart, R.; Huang, S.Y. The Effects of Omega-3 Fatty Acids Monotherapy in Alzheimer’s Disease and Mild Cognitive Impairment: A Preliminary Randomized Double-Blind Placebo-Controlled Study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2008, 32, 1538–1544. [Google Scholar] [CrossRef] [PubMed]
- Noguchi-Shinohara, M.; Ono, K.; Hamaguchi, T.; Nagai, T.; Kobayashi, S.; Komatsu, J.; Samuraki-Yokohama, M.; Iwasa, K.; Yokoyama, K.; Nakamura, H.; et al. Safety and Efficacy of Melissa officinalis Extract Containing Rosmarinic Acid in the Prevention of Alzheimer’s Disease Progression. Sci. Rep. 2020, 10, 18627. [Google Scholar] [CrossRef] [PubMed]
- Naomi, R.; Yazid, M.D.; Teoh, S.H.; Balan, S.S.; Shariff, H.; Kumar, J.; Bahari, H.; Embong, H. Dietary Polyphenols as a Protection against Cognitive Decline: Evidence from Animal Experiments; Mechanisms and Limitations. Antioxidants 2023, 12, 1054. [Google Scholar] [CrossRef]
- Cacabelos, R. Pharmacogenetic Considerations When Prescribing Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease. Expert Opin. Drug Metab. Toxicol. 2020, 16, 673–701. [Google Scholar] [CrossRef]
- Zanetti, O.; Solerte, S.B.; Cantoni, F. Life Expectancy in Alzheimer’s Disease (AD). Arch. Gerontol. Geriatr. 2009, 49 (Suppl. S1), 237–243. [Google Scholar] [CrossRef]
- Dorszewska, J.; Kowalska, M.; Prendecki, M.; Piekut, T.; Kozłowska, J.; Kozubski, W. Oxidative Stress Factors in Parkinson’s Disease. Neural Regen. Res. 2021, 16, 1383–1391. [Google Scholar] [CrossRef]
- Golbe, L.I.; Leyton, C.E. Editorial Life Expectancy in Parkinson Disease. Neurology 2018, 91, 991–992. [Google Scholar] [CrossRef]
- Sampaio, C. Huntington Disease—Update on Ongoing Therapeutic Developments and a Look toward the Future. Park. Relat. Disord. 2024, 122, 106049. [Google Scholar] [CrossRef]
- Rodríguez-Santana, I.; Mestre, T.; Squitieri, F.; Willock, R.; Arnesen, A.; Clarke, A.; D’Alessio, B.; Fisher, A.; Fuller, R.; Hamilton, J.L.; et al. Economic Burden of Huntington Disease in Europe and the USA: Results from the Huntington’s Disease Burden of Illness Study. Eur. J. Neurol. 2023, 30, 1109–1117. [Google Scholar] [CrossRef]
- Yang, X.; Ji, Y.; Wang, W.; Zhang, L.; Chen, Z.; Yu, M.; Shen, Y.; Ding, F.; Gu, X.; Sun, H. Amyotrophic Lateral Sclerosis: Molecular Mechanisms, Biomarkers, and Therapeutic Strategies. Antioxidants 2021, 10, 1012. [Google Scholar] [CrossRef] [PubMed]
- van Eenennaam, R.M.; Kruithof, W.J.; van Es, M.A.; Kruitwagen-van Reenen, E.T.; Westeneng, H.J.; Visser-Meily, J.M.A.; van den Berg, L.H.; Beelen, A. Discussing Personalized Prognosis in Amyotrophic Lateral Sclerosis: Development of a Communication Guide. BMC Neurol. 2020, 20, 446. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Vassar, R.; De Strooper, B.; Hardy, J.; Willem, M.; Singh, N.; Zhou, J.; Yan, R.; Vanmechelen, E.; De Vos, A.; et al. The β-Secretase BACE1 in Alzheimer’s Disease. Biol. Psychiatry 2021, 89, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Li, L.; Sang, S.; Pan, X.; Zhong, C. Physiological Roles of β-Amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology. Neurosci. Bull. 2023, 39, 1289–1308. [Google Scholar] [CrossRef]
- Selkoe, D.J. Soluble Oligomers of the Amyloid β-Protein Impair Synaptic Plasticity and Behavior. Behav. Brain Res. 2008, 192, 106–113. [Google Scholar] [CrossRef]
- Simpson, D.S.A.; Oliver, P.L. Ros Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants 2020, 9, 743. [Google Scholar] [CrossRef]
- Wu, Y.C.; Bogale, T.A.; Koistinaho, J.; Pizzi, M.; Rolova, T.; Bellucci, A. The Contribution of β-Amyloid, Tau and α-Synuclein to Blood–Brain Barrier Damage in Neurodegenerative Disorders. Acta Neuropathol. 2024, 147, 39. [Google Scholar] [CrossRef]
- Mahoney-Sanchez, L.; Belaidi, A.A.; Bush, A.I.; Ayton, S. The Complex Role of Apolipoprotein E in Alzheimer’s Disease: An Overview and Update. J. Mol. Neurosci. 2016, 60, 325–335. [Google Scholar] [CrossRef]
- Brunello, C.A.; Merezhko, M.; Uronen, R.L.; Huttunen, H.J. Mechanisms of Secretion and Spreading of Pathological Tau Protein. Cell. Mol. Life Sci. 2020, 77, 1721–1744. [Google Scholar] [CrossRef]
- Dong, Y.; Yu, H.; Li, X.; Bian, K.; Zheng, Y.; Dai, M.; Feng, X.; Sun, Y.; He, Y.; Yu, B.; et al. Hyperphosphorylated Tau Mediates Neuronal Death by Inducing Necroptosis and Inflammation in Alzheimer’s Disease. J. Neuroinflam. 2022, 19, 205. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Bansoad, A.V.; Singh, R.; Khatik, G.L. BACE1: A Key Regulator in Alzheimer’s Disease Progression and Current Development of its Inhibitors. Curr. Neuropharmacol. 2021, 20, 1174–1193. [Google Scholar] [CrossRef] [PubMed]
- Vassar, R. BACE1 Inhibitor Drugs in Clinical Trials for Alzheimer’s Disease. Alzheimer’s Res. Ther. 2014, 6, 89. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Ji, Y.; Wang, Z.; Wu, X.; Li, J.; Gu, F.; Chen, Z.; Wang, Z. The FDA-Approved Anti-Amyloid-β Monoclonal Antibodies for the Treatment of Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Eur. J. Med. Res. 2023, 28, 544. [Google Scholar] [CrossRef] [PubMed]
- Gandy, S. Molecular Basis for Anti-Amyloid Therapy in the Prevention and Treatment of Alzheimer’s Disease. Neurobiol. Aging 2002, 23, 1009–1016. [Google Scholar] [CrossRef]
- Glynn-Servedio, B.E.; Ranola, T.S. AChE Inhibitors and NMDA Receptor Antagonists in Advanced Alzheimer’s Disease. Consult. Pharm. 2017, 32, 511–518. [Google Scholar] [CrossRef]
- Picciotto, M.R.; Higley, M.J.; Mineur, Y.S. Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior. Neuron 2012, 76, 116–129. [Google Scholar] [CrossRef]
- Kihara, T.; Shimohama, S. Alzheimer’s Disease and Acetylcholine Receptors. Acta Neurobiol. Exp. 2004, 64, 99–105. [Google Scholar] [CrossRef]
- Moreira, N.C.D.S.; Lima, J.E.B.d.F.; Marchiori, M.F.; Carvalho, I.; Sakamoto-Hojo, E.T. Neuroprotective Effects of Cholinesterase Inhibitors: Current Scenario in Therapies for Alzheimer’s Disease and Future Perspectives. J. Alzheimer’s Dis. Rep. 2022, 6, 177–193. [Google Scholar] [CrossRef]
