Proximity Elongation Assay and ELISA for the Identification of Serum Diagnostic Biomarkers in Parkinson’s Disease and Progressive Supranuclear Palsy
Abstract
:1. Introduction
2. Results
2.1. Biomarkers Assessment by ANCOVA
2.2. Classification Performance of ML Models
2.3. Biomarkers Validation by ELISA
2.4. Linear Regression
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Serum Sample Collection
4.3. Proximity Extension Assay by Olink
4.4. Enzyme-Linked Immunosorbent Assay
4.5. Statistical Analysis
4.6. Machine Learning Approach
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Höglinger, G.U.; Respondek, G.; Stamelou, M.; Kurz, C.; Josephs, K.A.; Lang, A.E.; Mollenhauer, B.; Müller, U.; Nilsson, C.; Whitwell, J.L.; et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Mov. Disord. 2017, 32, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Beach, T.G.; Adler, C.H. Importance of low diagnostic Accuracy for early Parkinson’s disease. Mov. Disord. 2018, 33, 1551–1554. [Google Scholar] [CrossRef]
- Morris, H.R.; Spillantini, M.G.; Sue, C.M.; Williams-Gray, C.H. The pathogenesis of Parkinson’s disease. Lancet 2024, 403, 293–304. [Google Scholar] [CrossRef]
- Stamelou, M.; Respondek, G.; Giagkou, N.; Whitwell, J.L.; Kovacs, G.G.; Höglinger, G.U. Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat. Rev. Neurol. 2021, 17, 601–620. [Google Scholar] [CrossRef]
- Parnetti, L.; Gaetani, L.; Eusebi, P.; Paciotti, S.; Hansson, O.; El-Agnaf, O.; Mollenhauer, B.; Blennow, K.; Calabresi, P. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol. 2019, 18, 573–586. [Google Scholar] [CrossRef]
- Tokuda, T.; Qureshi, M.M.; Ardah, M.T.; Varghese, S.; Shehab, S.A.; Kasai, T.; Ishigami, N.; Tamaoka, A.; Nakagawa, M.; El-Agnaf, O.M. Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology 2010, 75, 1766–1772. [Google Scholar] [CrossRef]
- Aerts, M.B.; Esselink, R.A.; Abdo, W.F.; Bloem, B.R.; Verbeek, M.M. CSF α-synuclein does not differentiate between parkinsonian disorders. Neurobiol. Aging 2012, 33, 430.e1–430.e3. [Google Scholar] [CrossRef]
- Hall, S.; Öhrfelt, A.; Constantinescu, R.; Andreasson, U.; Surova, Y.; Bostrom, F.; Nilsson, C.; Håkan, W.; Decraemer, H.; Någga, K.; et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol. 2012, 69, 1445–1452. [Google Scholar] [CrossRef]
- Magdalinou, N.K.; Paterson, R.W.; Schott, J.M.; Fox, N.C.; Mummery, C.; Blennow, K.; Bhatia, K.; Morris, H.R.; Giunti, P.; Warner, T.T.; et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1240–1247. [Google Scholar] [CrossRef]
- Constantinides, V.C.; Paraskevas, G.P.; Emmanouilidou, E.; Petropoulou, O.; Bougea, A.; Vekrellis, K.; Evdokimidis, I.; Stamboulis, E.; Kapaki, E. CSF biomarkers β-amyloid, tau proteins and a-synuclein in the differential diagnosis of Parkinson-plus syndromes. J. Neurol. Sci. 2017, 382, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Constantinides, V.C.; Majbour, N.K.; Paraskevas, G.P.; Abdi, I.; Safieh-Garabedian, B.; Stefanis, L.; El-Agnaf, O.M.; Kapaki, E. Cerebrospinal Fluid α-Synuclein Species in Cognitive and Movements Disorders. Brain Sci. 2021, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Yang, S.Y.; Horng, H.E.; Yang, C.C.; Chieh, J.J.; Chen, H.H.; Liu, B.H.; Chiu, M.J. Plasma Biomarkers Differentiate Parkinson’s Disease From Atypical Parkinsonism Syndromes. Front. Aging Neurosci. 2018, 10, 123. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Y.; Chen, S.F.; Cui, M.; Zhao, M.; Shen, X.N.; Guo, Y.; Zhang, Y.R.; Zhang, W.; Wang, H.F.; Huang, Y.Y.; et al. Plasma Biomarkers and Positron Emission Tomography Tau Pathology in Progressive Supranuclear Palsy. Mov. Disord. 2023, 38, 676–682. [Google Scholar] [CrossRef]
