Progresses and Pitfalls of Epigenetics in Solid Tumors Clinical Trials
Abstract
:1. Introduction
2. Generations of Epigenetic Drugs as Monotherapy
3. Combining Epigenetic Drugs with Other Anti-Cancer Therapies: Does More Mean Better?
3.1. Combination with Chemotherapy
3.2. Combination with Radiotherapy
3.3. Combination with Hormone Therapy
3.4. Combination with Targeted Therapy
3.5. Combination with Immunotherapy
4. Current Challenges and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, N.; George, T.L.; Otterson, G.A.; Verschraegen, C.; Wen, H.; Carbone, D.; Herman, J.; Bertino, E.M.; He, K. Advances in epigenetic therapeutics with focus on solid tumors. Clin. Epigenetics 2021, 13, 83. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhao, H.; Wang, R.; Chen, Y.; Ouyang, X.; Li, W.; Sun, Y.; Peng, A. Cancer epigenetics: From laboratory studies and clinical trials to precision medicine. Cell Death Discov. 2024, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Ma, T.; Yu, B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct. Target. Ther. 2023, 8, 69. [Google Scholar] [CrossRef]
- Sahafnejad, Z.; Ramazi, S.; Allahverdi, A. An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review. Genes 2023, 14, 873. [Google Scholar] [CrossRef]
- Rossi, A. Created in BioRender. 2024. Available online: www.BioRender.com/u10j113 (accessed on 18 October 2024).
- Bohl, S.R.; Bullinger, L.; Rücker, F.G. Epigenetic therapy: Azacytidine and decitabine in acute myeloid leukemia. Expert Rev. Hematol. 2018, 11, 361–371. [Google Scholar] [CrossRef]
- Rius, M.; Lyko, F. Epigenetic cancer therapy: Rationales, targets and drugs. Oncogene 2012, 31, 4257–4265. [Google Scholar] [CrossRef]
- Stathis, A.; Zucca, E.; Bekradda, M.; Gomez-Roca, C.; Delord, J.-P.; de La Motte Rouge, T.; Uro-Coste, E.; De Braud, F.; Pelosi, G.; French, C.A. Clinical response of carcinomas harboring the BRD4–NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 2016, 6, 492–500. [Google Scholar] [CrossRef]
- Lewin, J.; Soria, J.-C.; Stathis, A.; Delord, J.-P.; Peters, S.; Awada, A.; Aftimos, P.G.; Bekradda, M.; Rezai, K.; Zeng, Z.; et al. Phase Ib Trial With Birabresib, a Small-Molecule Inhibitor of Bromodomain and Extraterminal Proteins, in Patients With Selected Advanced Solid Tumors. J. Clin. Oncol. 2018, 36, 3007–3014. [Google Scholar] [CrossRef]
- Piha-Paul, S.A.; Hann, C.L.; French, C.A.; Cousin, S.; Braña, I.; Cassier, P.A.; Moreno, V.; De Bono, J.S.; Harward, S.D.; Ferron-Brady, G.; et al. Phase 1 study of molibresib (GSK525762), a bromodomain and extra-terminal domain protein inhibitor, in NUT carcinoma and other solid tumors. JNCI Cancer Spectr. 2019, 4, pkz093. [Google Scholar] [CrossRef]
- Gounder, M.; Schöffski, P.; Jones, R.L.; Agulnik, M.; Cote, G.M.; Villalobos, V.M.; Attia, S.; Chugh, R.; Chen, T.W.-W.; Jahan, T.; et al. Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: An international, open-label, phase 2 basket study. Lancet Oncol. 2020, 21, 1423–1432. [Google Scholar] [CrossRef]
- Tazemetostat FDA Approval. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-option-specifically-patients-epithelioid-sarcoma-rare-soft-tissue (accessed on 7 August 2024).