- Babaei, P. NMDA and AMPA Receptors Dysregulation in Alzheimer’s Disease. Eur. J. Pharmacol. 2021, 908, 174310. [Google Scholar] [CrossRef]
- Conway, M.E. Alzheimer’s Disease: Targeting the Glutamatergic System. Biogerontology 2020, 21, 257–274. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.W.P. Pharmacology of NMDA (N-Methyl-D-Aspartate) Receptor Antagonists in Alzheimer’s Disease. In Pharmacological Treatment of Alzheimer’s Disease: Scientific and Clinical Aspects; Springer: Cham, Switzerland, 2022; ISBN 9783030943837. [Google Scholar]
- Stefanis, L. α-Synuclein in Parkinson’s Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a009399. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.L.; Cappai, R.; Barnham, K.J.; Pham, C.L.L. Modulation of α-Synuclein Aggregation by Dopamine: A Review. Neurochem. Res. 2009, 34, 1838–1846. [Google Scholar] [CrossRef] [PubMed]
- Meder, D.; Herz, D.M.; Rowe, J.B.; Lehéricy, S.; Siebner, H.R. The Role of Dopamine in the Brain—Lessons Learned from Parkinson’s Disease. NeuroImage 2019, 190, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Stocchi, F.; Torti, M.; Fossati, C. Advances in Dopamine Receptor Agonists for the Treatment of Parkinson’s Disease. Expert Opin. Pharmacother. 2016, 17, 1889–1902. [Google Scholar] [CrossRef]
- Antonini, A.; Odin, P.; Pahwa, R.; Aldred, J.; Alobaidi, A.; Jalundhwala, Y.J.; Kukreja, P.; Bergmann, L.; Inguva, S.; Bao, Y.; et al. The Long-Term Impact of Levodopa/Carbidopa Intestinal Gel on ‘Off’-Time in Patients with Advanced Parkinson’s Disease: A Systematic Review. Adv. Ther. 2021, 38, 2854–2890. [Google Scholar] [CrossRef]
- Ferraiolo, M.; Hermans, E. The Complex Molecular Pharmacology of the Dopamine D2 Receptor: Implications for Pramipexole, Ropinirole, and Rotigotine. Pharmacol. Ther. 2023, 245, 108392. [Google Scholar] [CrossRef]
- Yang, C.; Wang, X.; Gao, C.; Liu, Y.; Ma, Z.; Zang, J.; Wang, H.; Liu, L.; Liu, Y.; Sun, H.; et al. Molecular Mechanism and Structure-Activity Relationship of the Inhibition Effect between Monoamine Oxidase and Selegiline Analogues. Curr. Comput. Aided-Drug Des. 2023, 20, 474–485. [Google Scholar] [CrossRef]
- Steinkellner, T.; Conrad, W.S.; Kovacs, I.; Rissman, R.A.; Lee, E.B.; Trojanowski, J.Q.; Freyberg, Z.; Roy, S.; Luk, K.C.; Lee, V.M.; et al. Dopamine Neurons Exhibit Emergent Glutamatergic Identity in Parkinson’s Disease. Brain 2022, 145, 879–886. [Google Scholar] [CrossRef]
- Rascol, O.; Fabbri, M.; Poewe, W. Amantadine in the Treatment of Parkinson’s Disease and Other Movement Disorders. Lancet Neurol. 2021, 20, 1048–1056. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, S.; Yang, Z.-X.; Zhou, C.; Zhang, Y.; Zhang, Y.; Zhang, L.; Li, J.-T.; Xu, Z.-J.; Zhu, W.-L.; et al. Pharmacological Characterization of the Small Molecule 03A10 as an Inhibitor of α-Synuclein Aggregation for Parkinson’s Disease Treatment. Acta Pharmacol. Sin. 2023, 44, 1122–1134. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.A.; Jurgens, C.K.; Landwehrmeyer, G.B.; Van Roon-Mom, W.M.C.; Van Ommen, G.J.B.; Stijnen, T.; Roos, R.A.C. Normal and Mutant HTT Interact to Affect Clinical Severity and Progression in Huntington Disease. Neurology 2009, 73, 1280–1285. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Razi, A.; Gregory, S.; Rutledge, R.B.; Rees, G.; Tabrizi, S.J. Imbalanced Basal Ganglia Connectivity Is Associated with Motor Deficits and Apathy in Huntington’s Disease. Brain 2022, 145, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Ruiz de Sabando, A.; Ciosi, M.; Galbete, A.; Cumming, S.A.; Monckton, D.G.; Ramos-Arroyo, M.A.; Álvarez, V.; Martinez-Descals, A.; Mila, M.; Trujillo-Tiebas, M.J.; et al. Somatic CAG Repeat Instability in Intermediate Alleles of the HTT Gene and Its Potential Association with a Clinical Phenotype. Eur. J. Hum. Genet. 2024, 32, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J. Dopamine Depleters in the Treatment of Hyperkinetic Movement Disorders. Expert Opin. Pharmacother. 2016, 17, 2461–2470. [Google Scholar] [CrossRef]
- Duff, K.; Beglinger, L.J.; O’Rourke, M.E.; Nopoulos, P.; Paulson, H.L.; Paulsen, J.S. Risperidone and the Treatment of Psychiatric, Motor, and Cognitive Symptoms in Huntington’s Disease. Ann. Clin. Psychiatry 2008, 20, 1–3. [Google Scholar] [CrossRef]
- Silva, A.C.; Lobo, D.D.; Martins, I.M.; Lopes, S.M.; Henriques, C.; Duarte, S.P.; Dodart, J.C.; Nobre, R.J.; De Almeida, L.P. Antisense Oligonucleotide Therapeutics in Neurodegenerative Diseases: The Case of Polyglutamine Disorders. Brain 2020, 143, 407–429. [Google Scholar] [CrossRef]
- Shaw, P.J.; Eggett, C.J. Molecular Factors Underlying Selective Vulnerability of Motor Neurons to Neurodegeneration in Amyotrophic Lateral Sclerosis. J. Neurol. 2000, 247, I17–I27. [Google Scholar] [CrossRef]
- Colasuonno, F.; Price, R.; Moreno, S. Upper and Lower Motor Neurons and the Skeletal Muscle: Implication for Amyotrophic Lateral Sclerosis (ALS). In Roles of Skeletal Muscle in Organ Development: Prenatal Interdependence among Cells, Tissues, and Organs; Advances in Anatomy, Embryology and Cell Biology; Springer Nature: Cham, Switzerland, 2023; pp. 111–129. [Google Scholar] [CrossRef]
- Martin, L.J.; Liu, Z.; Chen, K.; Price, A.C.; Yan, P.; Swaby, J.A.; Golden, W.C. Motor Neuron Degeneration in Amyotrophic Lateral Sclerosis Mutant Superoxide Dismutase-1 Transgenic Mice: Mechanisms of Mitochondriopathy and Cell Death. J. Comp. Neurol. 2007, 500, 20–46. [Google Scholar] [CrossRef]
- Bhatt, V.; Kydd, C.; Behal, M. Risk Factors of Amyotrophic Lateral Sclerosis (ALS): An Updated Systematic Review. Undergrad. Res. Nat. Clin. Sci. Technol. J. 2022, 6, 1–11. [Google Scholar] [CrossRef]