- Cristiani, C.M.; Scaramuzzino, L.; Quattrone, A.; Parrotta, E.I.; Cuda, G.; Quattrone, A. Serum Oligomeric α-Synuclein and p-tau181 in Progressive Supranuclear Palsy and Parkinson’s Disease. Int. J. Mol. Sci. 2024, 25, 6882. [Google Scholar] [CrossRef]
- Bartl, M.; Dakna, M.; Schade, S.; Otte, B.; Wicke, T.; Lang, E.; Starke, M.; Ebentheuer, J.; Weber, S.; Toischer, K.; et al. Blood Markers of Inflammation, Neurodegeneration, and Cardiovascular Risk in Early Parkinson’s Disease. Mov. Disord. 2023, 38, 68–81. [Google Scholar] [CrossRef]
- Paslawski, W.; Khosousi, S.; Hertz, E.; Markaki, I.; Boxer, A.; Svenningsson, P. Large-scale proximity extension assay reveals CSF midkine and DOPA decarboxylase as supportive diagnostic biomarkers for Parkinson’s disease. Transl. Neurodegener. 2023, 12, 42. [Google Scholar] [CrossRef]
- Rutledge, J.; Lehallier, B.; Zarifkar, P.; Losada, P.M.; Shahid-Besanti, M.; Western, D.; Gorijala, P.; Ryman, S.; Yutsis, M.; Deutsch, G.K.; et al. Comprehensive proteomics of CSF, plasma, and urine identify DDC and other biomarkers of early Parkinson’s disease. Acta Neuropathol. 2024, 147, 52. [Google Scholar] [CrossRef]
- Hepp, D.H.; van Wageningen, T.A.; Kuiper, K.L.; van Dijk, K.D.; Oosterveld, L.P.; Berendse, H.W.; van de Berg, W.D.J. Inflammatory Blood Biomarkers Are Associated with Long-Term Clinical Disease Severity in Parkinson’s Disease. Int. J. Mol. Sci. 2023, 24, 14915. [Google Scholar] [CrossRef]
- Santaella, A.; Kuiperij, H.B.; van Rumund, A.; Esselink, R.A.J.; van Gool, A.J.; Bloem, B.R.; Verbeek, M.M. Inflammation biomarker discovery in Parkinson’s disease and atypical parkinsonisms. BMC Neurol. 2020, 20, 26. [Google Scholar] [CrossRef]
- Jabbari, E.; Woodside, J.; Guo, T.; Magdalinou, N.K.; Chelban, V.; Athauda, D.; Lees, A.J.; Foltynie, T.; Houlden, H.; Church, A.; et al. Proximity extension assay testing reveals novel diagnostic biomarkers of atypical parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry 2019, 90, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Assarsson, E.; Lundberg, M.; Holmquist, G.; Björkesten, J.; Thorsen, S.B.; Ekman, D.; Eriksson, A.; Rennel Dickens, E.; Ohlsson, S.; Edfeldt, G.; et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 2014, 9, e95192. [Google Scholar] [CrossRef] [PubMed]
- Hayrapetyan, H.; Tran, T.; Tellez-Corrales, E.; Madiraju, C. Enzyme-Linked Immunosorbent Assay: Types and Applications. Methods Mol. Biol. 2023, 2612, 1–17. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar] [CrossRef]
- Respondek, G.; Stamelou, M.; Kurz, C.; Ferguson, L.W.; Rajput, A.; Chiu, W.Z.; van Swieten, J.C.; Troakes, C.; Al Sarraj, S.; Gelpi, E.; et al. The phenotypic spectrum of progressive supranuclear palsy: A retrospective multicenter study of 100 definite cases. Mov. Disord. 2014, 29, 1758–1766. [Google Scholar] [CrossRef]