- Pirozzi, C.J.; Yan, H. The implications of IDH mutations for cancer development and therapy. Nat. Rev. Clin. Oncol. 2021, 18, 645–661. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.T.; Borad, M.J.; Bridgewater, J.A.; et al. Final Overall Survival Efficacy Results of Ivosidenib for Patients with Advanced Cholangiocarcinoma with IDH1 Mutation: The Phase 3 Randomized Clinical ClarIDHy Trial. JAMA Oncol. 2021, 7, 1669–1677. [Google Scholar] [CrossRef] [PubMed]
- Ivosidenib FDA Approval. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-ivosidenib-advanced-or-metastatic-cholangiocarcinoma (accessed on 7 August 2024).
- Vorasidenib FDA Approval. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-vorasidenib-grade-2-astrocytoma-or-oligodendroglioma-susceptible-idh1-or-idh2-mutation (accessed on 7 August 2024).
- Mellinghoff, I.K.; Bent, M.J.v.D.; Blumenthal, D.T.; Touat, M.; Peters, K.B.; Clarke, J.; Mendez, J.; Yust-Katz, S.; Welsh, L.; Mason, W.P.; et al. Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma. New Engl. J. Med. 2023, 389, 589–601. [Google Scholar] [CrossRef]
- Hosseini, A.; Minucci, S. A comprehensive review of lysine-specific demethylase 1 and its roles in cancer. Epigenomics 2017, 9, 1123–1142. [Google Scholar] [CrossRef]
- Yan, B.; Chen, Q.; Shimada, K.; Tang, M.; Li, H.; Gurumurthy, A.; Khoury, J.D.; Xu, B.; Huang, S.; Qiu, Y. Histone deacetylase inhibitor targets CD123/CD47-positive cells and reverse chemoresistance phenotype in acute myeloid leukemia. Leukemia 2019, 33, 931–944. [Google Scholar] [CrossRef]
- Li, J.; Hao, D.; Wang, L.; Wang, H.; Wang, Y.; Zhao, Z.; Li, P.; Deng, C.; Di, L.-J. Epigenetic targeting drugs potentiate chemotherapeutic effects in solid tumor therapy. Sci. Rep. 2017, 7, 4035. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Maitland, M.L.; Frankel, P.; Argiris, A.E.; Koczywas, M.; Gitlitz, B.; Thomas, S.; Espinoza-Delgado, I.; Vokes, E.E.; Gandara, D.R.; et al. Carboplatin and paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J. Clin. Oncol. 2010, 28, 56–62. [Google Scholar] [CrossRef]
- NCT00473889. ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT00473889?tab=results (accessed on 30 August 2024).
- Richards, D.A.; Boehm, K.A.; Waterhouse, D.M.; Wagener, D.J.; Krishnamurthi, S.S.; Rosemurgy, A.; Grove, W.; Macdonald, K.; Gulyas, S.; Clark, M.; et al. Gemcitabine plus CI-994 offers no advantage over gemcitabine alone in the treatment of patients with advanced pancreatic cancer: Results of a phase II randomized, double-blind, placebo-controlled, multicenter study. Ann. Oncol. 2006, 17, 1096–1102. [Google Scholar] [CrossRef]
- Glasspool, R.M.; Brown, R.; E Gore, M.; Rustin, G.J.S.; A McNeish, I.; Wilson, R.H.; Pledge, S.; Paul, J.; Mackean, M.; Hall, G.D.; et al. A randomised, phase II trial of the DNA-hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in combination with carboplatin vs carboplatin alone in patients with recurrent, partially platinum-sensitive ovarian cancer. Br. J. Cancer 2014, 110, 1923–1929. [Google Scholar] [CrossRef]
- Oza, A.M.; Matulonis, U.A.; Secord, A.A.; Nemunaitis, J.; Roman, L.D.; Blagden, S.P.; Banerjee, S.; McGuire, W.P.; Ghamande, S.; Birrer, M.J.; et al. A Randomized Phase II Trial of Epigenetic Priming with Guadecitabine and Carboplatin in Platinum-resistant, Recurrent Ovarian Cancer. Clin. Cancer Res. 2020, 26, 1009–1016. [Google Scholar] [CrossRef]
- Camphausen, K.; Tofilon, P.J. Inhibition of histone deacetylation: A strategy for tumor radiosensitization. Clin. Oncol. 2007, 25, 4051–4056. [Google Scholar] [CrossRef] [PubMed]