- López-Pingarrón, L.; Almeida, H.; Soria-Aznar, M.; Reyes-Gonzales, M.C.; Terrón, M.P.; García, J.J. Role of Oxidative Stress on the Etiology and Pathophysiology of Amyotrophic Lateral Sclerosis (ALS) and Its Relation with the Enteric Nervous System. Curr. Issues Mol. Biol. 2023, 45, 3315–3332. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosi, N.; Cozzolino, M.; Carrì, M.T. Neuroinflammation in Amyotrophic Lateral Sclerosis: Role of Redox (Dys)Regulation. Antioxid. Redox Signal. 2018, 29, 15–36. [Google Scholar] [CrossRef] [PubMed]
- Stefan, K.; Kunesch, E.; Benecke, R.; Classen, J. Effects of Riluzole on Cortical Excitability in Patients with Amyotrophic Lateral Sclerosis. Ann. Neurol. 2001, 49, 536–539. [Google Scholar] [CrossRef] [PubMed]
- Sawada, H. Clinical Efficacy of Edaravone for the Treatment of Amyotrophic Lateral Sclerosis. Expert Opin. Pharmacother. 2017, 18, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Nishiyama, A.; Warita, H.; Aoki, M. Genetics of Amyotrophic Lateral Sclerosis: Seeking Therapeutic Targets in the Era of Gene Therapy. J. Hum. Genet. 2023, 68, 131–152. [Google Scholar] [CrossRef]
- Tang, B.C.; Wang, Y.T.; Ren, J. Basic Information about Memantine and Its Treatment of Alzheimer’s Disease and Other Clinical Applications. Ibrain 2023, 9, 340–348. [Google Scholar] [CrossRef]
- Parambi, D.G.T. Treatment of Parkinson’s Disease by MAO-B Inhibitors, New Therapies and Future Challenges—A Mini-Review. Comb. Chem. High Throughput Screen. 2020, 23, 847–861. [Google Scholar] [CrossRef]
- García-González, X.; Cubo, E.; Simón-Vicente, L.; Mariscal, N.; Alcaraz, R.; Aguado, L.; Rivadeneyra-Posadas, J.; Sanz-Solas, A.; Saiz-Rodríguez, M. Pharmacogenetics in the Treatment of Huntington’s Disease: Review and Future Perspectives. J. Pers. Med. 2023, 13, 385. [Google Scholar] [CrossRef]
- Maragakis, N.J.; de Carvalho, M.; Weiss, M.D. Therapeutic Targeting of ALS Pathways: Refocusing an Incomplete Picture. Ann. Clin. Transl. Neurol. 2023, 10, 1948–1971. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, B.; Xu, L.; Yu, S.; Fu, J.; Wang, J.; Yan, X.; Su, J. ROS-Induced mtDNA Release: The Emerging Messenger for Communication between Neurons and Innate Immune Cells during Neurodegenerative Disorder Progression. Antioxidants 2021, 10, 1917. [Google Scholar] [CrossRef]
- Ashleigh, T.; Swerdlow, R.H.; Beal, M.F. The Role of Mitochondrial Dysfunction in Alzheimer’s Disease Pathogenesis. Alzheimer’s Dement. 2023, 19, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Rummel, N.G.; Butterfield, D.A. Altered Metabolism in Alzheimer Disease Brain: Role of Oxidative Stress. Antioxid. Redox Signal. 2022, 36, 1289–1305. [Google Scholar] [CrossRef] [PubMed]
- Choong, C.J.; Mochizuki, H. Neuropathology of α-Synuclein in Parkinson’s Disease. Neuropathology 2022, 42, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Um, M.Y.; Lim, D.W.; Son, H.J.; Cho, S.; Lee, C. Phlorotannin-Rich Fraction from Ishige foliacea Brown Seaweed Prevents the Scopolamine-Induced Memory Impairment via Regulation of ERK-CREB-BDNF Pathway. J. Funct. Foods 2018, 40, 110–116. [Google Scholar] [CrossRef]
- Xing, J.; Han, D.; Xu, D.; Li, X.; Sun, L. CREB Protects against Temporal Lobe Epilepsy Associated with Cognitive Impairment by Controlling Oxidative Neuronal Damage. Neurodegener. Dis. 2020, 19, 225–237. [Google Scholar] [CrossRef]
- Razani, E.; Pourbagheri-Sigaroodi, A.; Safaroghli-Azar, A.; Zoghi, A.; Shanaki-Bavarsad, M.; Bashash, D. The PI3K/Akt Signaling Axis in Alzheimer’s Disease: A Valuable Target to Stimulate or Suppress? Cell Stress Chaperones 2021, 26, 871–887. [Google Scholar] [CrossRef]
- Rai, S.N.; Dilnashin, H.; Birla, H.; Singh, S.S.; Zahra, W.; Rathore, A.S.; Singh, B.K.; Singh, S.P. The Role of PI3K/Akt and ERK in Neurodegenerative Disorders. Neurotox. Res. 2019, 35, 775–795. [Google Scholar] [CrossRef]
- Yang, W.; Liu, Y.; Xu, Q.Q.; Xian, Y.F.; Lin, Z.X. Sulforaphene Ameliorates Neuroinflammation and Hyperphosphorylated Tau Protein via Regulating the PI3K/Akt/GSK-3βPathway in Experimental Models of Alzheimer’s Disease. Oxidative Med. Cell. Longev. 2020, 2020, 4754195. [Google Scholar] [CrossRef]
- Toral-Rios, D.; Pichardo-Rojas, P.S.; Alonso-Vanegas, M.; Campos-Peña, V. GSK3β and Tau Protein in Alzheimer’s Disease and Epilepsy. Front. Cell. Neurosci. 2020, 14, 19. [Google Scholar] [CrossRef]
- Ziaunys, M.; Mikalauskaite, K.; Sakalauskas, A.; Smirnovas, V. Interplay between Epigallocatechin-3gallate and Ionic Strength during Amyloid Aggregation. PeerJ 2021, 9, e12381. [Google Scholar] [CrossRef]
- Carapeto, A.P.; Marcuello, C.; Faísca, P.F.N.; Rodrigues, M.S. Morphological and Biophysical Study of S100A9 Protein Fibrils by Atomic Force Microscopy Imaging and Nanomechanical Analysis. Biomolecules 2024, 14, 1091. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Du, X.; Ni, J. Zn2+ Aggravates Tau Aggregation and Neurotoxicity. Int. J. Mol. Sci. 2019, 20, 487. [Google Scholar] [CrossRef] [PubMed]
- Rius-Pérez, S.; Pérez, S.; Martí-Andrés, P.; Monsalve, M.; Sastre, J. Nuclear Factor Kappa B Signaling Complexes in Acute Inflammation. Antioxid. Redox Signal. 2020, 33, 145–165. [Google Scholar] [CrossRef] [PubMed]
- Qiao, A.; Li, J.; Hu, Y.; Wang, J.; Zhao, Z. Reduction BACE1 Expression via Suppressing NF-κB Mediated Signaling by Tamibarotene in a Mouse Model of Alzheimer’s Disease. IBRO Neurosci. Rep. 2021, 10, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Missiroli, S.; Genovese, I.; Perrone, M.; Vezzani, B.; Vitto, V.A.M.; Giorgi, C. The Role of Mitochondria in Inflammation: From Cancer to Neurodegenerative Disorders. J. Clin. Med. 2020, 9, 740. [Google Scholar] [CrossRef]
- Song, K.; Li, Y.; Zhang, H.; An, N.; Wei, Y.; Wang, L.; Tian, C.; Yuan, M.; Sun, Y.; Xing, Y.; et al. Oxidative Stress-Mediated Blood-Brain Barrier (BBB) Disruption in Neurological Diseases. Oxidative Med. Cell. Longev. 2020, 2020, 356386. [Google Scholar] [CrossRef]