- Quattrone, A.; Morelli, M.; Vescio, B.; Nigro, S.; Le Piane, E.; Sabatini, U.; Caracciolo, M.; Vescio, V.; Quattrone, A.; Barbagallo, G.; et al. Refining initial diagnosis of Parkinson’s disease after follow-up: A 4-year prospective clinical and magnetic resonance imaging study. Mov. Disord. 2019, 34, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Quattrone, A.; Morelli, M.; Bianco, M.G.; Buonocore, J.; Sarica, A.; Caligiuri, M.E.; Aracri, F.; Calomino, C.; De Maria, M.; Vaccaro, M.G.; et al. Magnetic Resonance Planimetry in the Differential Diagnosis between Parkinson’s Disease and Progressive Supranuclear Palsy. Brain Sci. 2022, 12, 949. [Google Scholar] [CrossRef]
- Khalil, M.; Teunissen, C.E.; Lehmann, S.; Otto, M.; Piehl, F.; Ziemssen, T.; Bittner, S.; Sormani, M.P.; Gattringer, T.; Abu-Rumeileh, S.; et al. Neurofilaments as biomarkers in neurological disorders—Towards clinical application. Nat. Rev. Neurol. 2024, 20, 269–287. [Google Scholar] [CrossRef]
- Ashton, N.J.; Janelidze, S.; Al Khleifat, A.; Leuzy, A.; van der Ende, E.L.; Karikari, T.K.; Benedet, A.L.; Pascoal, T.A.; Lleó, A.; Parnetti, L.; et al. A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat. Commun. 2021, 12, 3400. [Google Scholar] [CrossRef]
- Archer, D.B.; Mitchell, T.; Burciu, R.G.; Yang, J.; Nigro, S.; Quattrone, A.; Quattrone, A.; Jeromin, A.; McFarland, N.R.; Okun, M.S.; et al. Magnetic Resonance Imaging and Neurofilament Light in the Differentiation of Parkinsonism. Mov. Disord. 2020, 35, 1388–1395. [Google Scholar] [CrossRef]
- Bianco, M.G.; Cristiani, C.M.; Scaramuzzino, L.; Augimeri, A.; Chimento, I.; Buonocore, J.; Parrotta, E.; Quattrone, A.; Cuda, G.; Quattrone, A. Combined blood Neurofilament light chain and third ventricle width to differentiate Progressive Supranuclear Palsy from Parkinson’s Disease: A machine learning study. Park. Relat. Disord. 2024, 123, 106978. [Google Scholar] [CrossRef]
- Pedersen, C.C.; Ushakova, A.; Skogseth, R.E.; Alves, G.; Tysnes, O.B.; Aarsland, D.; Lange, J.; Maple-Grødem, J. Inflammatory Biomarkers in Newly Diagnosed Patients With Parkinson Disease and Related Neurodegenerative Disorders. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200132. [Google Scholar] [CrossRef]
- You, J.; Wang, L.; Wang, Y.; Kang, J.; Yu, J.; Cheng, W.; Feng, J. Prediction of Future Parkinson Disease Using Plasma Proteins Combined With Clinical-Demographic Measures. Neurology 2024, 103, e209531. [Google Scholar] [CrossRef] [PubMed]
- Alrafiah, A.; Al-Ofi, E.; Obaid, M.T.; Alsomali, N. Assessment of the Levels of Level of Biomarkers of Bone Matrix Glycoproteins and Inflammatory Cytokines from Saudi Parkinson Patients. Biomed. Res. Int. 2019, 2019, 2690205. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhou, M.; Dai, W.; Guo, W.; Qiu, J.; Zhang, Z.; Mo, M.; Ding, L.; Ye, P.; Wu, Y.; et al. Bone-Derived Factors as Potential Biomarkers for Parkinson’s Disease. Front. Aging Neurosci. 2021, 13, 634213. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Miana, R.D.C.; Arizaga-Echebarria, J.K.; Otaegui, D. Central nervous system-derived extracellular vesicles: The next generation of neural circulating biomarkers? Transl. Neurodegener. 2024, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lin, Z.; Lin, Q.; Bei, W.; Guo, J. Pathological and therapeutic roles of bioactive peptide trefoil factor 3 in diverse diseases: Recent progress and perspective. Cell Death Dis. 2022, 13, 62. [Google Scholar] [CrossRef]
- Bernstein, H.G.; Dobrowolny, H.; Trübner, K.; Steiner, J.; Bogerts, B.; Hoffmann, W. Differential regional and cellular distribution of TFF3 peptide in the human brain. Amino Acids 2015, 47, 1053–1063. [Google Scholar] [CrossRef]