- Galanis, E.; Anderson, S.K.; Miller, C.R.; Sarkaria, J.N.; Jaeckle, K.; Buckner, J.C.; Ligon, K.L.; Ballman, K.V.; Moore, D.F.; Nebozhyn, M.; et al. Phase I/II trial of vorinostat combined with temozolomide and radiation therapy for newly diagnosed glioblastoma: Results of Alliance N0874/ABTC 02. Neuro Oncol. 2018, 20, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.; Arlinghaus, L.R.; Cardin, D.B.; Goff, L.; Berlin, J.D.; Parikh, A.; Abramson, R.G.; Yankeelov, T.E.; Hiebert, S.; Merchant, N.; et al. Phase i trial of vorinostat added to chemoradiation with capecitabine in pancreatic cancer. Radiother. Oncol. 2016, 119, 312–318. [Google Scholar] [CrossRef]
- DuBois, S.G.; Groshen, S.; Park, J.R.; Haas-Kogan, D.A.; Yang, X.; Geier, E.; Chen, E.; Giacomini, K.; Weiss, B.; Cohn, S.L.; et al. Phase I study of vorinostat as a radiation sensitizer with 131I-metaiodobenzylguanidine (131I-MIBG) for patients with relapsed or refractory neuroblastoma. Clin. Cancer Res. 2015, 21, 2715–2721. [Google Scholar] [CrossRef] [PubMed]
- DuBois, S.G.; Granger, M.M.; Groshen, S.; Tsao-Wei, D.; Ji, L.; Shamirian, A.; Czarnecki, S.; Goodarzian, F.; Berkovich, R.; Shimada, H.; et al. Randomized Phase II Trial of MIBG Versus MIBG, Vincristine, and Irinotecan Versus MIBG and Vorinostat for Patients With Relapsed or Refractory Neuroblastoma: A Report From NANT Consortium. J. Clin. Oncol. 2021, 39, 3506–3514. [Google Scholar] [CrossRef]
- Margueron, R.; Duong, V.; Bonnet, S.; Escande, A.; Vignon, F.; Balaguer, P.; Cavailles, V. Histone Deacetylase Inhibition and Estrogen Receptor Levels Modulate the Transcriptional Activity of Partial Antiestrogens. J. Mol. Endocrinol. 2004, 32, 583–594. [Google Scholar] [CrossRef]
- Munster, P.N.; Thurn, K.T.; Thomas, S.; Raha, P.; Lacevic, M.; Miller, A.; Melisko, M.; Ismail-Khan, R.; Rugo, H.; Moasser, M.; et al. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br. J. Cancer 2011, 104, 1828–1835. [Google Scholar] [CrossRef]
- Yardley, D.A.; Ismail-Khan, R.R.; Melichar, B.; Lichinitser, M.; Munster, P.N.; Klein, P.M.; Cruickshank, S.; Miller, K.D.; Lee, M.J.; Trepel, J.B. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J. Clin. Oncol. 2013, 31, 2128–2135. [Google Scholar] [CrossRef]
- Yeruva, S.L.H.; Zhao, F.; Miller, K.D.; Tevaarwerk, A.J.; Wagner, L.I.; Gray, R.J.; Sparano, J.A.; Connolly, R.M. E2112: Randomized Phase III Trial of Endocrine Therapy Plus Entinostat or Placebo in Hormone Receptor-Positive Advanced Breast Cancer. A Trial of the ECOG-ACRIN Cancer Research Group. J. Clin. Oncol. 2021, 39, 3171–3181. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, W.; Hu, X.; Zhang, Q.; Sun, T.; Cui, S.; Wang, S.; Ouyang, Q.; Yin, Y.; Geng, C.; et al. Tucidinostat plus exemestane for postmenopausal patients with advanced, hormone receptor-positive breast cancer (ACE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 806–815. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Alumkal, J.J.; Stein, M.N.; Taplin, M.-E.; Babb, J.S.; Barnett, E.S.; Gomez-Pinillos, A.; Liu, X.; Moore, D.F.; DiPaola, R.S.; et al. Epigenetic therapy with panobinostat combined with bicalutamide rechallenge in castration-resistant prostate cancer. Clin. Cancer Res. 2019, 25, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Welti, J.; Sharp, A.; Yuan, W.; Dolling, D.; Rodrigues, D.N.; Figueiredo, I.; Gil, V.; Neeb, A.; Clarke, M.; Seed, G.; et al. Targeting Bromodomain and Extra-Terminal (BET) family proteins in Castration-Resistant Prostate Cancer (CRPC). Clin. Cancer Res. 2018, 24, 3149–3162. [Google Scholar] [CrossRef]