- Chakraborty, A.J.; Uddin, T.M.; Matin Zidan, B.M.R.; Mitra, S.; Das, R.; Nainu, F.; Dhama, K.; Roy, A.; Hossain, M.J.; Khusro, A.; et al. Allium cepa: A Treasure of Bioactive Phytochemicals with Prospective Health Benefits. Evid.-Based Complement. Altern. Med. 2022, 2022, 4586318. [Google Scholar] [CrossRef]
- Jakaria, M.; Azam, S.; Cho, D.Y.; Haque, M.E.; Kim, I.S.; Choi, D.K. The Methanol Extract of Allium cepa L. Protects Inflammatory Markers in LPS-Induced BV-2 Microglial Cells and Upregulates the Antiapoptotic Gene and Antioxidant Enzymes in N27-A Cells. Antioxidants 2019, 8, 348. [Google Scholar] [CrossRef]
- Park, S.K.; Lee, U.; Kang, J.Y.; Kim, J.M.; Shin, E.J.; Heo, H.J. Ameliorative Effect of Onion (Allium cepa L.) Flesh and Peel on Amyloid-β-Induced Cognitive Dysfunction via Mitochondrial Activation. Korean J. Food Sci. Technol. 2020, 52, 263–273. [Google Scholar] [CrossRef]
- Kaur, R.; Randhawa, K.; Kaur, S.; Shri, R. Allium cepa Fraction Attenuates STZ-Induced Dementia via Cholinesterase Inhibition and Amelioration of Oxidative Stress in Mice. J. Basic Clin. Physiol. Pharmacol. 2020, 31, 20190197. [Google Scholar] [CrossRef]
- Singh, V.; Shri, R.; Krishan, P.; Singh, I.P.; Shah, P. Isolation and Characterization of Components Responsible for Neuroprotective Effects of Allium cepa Outer Scale Extract against Ischemia Reperfusion Induced Cerebral Injury in Mice. J. Food Sci. 2020, 85, 4009–4017. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.K.; Choi, S.J.; Kim, C.R.; Kim, J.K.; Kim, Y.J.; Choi, J.H.; Song, S.W.; Kim, C.J.; Park, G.G.; Park, C.S.; et al. Antioxidant and Cognitive-Enhancing Activities of Arctium lappa L. Roots in Aβ1-42-Induced Mouse Model. Appl. Biol. Chem. 2016, 59, 553–565. [Google Scholar] [CrossRef]
- Yuan, Q.; Wu, Y.; Wang, G.; Zhou, X.; Dong, X.; Lou, Z.; Li, S.; Wang, D. Preventive Effects of Arctigenin from Arctium lappa L. against LPS-Induced Neuroinflammation and Cognitive Impairments in Mice. Metab. Brain Dis. 2022, 37, 2039–2052. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Yan, J.; Jiang, W.; Yao, X.G.; Chen, J.; Chen, L.; Li, C.; Hu, L.; Jiang, H.; Shen, X. Arctigenin Effectively Ameliorates Memory Impairment in Alzheimer’s Disease Model Mice Targeting Both β-Amyloid Production and Clearance. J. Neurosci. 2013, 33, 13138–13149. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, S.H.; Lee, D.S.; Lee, D.J.; Kim, S.H.; Chung, S.; Yang, H.O. Effects of Fermented Ginseng on Memory Impairment and β-Amyloid Reduction in Alzheimer’s Disease Experimental Models. J. Ginseng Res. 2013, 37, 100–107. [Google Scholar] [CrossRef]
- Choi, J.G.; Kim, N.; Huh, E.; Lee, H.; Oh, M.H.; Park, J.D.; Pyo, M.K.; Oh, M.S. White Ginseng Protects Mouse Hippocampal Cells Against Amyloid-Beta Oligomer Toxicity. Phytother. Res. 2017, 31, 497–506. [Google Scholar] [CrossRef]
- Zhou, J.C.; Li, H.L.; Zhou, Y.; Li, X.T.; Yang, Z.Y.; Tohda, C.; Komatsu, K.; Piao, X.H.; Ge, Y.W. The Roles of Natural Triterpenoid Saponins against Alzheimer’s Disease. Phytother. Res. 2023, 37, 5017–5040. [Google Scholar] [CrossRef]
- Randomized, M.I.A. Efficacy and Safety of Panax Ginseng Sprout Extract in Subjective Memory Impairment: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2024, 16, 1952. [Google Scholar] [CrossRef]
- Al-Amin, M.Y.; Lahiry, A.; Ferdous, R.; Hasan, M.K.; Kader, M.A.; Alam, A.K.; Saud, Z.A.; Sadik, M.G. Stephania japonica Ameliorates Scopolamine-Induced Memory Impairment in Mice through Inhibition of Acetylcholinesterase and Oxidative Stress. Adv. Pharmacol. Pharm. Sci. 2022, 2022, 8305271. [Google Scholar] [CrossRef]
- Xiao, J.; Hao, T.; Chen, G.; Song, J.; Lin, B.; Li, W.; Xu, J.; Liu, J.; Hou, Y.; Li, N. Natural Neuroprotective Alkaloids from Stephania japonica (Thunb.) Miers. Bioorg. Chem. 2019, 91, 103175. [Google Scholar] [CrossRef]
- Hao, T.; Yang, Y.; Li, N.; Mi, Y.; Zhang, G.; Song, J.; Liang, Y.; Xiao, J.; Zhou, D.; He, D.; et al. Inflammatory Mechanism of Cerebral Ischemia-Reperfusion Injury with Treatment of Stepharine in Rats. Phytomedicine 2020, 79, 153353. [Google Scholar] [CrossRef] [PubMed]
- Hijam, A.C.; Tongbram, Y.C.; Nongthombam, P.D.; Meitei, H.N.; Koijam, A.S.; Rajashekar, Y.; Haobam, R. Neuroprotective Potential of Traditionally Used Medicinal Plants of Manipur against Rotenone-Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells. J. Ethnopharmacol. 2024, 330, 118197. [Google Scholar] [CrossRef] [PubMed]
- Ewon, K.; Bhagya, A.S. A Review on Golden Species of Zingiberaceae Family around the World: Genus Curcuma. Afr. J. Agric. Res. 2019, 14, 519–531. [Google Scholar] [CrossRef]
- Eun, C.S.; Lim, J.S.; Lee, J.; Lee, S.P.; Yang, S.A. The Protective Effect of Fermented Curcuma longa L. on Memory Dysfunction in Oxidative Stress-Induced C6 Gliomal Cells, Proinflammatory-Activated BV2 Microglial Cells, and scopolamine-Induced Amnesia Model In Mice. BMC Complement. Altern. Med. 2017, 17, 367. [Google Scholar] [CrossRef] [PubMed]
- Yuliani, S.; Mustofa; Partadiredja, G. The Neuroprotective Effects of an Ethanolic Turmeric (Curcuma longa L.) Extract against Trimethyltin-Induced Oxidative Stress in Rats. Nutr. Neurosci. 2019, 22, 797–804. [Google Scholar] [CrossRef]
- El Nebrisi, E. Neuroprotective Activities of Curcumin in Parkinson’s Disease: A Review of the Literature. Int. J. Mol. Sci. 2021, 22, 11248. [Google Scholar] [CrossRef]
- Maugeri, A.; Russo, C.; Patanè, G.T.; Barreca, D.; Mandalari, G.; Navarra, M. The Inhibition of Mitogen-Activated Protein Kinases (MAPKs) and NF-κB Underlies the Neuroprotective Capacity of a Cinnamon/Curcumin/Turmeric Spice Blend in Aβ-Exposed THP-1 Cells. Molecules 2023, 28, 7949. [Google Scholar] [CrossRef]
- Rainey-Smith, S.R.; Brown, B.M.; Sohrabi, H.R.; Shah, T.; Goozee, K.G.; Gupta, V.B.; Martins, R.N. Curcumin and Cognition: A Randomised, Placebo-Controlled, Double-Blind Study of Community-Dwelling Older Adults. Br. J. Nutr. 2016, 115, 2106–2113. [Google Scholar] [CrossRef]