- Fu, T.; Stellmacher, A.; Znalesniak, E.B.; Dieterich, D.C.; Kalbacher, H.; Hoffmann, W. Tff3 is expressed in neurons and microglial cells. Cell Physiol. Biochem. 2014, 34, 1912–1919. [Google Scholar] [CrossRef]
- Arnold, P.; Rickert, U.; Helmers, A.K.; Spreu, J.; Schneppenheim, J.; Lucius, R. Trefoil factor 3 shows anti-inflammatory effects on activated microglia. Cell Tissue Res. 2016, 365, 3–11. [Google Scholar] [CrossRef]
- Shi, H.S.; Yin, X.; Song, L.; Guo, Q.J.; Luo, X.H. Neuropeptide Trefoil factor 3 improves learning and retention of novel object recognition memory in mice. Behav. Brain Res. 2012, 227, 265–269. [Google Scholar] [CrossRef]
- Paterson, R.W.; Bartlett, J.W.; Blennow, K.; Fox, N.C.; Alzheimer’s Disease Neuroimaging Initiative; Shaw, L.M.; Trojanowski, J.Q.; Zetterberg, H.; Schott, J.M. Cerebrospinal fluid markers including trefoil factor 3 are associated with neurodegeneration in amyloid-positive individuals. Transl. Psychiatry 2014, 4, e419. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Lavery, R.; Varma, V.; Fantoni, G.; Colpo, M.; Thambisetty, M.; Candia, J.; Resnick, S.M.; Bennett, D.A.; Biancotto, A.; et al. Plasma proteomic signatures predict dementia and cognitive impairment. Alzheimers Dement. 2020, 6, e12018. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct. Target Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- De Leon-Oliva, D.; Barrena-Blázquez, S.; Jiménez-Álvarez, L.; Fraile-Martinez, O.; García-Montero, C.; López-González, L.; Torres-Carranza, D.; García-Puente, L.M.; Carranza, S.T.; Álvarez-Mon, M.Á.; et al. The RANK-RANKL-OPG System: A Multifaceted Regulator of Homeostasis, Immunity, and Cancer. Medicina 2023, 59, 1752. [Google Scholar] [CrossRef]
- Muzio, L.; Viotti, A.; Martino, G. Microglia in neuroinflammation and neurodegeneration: From understanding to therapy. Front. Neurosci. 2021, 15, 742065. [Google Scholar] [CrossRef]
- Leung, L.L.; Myles, T.; Nishimura, T.; Song, J.J.; Robinson, W.H. Regulation of tissue inflammation by thrombin-activatable carboxypeptidase B (or TAFI). Mol. Immunol. 2008, 45, 4080–4083. [Google Scholar] [CrossRef]
- Sengupta, U.; Kayed, R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog. Neurobiol. 2022, 214, 102270. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhou, T.T.; Zhang, Y.; Chen, N.H.; Yuan, Y.H. Distribution of alpha-Synuclein Aggregation in the Peripheral Tissues. Neurochem. Res. 2022, 47, 3627–3634. [Google Scholar] [CrossRef]
- Gregersen, E.; Betzer, C.; Kim, W.S.; Kovacs, G.; Reimer, L.; Halliday, G.M.; Thiel, S.; Jensen, P.H. Alpha-synuclein activates the classical complement pathway and mediates complement-dependent cell toxicity. J. Neuroinflammation 2021, 18, 177. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Golbe, L.I.; Ohman-Strickland, P.A. A clinical rating scale for progressive supranuclear palsy. Brain 2007, 130, 1552–1565. [Google Scholar] [CrossRef] [PubMed]
- Calomino, C.; Quattrone, A.; Sarica, A.; Bianco, M.G.; Aracri, F.; De Maria, M.; Buonocore, J.; Vaccaro, M.G.; Vescio, B.; Quattrone, A. Neuroimaging correlates of postural instability in Progressive Supranuclear Palsy. Park. Relat. Disord. 2023, 113, 105768. [Google Scholar] [CrossRef] [PubMed]
- Quattrone, A.; Calomino, C.; Sarica, A.; Caligiuri, M.E.; Bianco, M.G.; Vescio, B.; Arcuri, P.P.; Buonocore, J.; De Maria, M.; Vaccaro, M.G.; et al. Neuroimaging correlates of postural instability in Parkinson’s disease. J. Neurol. 2024, 271, 1910–1920. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