- Aggarwal, R.R.; Schweizer, M.T.; Nanus, D.M.; Pantuck, A.J.; Heath, E.I.; Campeau, E.; Attwell, S.; Norek, K.; Snyder, M.; Bauman, L.; et al. A phase Ib/IIa study of the Pan-BET inhibitor ZEN-3694 in combination with enzalutamide in patients with metastatic castration-resistant prostate cancer. Clin. Cancer Res. 2020, 26, 5338–5347. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Starodub, A.N.; Koh, B.D.; Xing, G.; Armstrong, A.J.; Carducci, M.A. Phase Ib Study of the BET Inhibitor GS-5829 as Monotherapy and Combined with Enzalutamide in Patients with Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2022, 28, 3979–3989. [Google Scholar] [CrossRef]
- NCT05252390. ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05252390 (accessed on 30 August 2024).
- Neal, J.W.; Sequist, L.V. Complex role of histone deacetylase inhibitors in the treatment of non-small-cell lung cancer. J. Clin. Oncol. 2012, 30, 2280–2282. [Google Scholar] [CrossRef]
- Oh, H.-J.; Bae, S.-C.; Oh, I.-J.; Park, C.-K.; Jung, K.-M.; Kim, D.-M.; Lee, J.-W.; Kang, C.K.; Park, I.Y.; Kim, Y.-C. Nicotinamide in Combination with EGFR-TKIs for the Treatment of Stage IV Lung Adenocarcinoma with EGFR Mutations: A Randomized Double-Blind (Phase IIb) Trial. Clin. Cancer Res. 2024, 30, 1478–1487. [Google Scholar] [CrossRef]
- Pili, R.; Liu, G.; Chintala, S.; Verheul, H.; Rehman, S.; Attwood, K.; Lodge, M.A.; Wahl, R.; Martin, J.I.; Miles, K.M.; et al. Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in patients with clear-cell renal cell carcinoma: A multicentre, single-arm phase I/II clinical trial. Br. J. Cancer 2017, 116, 874–883. [Google Scholar] [CrossRef]
- NCT03592472. ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT03592472 (accessed on 30 August 2024).
- Bitzer, M.; Horger, M.; Giannini, E.G.; Ganten, T.M.; Wörns, M.A.; Siveke, J.T.; Dollinger, M.M.; Gerken, G.; Scheulen, M.E.; Wege, H.; et al. Resminostat plus sorafenib as second-line therapy of advanced hepatocellular carcinoma—The SHELTER study. J. Hepatol. 2016, 65, 280–288. [Google Scholar] [CrossRef]
- Drappatz, J.; Lee, E.Q.; Hammond, S.; Grimm, S.A.; Norden, A.D.; Beroukhim, R.; Gerard, M.; Schiff, D.; Chi, A.S.; Batchelor, T.T.; et al. Phase i study of panobinostat in combination with bevacizumab for recurrent high-grade glioma. J. Neuro-Oncol. 2011, 107, 133–138. [Google Scholar] [CrossRef]
- Lee, E.Q.; Reardon, D.A.; Schiff, D.; Drappatz, J.; Muzikansky, A.; Grimm, S.A.; Norden, A.D.; Nayak, L.; Beroukhim, R.; Rinne, M.L.; et al. Phase II study of panobinostat in combination with bevacizumab for recurrent glioblastoma and anaplastic glioma. Neuro Oncol. 2015, 17, 862–867. [Google Scholar] [CrossRef]
- Zibelman, M.; Wong, Y.-N.; Devarajan, K.; Malizzia, L.; Corrigan, A.; Olszanski, A.J.; Denlinger, C.S.; Roethke, S.K.; Tetzlaff, C.H.; Plimack, E.R. Phase i study of the mTOR inhibitor ridaforolimus and the HDAC inhibitor vorinostat in advanced renal cell carcinoma and other solid tumors. Investig. New Drugs 2015, 33, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Garrido-Laguna, I.; Naing, A.; Fu, S.; Falchook, G.S.; Piha-Paul, A.S.; Wheler, J.J.; Hong, D.S.; Tsimberidou, A.M.; Subbiah, V.; et al. Phase I Dose-Escalation Study of the mTOR Inhibitor Sirolimus and the HDAC Inhibitor Vorinostat in Patients with Advanced Malignancy. Oncotarget 2016, 7, 67521–67531. [Google Scholar] [CrossRef]
- NCT03632317. ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT03632317 (accessed on 30 August 2024).