- Bhatnagar, M.; Sharma, D.; Salvi, M. Neuroprotective Effects of Withania somnifera Dunal.: A Possible Mechanism. Neurochem. Res. 2009, 34, 1975–1983. [Google Scholar] [CrossRef]
- Birla, H.; Keswani, C.; Rai, S.N.; Singh, S.S.; Zahra, W.; Dilnashin, H.; Rathore, A.S.; Singh, S.P. Neuroprotective Effects of Withania somnifera in BPA Induced-Cognitive Dysfunction and Oxidative Stress in Mice. Behav. Brain Funct. 2019, 15, 9. [Google Scholar] [CrossRef]
- Pandey, A.; Bani, S.; Dutt, P.; Kumar Satti, N.; Avtar Suri, K.; Nabi Qazi, G. Multifunctional Neuroprotective Effect of Withanone, a Compound from Withania somnifera Roots in Alleviating Cognitive Dysfunction. Cytokine 2018, 102, 211–221. [Google Scholar] [CrossRef]
- Sood, A.; Kumar, A.; Dhawan, D.K.; Sandhir, R. Propensity of Withania somnifera to Attenuate Behavioural, Biochemical, and Histological Alterations in Experimental Model of Stroke. Cell. Mol. Neurobiol. 2016, 36, 1123–1138. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, G.; Ganjewala, D. An Update on the Emerging Neuroprotective Potential of Moringa oleifera and its Prospects in Complimentary Neurotherapy. Phytomed. Plus 2024, 4, 100532. [Google Scholar] [CrossRef]
- Hashim, F.J.; Vichitphan, S.; Boonsiri, P.; Vichitphan, K. Neuroprotective Assessment of Moringa oleifera Leaves Extract against Oxidative-Stress-Induced Cytotoxicity in SHSY5Y Neuroblastoma Cells. Plants 2021, 10, 889. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Hossain, A.; Begum, S. Effects of Moringa oleifera on Working Memory: An Experimental Study with Memory-Impaired Wistar Rats Tested in Radial Arm Maze. BMC Res. Notes 2022, 15, 314. [Google Scholar] [CrossRef]
- Mahaman, Y.A.R.; Feng, J.; Huang, F.; Salissou, M.T.M.; Wang, J.; Liu, R.; Zhang, B.; Li, H.; Zhu, F.; Wang, X. Moringa oleifera Alleviates Aβ Burden and Improves Synaptic Plasticity and Cognitive Impairments in APP/PS1 Mice. Nutrients 2022, 14, 4284. [Google Scholar] [CrossRef]
- Patriota, L.L.d.S.; de Lima, B.R.F.; Marinho, A.d.O.; da Costa, J.A.; Coelho, L.C.B.B.; Paiva, P.M.G.; da Rosa, M.M.; Napoleão, T.H. The Anxiolytic-like Activity of Water-Soluble Moringa oleifera Lam. Lectin Is Mediated via serotoninergic, Noradrenergic, and Dopaminergic Neurotransmission. Brain Disord. 2023, 9, 100066. [Google Scholar] [CrossRef]
- Azlan, U.K.; Khairul Annuar, N.A.; Mediani, A.; Aizat, W.M.; Damanhuri, H.A.; Tong, X.; Yanagisawa, D.; Tooyama, I.; Wan Ngah, W.Z.; Jantan, I.; et al. An Insight into the Neuroprotective and Anti-Neuroinflammatory Effects and Mechanisms of Moringa oleifera. Front. Pharmacol. 2023, 13, 1035220. [Google Scholar] [CrossRef]
- Petrisor, G.; Motelica, L.; Craciun, L.N.; Oprea, O.C.; Ficai, D.; Ficai, A. Melissa officinalis: Composition, Pharmacological Effects and Derived Release Systems—A Review. Int. J. Mol. Sci. 2022, 23, 3591. [Google Scholar] [CrossRef]
- Abd Allah, H.N.; Abdul-Hamid, M.; Mahmoud, A.M.; Abdel-Reheim, E.S. Melissa officinalis L. Ameliorates Oxidative Stress and Inflammation and Upregulates Nrf2/HO-1 Signaling in the Hippocampus of Pilocarpine-Induced Rats. Environ. Sci. Pollut. Res. 2022, 29, 2214–2226. [Google Scholar] [CrossRef]
- Abo-Zaid, O.A.; Moawed, F.S.; Taha, E.F.; Ahmed, E.S.A.; Kawara, R.S. Melissa officinalis Extract Suppresses Endoplasmic Reticulum Stress-Induced Apoptosis in the Brain of Hypothyroidism-Induced Rats Exposed to γ-Radiation. Cell Stress Chaperon 2023, 28, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Bayat, M.; Azami Tameh, A.; Hossein Ghahremani, M.; Akbari, M.; Mehr, S.E.; Khanavi, M.; Hassanzadeh, G. Neuroprotective Properties of Melissa officinalis after Hypoxic-Ischemic Injury Both in Vitro and in Vivo. DARU J. Pharm. Sci. 2012, 20, 42. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, S.; Shahmoradi, B. Therapeutic Effect of Melissa officinalis in an Amyloid-β Rat Model of Alzheimer’s Disease. J. Herbmed Pharmacol. 2018, 7, 193–199. [Google Scholar] [CrossRef]
- Naseri, M.; Arabi Mianroodi, R.; Pakzad, Z.; Falahati, P.; Borbor, M.; Azizi, H.; Nasri, S. The Effect of Melissa officinalis L. Extract on Learning and Memory: Involvement of Hippocampal Expression of Nitric Oxide Synthase and Brain-Derived Neurotrophic Factor in Diabetic Rats. J. Ethnopharmacol. 2021, 276, 114210. [Google Scholar] [CrossRef] [PubMed]
- Ghazizadeh, J.; Hamedeyazdan, S.; Torbati, M.; Farajdokht, F.; Fakhari, A.; Mahmoudi, J.; Araj-Khodaei, M.; Sadigh-Eteghad, S. Melissa officinalis L. Hydro-Alcoholic Extract Inhibits Anxiety and Depression through Prevention of Central Oxidative Stress and Apoptosis. Exp. Physiol. 2020, 105, 707–720. [Google Scholar] [CrossRef]
- Haybar, H.; Javid, A.Z.; Haghighizadeh, M.H.; Valizadeh, E.; Mohaghegh, S.M.; Mohammadzadeh, A. The Effects of Melissa officinalis Supplementation on Depression, Anxiety, Stress, and Sleep Disorder in Patients with Chronic Stable Angina. Clin. Nutr. ESPEN 2018, 26, 47–52. [Google Scholar] [CrossRef]
- Lopresti, A.L. Salvia (Sage): A Review of Its Potential Cognitive-Enhancing and Protective Effects. Drugs R&D 2017, 17, 53–64. [Google Scholar] [CrossRef]
- Hasanein, P.; Felehgari, Z.; Emamjomeh, A. Preventive Effects of Salvia officinalis L. against Learning and Memory Deficit Induced by Diabetes in Rats: Possible Hypoglycaemic and Antioxidant Mechanisms. Neurosci. Lett. 2016, 622, 72–77. [Google Scholar] [CrossRef]
- Sharma, Y.; Fagan, J.; Schaefer, J. In vitro Screening for Acetylcholinesterase Inhibition and Antioxidant Potential in Different Extracts of Sage (Salvia officinalis L.) and Rosemary (Rosmarinus officinalis L.). J. Biol. Act. Prod. Nat. 2020, 10, 59–69. [Google Scholar] [CrossRef]
- Sallam, A.; Mira, A.; Ashour, A.; Shimizu, K. Acetylcholine Esterase Inhibitors and Melanin Synthesis Inhibitors from Salvia officinalis. Phytomedicine 2016, 23, 1005–1011. [Google Scholar] [CrossRef]