PD (n = 46) | PSP (n = 30) | HC (n = 24) | p-Value | |
---|---|---|---|---|
Sex (F/M) | 28/19 | 21/22 | 14/17 | 0.77 a |
Age at examination (years) | 65.0 ± 8.62 *° | 71.0 ± 6.42 | 70.5 ± 6.00 | 0.001 b |
Disease duration (years) | 6.7 ± 5.87 | 3.8 ± 2.38 | - | 0.10 c |
MDS-UPDRS | 28.6 ± 16.92 | 44.3 ± 16.99 | - | <0.001 c |
PSP rating scale | - | 44.0 ± 16.30 | - | - |
Feature Selection | PD-PSP | PD-HC | PSP-HC |
---|---|---|---|
AUC: 0.892 ± 0.067 | AUC: 0.959 ± 0.029 | AUC: 0.768 ± 0.083 | |
ACC: 0.874 ± 0.051 | ACC: 0.943 ± 0.034 | ACC: 0.789 ± 0.069 | |
SENS: 0.8 ± 0.141 | SENS: 0.913 ± 0.051 | SENS: 0.964 ± 0.041 | |
SPEC: 0.922 ± 0.054 | SPEC: 0.98 ± 0.041 | SPEC: 0.45 ± 0.241 | |
Best features | #5 | #1 | #2 |
TFF3 | TFF3 | LAP/TGFβ1 | |
CPB1 | ST1A1 | ||
OPG | |||
CNTN1 | |||
TIMP4 |
PD (n = 46) | Age | Disease Duration | MDS- UPDRS | HY Staging Scale | ||
TFF3 | Coefficients | 0.42 | 0.01 | 0.11 | 0.14 | |
p-value | 0.003 | 0.78 | 0.41 | 0.09 | ||
CPB1 | Coefficients | 0.18 | 0.09 | 0.1 | 0.30 | |
p-value | 0.13 | 0.37 | 0.55 | 0.027 | ||
OPG | Coefficients | 0.16 | 0.31 | 0.21 | 0.37 | |
p-value | 0.64 | 0.968 | 0.45 | 0.08 |
PSP (n = 30) | Age | Disease Duration | PSP Rating Scale | ||
TFF3 | Coefficients | 0.15 | 0.13 | 0.13 | |
p-value | 0.001 | 0.23 | 0.51 | ||
CPB1 | Coefficients | 0.35 | 0.1 | 0.1 | |
p-value | 0.01 | 0.76 | 0.67 | ||
OPG | Coefficients | 0.42 | 0.01 | 0.10 | |
p-value | 0.009 | 0.88 | 0.98 |
HC (n = 24) | Age | ||
TFF3 | Coefficients | 0.57 | |
p-value | 0.003 | ||
CPB1 | Coefficients | 0.10 | |
p-value | 0.94 | ||
OPG | Coefficients | 0.46 | |
p-value | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristiani, C.M.; Calomino, C.; Scaramuzzino, L.; Murfuni, M.S.; Parrotta, E.I.; Bianco, M.G.; Cuda, G.; Quattrone, A.; Quattrone, A. Proximity Elongation Assay and ELISA for the Identification of Serum Diagnostic Biomarkers in Parkinson’s Disease and Progressive Supranuclear Palsy. Int. J. Mol. Sci. 2024, 25, 11663. https://doi.org/10.3390/ijms252111663
Cristiani CM, Calomino C, Scaramuzzino L, Murfuni MS, Parrotta EI, Bianco MG, Cuda G, Quattrone A, Quattrone A. Proximity Elongation Assay and ELISA for the Identification of Serum Diagnostic Biomarkers in Parkinson’s Disease and Progressive Supranuclear Palsy. International Journal of Molecular Sciences. 2024; 25(21):11663. https://doi.org/10.3390/ijms252111663
Chicago/Turabian StyleCristiani, Costanza Maria, Camilla Calomino, Luana Scaramuzzino, Maria Stella Murfuni, Elvira Immacolata Parrotta, Maria Giovanna Bianco, Giovanni Cuda, Aldo Quattrone, and Andrea Quattrone. 2024. "Proximity Elongation Assay and ELISA for the Identification of Serum Diagnostic Biomarkers in Parkinson’s Disease and Progressive Supranuclear Palsy" International Journal of Molecular Sciences 25, no. 21: 11663. https://doi.org/10.3390/ijms252111663
APA StyleCristiani, C. M., Calomino, C., Scaramuzzino, L., Murfuni, M. S., Parrotta, E. I., Bianco, M. G., Cuda, G., Quattrone, A., & Quattrone, A. (2024). Proximity Elongation Assay and ELISA for the Identification of Serum Diagnostic Biomarkers in Parkinson’s Disease and Progressive Supranuclear Palsy. International Journal of Molecular Sciences, 25(21), 11663. https://doi.org/10.3390/ijms252111663