- Lord, C.J.; Ashworth, A. BRCAness revisited. Nat. Rev. Cancer 2016, 16, 110–120. [Google Scholar] [CrossRef]
- Ramos, L.; Truong, S.; Zhai, B.; Joshi, J.; Ghaidi, F.; Lizardo, M.M.; Shyp, T.; Kung, S.H.; Rezakhanlou, A.M.; Oo, H.Z.; et al. A Bifunctional PARP-HDAC Inhibitor with Activity in Ewing Sarcoma. Clin. Cancer Res. 2023, 29, 3541–3553. [Google Scholar] [CrossRef] [PubMed]
- Pulliam, N.; Fang, F.; Ozes, A.R.; Tang, J.; Adewuyi, A.; Keer, H.; Lyons, J.; Baylin, S.B.; Matei, D.; Nakshatri, H.; et al. An effective epigenetic-PARP inhibitor combination therapy for breast and ovarian cancers independent of BRCA mutations. Clin. Cancer Res. 2018, 24, 3163–3175. [Google Scholar] [CrossRef]
- NCT03742245. ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT03742245?cond=NCT03742245&rank=1 (accessed on 30 August 2024).
- NCT05071937. ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT05071937?term=Epigenetics&intr=PARP%20inhibitor&rank=1 (accessed on 18 October 2024).
- Lau, C.M.; Adams, N.M.; Geary, C.D.; Weizman, O.-E.; Rapp, M.; Pritykin, Y.; Leslie, C.S.; Sun, J.C. Epigenetic control of innate and adaptive immune memory. Nat. Immunol. 2018, 19, 963–972. [Google Scholar] [CrossRef]
- Aspeslagh, S.; Morel, D.; Soria, J.C.; Postel-Vinay, S. Epigenetic modifiers as new immunomodulatory therapies in solid tumours. Ann. Oncol. 2018, 29, 812–824. [Google Scholar] [CrossRef]
- Sun, W.; Lv, S.; Li, H.; Cui, W.; Wang, L. Enhancing the anticancer efficacy of immunotherapy through combination with histone modification inhibitors. Genes 2018, 9, 633. [Google Scholar] [CrossRef]
- Majchrzak-Celinska, A.; Warych, A.; Szoszkiewicz, M. Novel approaches to epigenetic therapies: From drug combinations to epigenetic editing. Genes 2021, 12, 208. [Google Scholar] [CrossRef]
- Levy, B.P.; Giaccone, G.; Besse, B.; Felip, E.; Garassino, M.C.; Gomez, M.D.; Garrido, P.; Piperdi, B.; Ponce-Aix, S.; Menezes, D.; et al. Randomised phase 2 study of pembrolizumab plus CC-486 versus pembrolizumab plus placebo in patients with previously treated advanced non-small cell lung cancer. Eur. J. Cancer 2019, 108, 120–128. [Google Scholar] [CrossRef]
- Taylor, K.; Yau, H.L.; Chakravarthy, A.; Wang, B.; Shen, S.Y.; Ettayebi, I.; A Ishak, C.; Bedard, P.L.; Razak, A.A.; Hansen, A.R.; et al. An open-label, phase II multicohort study of an oral hypomethylating agent CC-486 and durvalumab in advanced solid tumors. J. Immunother. Cancer 2020, 8, e000883. [Google Scholar] [CrossRef] [PubMed]