- Uță, G.; Manolescu, D.Ș.; Avram, S. Therapeutic Properties of Several Chemical Compounds from Salvia officinalis L. in Alzheimer’s Disease. Mini-Rev. Med. Chem. 2021, 21, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, Y.; Keshtmand, Z.; Rahbarghazi, R.; Gharamaleki, M.N.; Barati, A.; Bagheri, S.; Rezaie, J.; Rezabakhsh, A.; Ahmadi, M.; Delashoub, M. Salvia officinalis Hydroalcoholic Extract Improved Reproduction Capacity and Behavioral Activity in Rats Exposed to Immobilization Stress. Anim. Sci. J. 2020, 91, e13382. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Wu, X.; Cao, J.; Peng, Y.; Wang, A.; Pei, J.; Xiao, J.; Wang, S.; Wang, Y. Rhodiola Species: A Comprehensive Review of Traditional Use, Phytochemistry, Pharmacology, Toxicity, and Clinical Study. Med. Res. Rev. 2019, 39, 1779–1850. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Fan, F.; Xie, N.; Zhang, Y.; Wang, X.; Meng, X. Rhodiola crenulata Alleviates Hypobaric Hypoxia-Induced Brain Injury by Maintaining BBB Integrity and Balancing Energy Metabolism Dysfunction. Phytomedicine 2024, 128, 155529. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Lin, K.T.; Chen, Y.; Dai, Y.H. Rhodiola crenulata Extract Supplement Significantly Attenuates Hypoxia-Reduced Oxygen Saturation and Cognitive Function. J. Herb. Med. 2023, 41, 100732. [Google Scholar] [CrossRef]
- Wang, X.; Hou, Y.; Li, Q.; Li, X.; Wang, W.; Ai, X.; Kuang, T.; Chen, X.; Zhang, Y.; Zhang, J.; et al. Rhodiola crenulata Attenuates Apoptosis and Mitochondrial Energy Metabolism Disorder in Rats with Hypobaric Hypoxia-Induced Brain Injury by Regulating the HIF-1α/microRNA 210/ISCU1/2(COX10) Signaling Pathway. J. Ethnopharmacol. 2019, 241, 111801. [Google Scholar] [CrossRef]
- Xie, N.; Fan, F.; Jiang, S.; Hou, Y.; Zhang, Y.; Cairang, N.; Wang, X.; Meng, X. Rhodiola crenulate Alleviates Hypobaric Hypoxia-Induced Brain Injury via Adjusting NF-κB/NLRP3-Mediated Inflammation. Phytomedicine 2022, 103, 154240. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Hu, X.; Chu, X.; Li, X.; Han, F. Neuroprotective Effects of a Rhodiola crenulata Extract on Amyloid-β Peptides (Aβ1-42)-Induced Cognitive Deficits in Rat Models of Alzheimer’s Disease. Phytomedicine 2019, 57, 331–338. [Google Scholar] [CrossRef]
- Chen, H.I.; Ou, H.C.; Chen, C.Y.; Yu, S.H.; Cheng, S.M.; Wu, X.B.; Lee, S.D. Neuroprotective Effect of Rhodiola crenulata in D-Galactose-Induced Aging Model. Am. J. Chin. Med. 2020, 48, 373–390. [Google Scholar] [CrossRef]
- Singh, N.; Rao, A.S.; Nandal, A.; Kumar, S.; Yadav, S.S.; Ganaie, S.A.; Narasimhan, B. Phytochemical and Pharmacological Review of Cinnamomum verum J. Presl-a Versatile Spice Used in Food and Nutrition. Food Chem. 2021, 338, 127773. [Google Scholar] [CrossRef]
- Saeedi, M.; Iraji, A.; Vahedi-Mazdabadi, Y.; Alizadeh, A.; Edraki, N.; Firuzi, O.; Eftekhari, M.; Akbarzadeh, T. Cinnamomum verum J. Presl. Bark Essential oil: In Vitro Investigation of Anti-Cholinesterase, Anti-BACE1, and Neuroprotective Activity. BMC Complement. Med. Ther. 2022, 22, 303. [Google Scholar] [CrossRef]
- Mustafa, H.N. Neuro-Amelioration of Cinnamaldehyde in Aluminum-Induced Alzheimer’s Disease Rat Model. J. Histotechnol. 2020, 43, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, D.; Bais, S.; Wang, H. Modulation of Pro-inflammatory Mediators by Eugenol in AlCl3 Induced Dementia in Rats. Int. J. Pharmacol. 2019, 15, 457–464. [Google Scholar] [CrossRef]
- Ramazani, E.; YazdFazeli, M.; Emami, S.A.; Mohtashami, L.; Javadi, B.; Asili, J.; Tayarani-Najaran, Z. Protective Effects of Cinnamomum verum, Cinnamomum cassia and Cinnamaldehyde against 6-OHDA-Induced Apoptosis in PC12 Cells. Mol. Biol. Rep. 2020, 47, 2437–2445. [Google Scholar] [CrossRef]
- Ibrahim Fouad, G.; Zaki Rizk, M. Possible Neuromodulating Role of Different Grape (Vitis vinifera L.) Derived Polyphenols against Alzheimer’s Dementia: Treatment and Mechanisms. Bull. Natl. Res. Cent. 2019, 43, 108. [Google Scholar] [CrossRef]
- Duangjan, C.; Rangsinth, P.; Zhang, S.; Gu, X.; Wink, M.; Tencomnao, T. Vitis Vinifera Leaf Extract Protects Against Glutamate-Induced Oxidative Toxicity in HT22 Hippocampal Neuronal Cells and Increases Stress Resistance Properties in Caenorhabditis Elegans. Front. Nutr. 2021, 8, 634100. [Google Scholar] [CrossRef]
- Choi, J.; Choi, S.Y.; Hong, Y.; Han, Y.E.; Oh, S.J.; Lee, B.; Choi, C.W.; Kim, M.S. The Central Administration of Vitisin a, Extracted from Vitis vinifera, Improves Cognitive Function and Related Signaling Pathways in a Scopolamine-Induced Dementia Model. Biomed. Pharmacother. 2023, 163, 114812. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, F.; Zhang, R.; Xiong, Z.; Zhang, Q.; Hao, L.; Chen, S. Neuroprotective Potency of Neolignans in Magnolia officinalis Cortex Against Brain Disorders. Front. Pharmacol. 2022, 13, 857449. [Google Scholar] [CrossRef]
- Lee, Y.J.; Choi, D.Y.; Han, S.B.; Kim, Y.H.; Kim, K.H.; Hwang, B.Y.; Kang, J.K.; Lee, B.J.; Oh, K.W.; Hong, J.T. Inhibitory Effect of Ethanol Extract of Magnolia officinalis on Memory Impairment and Amyloidogenesis in a Transgenic Mouse Model of Alzheimer’s Disease via Regulating β-Secretase Activity. Phytother. Res. 2012, 26, 1884–1892. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, M.; Liu, B.; Tang, Y.; Wang, Z.; Wang, T.; Zheng, J.; Zhang, J. Honokiol prevents Chronic Cerebral Hypoperfusion Induced Astrocyte A1 Polarization to Alleviate Neurotoxicity by Targeting SIRT3-STAT3 Axis. Free. Radic. Biol. Med. 2023, 202, 62–75. [Google Scholar] [CrossRef]
- Hou, M.; Bao, W.; Gao, Y.; Chen, J.; Song, G. Honokiol Improves Cognitive Impairment in APP/PS1 Mice through Activating Mitophagy and Mitochondrial Unfolded Protein Response. Chem. Biol. Interact. 2022, 351, 109741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shu, X.; Cao, Q.; Xu, L.; Wang, Z.; Li, C.; Xia, S.; Shao, P.; Bao, X.; Sun, L.; et al. Compound from Magnolia officinalis Ameliorates White Matter Injury by Promoting Oligodendrocyte Maturation in Chronic Cerebral Ischemia Models. Neurosci. Bull. 2023, 39, 1497–1511. [Google Scholar] [CrossRef] [PubMed]
- Barman, R.; Bora, P.K.; Saikia, J.; Kemprai, P.; Saikia, S.P.; Haldar, S.; Banik, D. Nutmegs and Wild Nutmegs: An Update on Ethnomedicines, Phytochemicals, Pharmacology, and Toxicity of the Myristicaceae species. Phytother. Res. 2021, 35, 4632–4659. [Google Scholar] [CrossRef] [PubMed]
- Rastegari, A.; Manayi, A.; Rezakazemi, M.; Eftekhari, M.; Khanavi, M.; Akbarzadeh, T.; Saeedi, M. Phytochemical Analysis and Anticholinesterase Activity of Aril of Myristica fragrans Houtt. BMC Chem. 2022, 16, 106. [Google Scholar] [CrossRef]
- Al-Quraishy, S.; Dkhil, M.A.; Abdel-Gaber, R.; Zrieq, R.; Hafez, T.A.; Mubaraki, M.A.; Abdel Moneim, A.E. Myristica fragrans Seed Extract Reverses Scopolamine-Induced Cortical Injury via Stimulation of HO-1 Expression in Male Rats. Environ. Sci. Pollut. Res. 2020, 27, 12395–12404. [Google Scholar] [CrossRef]
- Sultan, M.T.; Saeed, F.; Raza, H.; Ilyas, A.; Sadiq, F.; Musarrat, A.; Afzaal, M.; Hussain, M.; Raza, M.A.; Al Jbawi, E. Nutritional and Therapeutic Potential of Nutmeg (Myristica fragrans): A Concurrent Review. Cogent Food Agric. 2023, 9, 2279701. [Google Scholar] [CrossRef]
- Ghorbanian, D.; Ghasemi-Kasman, M.; Hashemian, M.; Gorji, E.; Gol, M.; Feizi, F.; Kazemi, S.; Ashrafpour, M.; Moghadamnia, A.A. Myristica fragrans Houtt Extract Attenuates Neuronal Loss and Glial Activation in Pentylenetetrazol-Induced Kindling Model. Iran. J. Pharm. Res. 2019, 18, 812–825. [Google Scholar] [CrossRef]
- Kanagasabapathy, M.V.; Kaliyaperumal, P.; Srinivasagam, R. Myristica fragrans Seeds Alleviate Motor Behavioural Changes in Rotenone Model of Parkinsons Disease. Int. J. Pharm. Res. 2020, 12, 176. [Google Scholar] [CrossRef]
- Kelly, E.; Vyas, P.; Weber, J.T. Biochemical Properties and Neuroprotective Effects of Compounds in Various Species of Berries. Molecules 2018, 23, 26. [Google Scholar] [CrossRef]
- Debnath-Canning, M.; Unruh, S.; Vyas, P.; Daneshtalab, N.; Igamberdiev, A.U.; Weber, J.T. Fruits and Leaves from Wild Blueberry Plants Contain Diverse Polyphenols and Decrease Neuroinflammatory Responses in Microglia. J. Funct. Foods 2020, 68, 103906. [Google Scholar] [CrossRef]
- Moradi, Z.; Rabiei, Z.; Anjomshoa, M.; Amini-Farsani, Z.; Massahzadeh, V.; Asgharzade, S. Neuroprotective Effect of Wild Lowbush Blueberry (Vaccinium angustifolium) on Global Cerebral Ischemia/Reperfusion Injury in Rats: Downregulation of iNOS/TNF-α and Upregulation of miR-146a/miR-21 Expression. Phytother. Res. 2021, 35, 6428–6440. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, D.; Tomasello, M.; Cordaro, M.; D’amico, R.; Fusco, R.; Abdelhameed, A.S.; Wenzel, U.; Siracusa, R.; Calabrese, V.; Cuzzocrea, S.; et al. MemophenolTM Prevents Amyloid-β Deposition and Attenuates Inflammation and Oxidative Stress in the Brain of an Alzheimer’s Disease Rat. Int. J. Mol. Sci. 2023, 24, 6938. [Google Scholar] [CrossRef] [PubMed]
- Yates, C.R.; Bruno, E.J.; Yates, M.E.D. Tinospora cordifolia: A Review of Its Immunomodulatory Properties. J. Diet. Suppl. 2022, 19, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Bhattacharyya, C.; Prashar, V.; Arora, T.; Sharma, A.; Changotra, H.; Parkash, J. Tinospora cordifolia: A Potential Neuroprotective Agent against Various Neurodegenerative Diseases. J. Herb. Med. 2023, 42, 100775. [Google Scholar] [CrossRef]
- Sharma, A.; Kalotra, S.; Bajaj, P.; Singh, H.; Kaur, G. Butanol Extract of Tinospora cordifolia Ameliorates Cognitive Deficits Associated with Glutamate-Induced Excitotoxicity: A Mechanistic Study Using Hippocampal Neurons. Neuro-Mol. Med. 2020, 22, 81–99. [Google Scholar] [CrossRef]
- Birla, H.; Keswani, C.; Singh, S.S.; Zahra, W.; Dilnashin, H.; Rathore, A.S.; Singh, R.; Rajput, M.; Keshri, P.; Singh, S.P. Unraveling the Neuroprotective Effect of Tinospora cordifolia in a Parkinsonian Mouse Model through the Proteomics Approach. ACS Chem. Neurosci. 2021, 12, 4319–4335. [Google Scholar] [CrossRef]
- Jamadagni, S.B.; Ghadge, P.M.; Tambe, M.S.; Srinivasan, M.; Prasad, G.P.; Jamadagni, P.S.; Prasad, S.B.; Pawar, S.D.; Gurav, A.M.; Gaidhani, S.N.; et al. Amelioration of AlCl3-induced Memory Loss in the Rats by an Aqueous Extract of Guduchi, a Medhya Rasayana. Pharmacogn. Mag. 2023, 19, 231–243. [Google Scholar] [CrossRef]
- El Haouari, M.; Assem, N.; Changan, S.; Kumar, M.; Daştan, S.D.; Rajkovic, J.; Taheri, Y.; Sharifi-Rad, J. An Insight into Phytochemical, Pharmacological, and Nutritional Properties of Arbutus unedo L. from Morocco. Evidence-Based Complement. Altern. Med. 2021, 2021, 1794621. [Google Scholar] [CrossRef]
- Bebek Markovinović, A.; Brčić Karačonji, I.; Jurica, K.; Lasić, D.; Skendrović Babojelić, M.; Duralija, B.; Šic Žlabur, J.; Putnik, P.; Bursać Kovačević, D. Strawberry Tree Fruits and Leaves (Arbutus unedo L.) as Raw Material for Sustainable Functional Food Processing: A Review. Horticulturae 2022, 8, 881. [Google Scholar] [CrossRef]
- Al-Mijalli, S.H.; Mrabti, H.N.; Ouassou, H.; Flouchi, R.; Abdallah, E.M.; Sheikh, R.A.; Alshahrani, M.M.; Al Awadh, A.A.; Harhar, H.; El Omari, N.; et al. Chemical Composition, Antioxidant, Anti-Diabetic, Anti-Acetylcholinesterase, Anti-Inflammatory, and Antimicrobial Properties of Arbutus unedo L. and Laurus nobilis L. Essential Oils. Life 2022, 12, 1876. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, A.; Sindhu, R.K.; Kushwah, A.S. Arbutin Attenuates Monosodium L-Glutamate Induced Neurotoxicity and Cognitive Dysfunction in Rats. Neurochem. Int. 2021, 151, 105217. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Singh, A.K.; Kumar, R.; Jamieson, S.; Pandey, A.K.; Bishayee, A. Neuroprotective Potential of Ellagic Acid: A Critical Review. Adv. Nutr. 2021, 12, 1211–1238. [Google Scholar] [CrossRef]
- Kim, J.M.; Lee, U.; Kang, J.Y.; Park, S.K.; Shin, E.J.; Kim, H.J.; Kim, C.W.; Kim, M.J.; Heo, H.J. Anti-Amnesic Effect of Walnut via the Regulation of BBB Function and Neuro-Inflammation in Aβ1-42-Induced Mice. Antioxidants 2020, 9, 976. [Google Scholar] [CrossRef] [PubMed]
- Hosseini Adarmanabadi, S.M.H.; Karami Gilavand, H.; Taherkhani, A.; Sadat Rafiei, S.K.; Shahrokhi, M.; Faaliat, S.; Biabani, M.; Abil, E.; Ansari, A.; Sheikh, Z.; et al. Pharmacotherapeutic Potential of Walnut (Juglans spp.) in Age-Related Neurological Disorders. IBRO Neurosci. Rep. 2023, 14, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zheng, L.; Zhao, T.; Zhang, Q.; Liu, Y.; Sun, B.; Su, G.; Zhao, M. Inhibitory Effects of Walnut (Juglans regia) Peptides on Neuroinflammation and Oxidative Stress in Lipopolysaccharide-Induced Cognitive Impairment Mice. J. Agric. Food Chem. 2020, 68, 2381–2392. [Google Scholar] [CrossRef] [PubMed]
- Dang, Q.; Wu, D.; Li, Y.; Fang, L.; Liu, C.; Wang, X.; Liu, X.; Min, W. Walnut-Derived Peptides Ameliorate D-Galactose-Induced Memory Impairments in a Mouse Model via Inhibition of MMP-9-Mediated Blood–Brain Barrier Disruption. Food Res. Int. 2022, 162, 112029. [Google Scholar] [CrossRef]
- Zhang, X.; Guan, L.; Zhu, L.; Wang, K.; Gao, Y.; Li, J.; Yan, S.; Ji, N.; Zhou, Y.; Yao, X.; et al. A Review of the Extraction and Purification Methods, Biological Activities, and Applications of Active Compounds in Acanthopanax senticosus. Front. Nutr. 2024, 11, 1391601. [Google Scholar] [CrossRef]
- Jia, A.; Zhang, Y.; Gao, H.; Zhang, Z.; Zhang, Y.; Wang, Z.; Zhang, J.; Deng, B.; Qiu, Z.; Fu, C. A Review of Acanthopanax senticosus (Rupr and Maxim.) Harms: From Ethnopharmacological Use to Modern Application. J. Ethnopharmacol. 2021, 268, 113586. [Google Scholar] [CrossRef]
- Li, J.; He, Y.; Fu, J.; Wang, Y.; Fan, X.; Zhong, T.; Zhou, H. Dietary Supplementation of Acanthopanax senticosus Extract Alleviates Motor Deficits in MPTP-Induced Parkinson’s Disease Mice and Its Underlying Mechanism. Front. Nutr. 2023, 9, 1121789. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Y.; Shi, D.; Jiang, C.; Cao, H.; Jiang, F.; Bao, X.; Shen, Y.; Shi, X. Acanthopanax senticosus Improves Cognitive Impairment in Alzheimer’s Disease by Promoting the Phosphorylation of the MAPK Signaling Pathway. Front. Immunol. 2024, 15, 1383464. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, X.; Zheng, S.; Cao, P.; Chen, Y.; Yu, M.; Liao, C.; Zhang, Z.; Han, J.; Duan, Y.; et al. LongShengZhi Capsule Attenuates Alzheimer-like Pathology in APP/PS1 Double Transgenic Mice by Reducing Neuronal Oxidative Stress and Inflammation. Front. Aging Neurosci. 2020, 12, 582455. [Google Scholar] [CrossRef] [PubMed]
- Oresanya, I.O.; Orhan, I.E. Deciphering Neuroprotective Effect of Rosmarinus officinalis L. (Syn. Salvia rosmarinus Spenn.) through Preclinical and Clinical Studies. Curr. Drug Targets 2024, 25, 330–352. [Google Scholar] [CrossRef] [PubMed]
- Kosmopoulou, D.; Lafara, M.P.; Adamantidi, T.; Ofrydopoulou, A.; Grabrucker, A.M.; Tsoupras, A. Neuroprotective Benefits of Rosmarinus officinalis and Its Bioactives against Alzheimer’s and Parkinson’s Diseases. Appl. Sci. 2024, 14, 6417. [Google Scholar] [CrossRef]
- Al-Tawarah, N.M.; Al-Dmour, R.H.; Abu Hajleh, M.N.; Khleifat, K.M.; Alqaraleh, M.; Al-Saraireh, Y.M.; Jaradat, A.Q.; Al-Dujaili, E.A.S. Rosmarinus officinalis and Mentha piperita Oils Supplementation Enhances Memory in a Rat Model of Scopolamine-Induced Alzheimer’s Disease-like Condition. Nutrients 2023, 15, 1547. [Google Scholar] [CrossRef] [PubMed]
- Presti-Silva, S.M.; Herlinger, A.L.; Martins-Silva, C.; Pires, R.G.W. Biochemical and Behavioral Effects of Rosmarinic Acid Treatment in an Animal Model of Parkinson’s Disease Induced by MPTP. Behav. Brain Res. 2023, 440, 114257. [Google Scholar] [CrossRef]
- Rahbardar, M.G.; Hosseinzadeh, H. Therapeutic Effects of Rosemary (Rosmarinus officinalis L.) and its Active Constituents on Nervous System Disorders. Iran. J. Basic Med. Sci. 2020, 23, 1100–1112. [Google Scholar] [CrossRef]
- Parle, M.; Dhingra, D.; Kulkarni, S.K. Improvement of Mouse Memory by Myristica fragrans Seeds. J. Med. Food 2004, 7, 157–161. [Google Scholar] [CrossRef]
- Jeong, H.R.; Jo, Y.N.; Jeong, J.H.; Kim, H.J.; Kim, M.J.; Heo, H.J. Blueberry (Vaccinium virgatum) Leaf Extracts Protect against Aβ-Induced Cytotoxicity and Cognitive Impairment. J. Med. Food 2013, 16, 968–976. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, Q.; Zhou, Y. Strawberry Leaf Extract Treatment Alleviates Cognitive Impairment by Activating Nrf2/HO-1 Signaling in Rats With Streptozotocin-Induced Diabetes. Front. Aging Neurosci. 2020, 12, 201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, D.W.; Lee, J.-E.; Lee, C.; Kim, Y.T. Natural Products and Their Neuroprotective Effects in Degenerative Brain Diseases: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 11223. https://doi.org/10.3390/ijms252011223
Lim DW, Lee J-E, Lee C, Kim YT. Natural Products and Their Neuroprotective Effects in Degenerative Brain Diseases: A Comprehensive Review. International Journal of Molecular Sciences. 2024; 25(20):11223. https://doi.org/10.3390/ijms252011223
Chicago/Turabian StyleLim, Dong Wook, Jung-Eun Lee, Changho Lee, and Yun Tai Kim. 2024. "Natural Products and Their Neuroprotective Effects in Degenerative Brain Diseases: A Comprehensive Review" International Journal of Molecular Sciences 25, no. 20: 11223. https://doi.org/10.3390/ijms252011223
APA StyleLim, D. W., Lee, J.-E., Lee, C., & Kim, Y. T. (2024). Natural Products and Their Neuroprotective Effects in Degenerative Brain Diseases: A Comprehensive Review. International Journal of Molecular Sciences, 25(20), 11223. https://doi.org/10.3390/ijms252011223