- Papadatos-Pastos, D.; Yuan, W.; Pal, A.; Crespo, M.; Ferreira, A.; Gurel, B.; Prout, T.; Ameratunga, M.; Chénard-Poirier, M.; Curcean, A.; et al. Phase 1, dose-escalation study of guadecitabine (SGI-110) in combination with pembrolizumab in patients with solid tumors. J. Immunother. Cancer 2022, 10, e004495. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Abramson, V.G.; O’Dea, A.; Nye, L.E.; Mayer, I.A.; Crane, G.J.; Elia, M.; Yoder, R.; Staley, J.M.; Schwensen, K.; et al. Romidepsin (HDACi) plus cisplatin and nivolumab triplet combination in patients with metastatic triple negative breast cancer (mTNBC). J. Clin. Oncol. 2021, 39 (Suppl. S15), 1076. [Google Scholar] [CrossRef]
- Di Giacomo, A.M.; Covre, A.; Finotello, F.; Rieder, D.; Danielli, R.; Sigalotti, L.; Giannarelli, D.; Petitprez, F.; Lacroix, L.; Valente, M.; et al. Guadecitabine plus ipilimumab in unresectable melanoma: The NIBIT-M4 clinical trial. Clin. Cancer Res. 2019, 25, 7351–7362. [Google Scholar] [CrossRef]
- Agarwala, S.S.; Moschos, S.J.; Johnson, M.L.; Opyrchal, M.; Gabrilovich, D.; Danaher, P.; Wang, F.; Brouwer, S.; Ordentlich, P.; Sankoh, S.; et al. Efficacy and safety of entinostat (ENT) and pembrolizumab (PEMBRO) in patients with melanoma progressing on or after a PD-1/L1 blocking antibody. J. Clin. Oncol. 2018, 36, 9530. [Google Scholar] [CrossRef]
- Rodriguez, C.P.; Wu, Q.; Voutsinas, J.; Fromm, J.R.; Jiang, X.; Pillarisetty, V.G.; Lee, S.M.; Santana-Davila, R.; Goulart, B.; Baik, C.S.; et al. A phase II trial of pembrolizumab and vorinostat in recurrent metastatic head and neck squamous cell carcinomas and salivary gland cancer. Clin. Cancer Res. 2020, 26, 837–845. [Google Scholar] [CrossRef]
- Hussain, M.H.A.; Kocherginsky, M.; Singh, P.; Myint, Z.; Jiang, D.M.; Wulff-Burchfield, E.M.; Sharon, E.; Piekarz, R.; Meeks, J.J.; VanderWeele, D.J. A pilot study of tazemetostat and pembrolizumab in advanced urothelial carcinoma (ETCTN 10183). J. Clin. Oncol. 2023, 41, 506. [Google Scholar] [CrossRef]
- Di Giacomo, A.; Rossi, G.; Calabro, L.; Pascucci, A.; Vegni, V.; Simonetti, E.; Colucci, M.; Valente, M.; Gibilisco, G.; Frongia, F.; et al. 123P A phase II study of nivolumab (N) plus ipilimumab (I) and ASTX727 or N plus I in PD-1/PD-L1 resistant melanoma or NSCLC patients: The run-in phase of the NIBIT Foundation ML1 study. Immuno-Oncol. Technol. 2023, 20, 100595. [Google Scholar] [CrossRef]
- Bolden, J.E.; Tasdemir, N.; Dow, L.E.; van Es, J.H.; Wilkinson, J.E.; Zhao, Z.; Clevers, H.; Lowe, S.W. Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep. 2014, 8, 1919–1929. [Google Scholar] [CrossRef]
- Feehley, T.; O’Donnell, C.W.; Mendlein, J.; Karande, M.; McCauley, T. Drugging the epigenome in the age of precision medicine. Clin. Epigenetics 2023, 15, 6. [Google Scholar] [CrossRef]
- Morel, D.; Jeffery, D.; Aspeslagh, S.; Almouzni, G.; Postel-Vinay, S. Combining epigenetic drugs with other therapies for solid tumours—Past lessons and future promise. Nat. Rev. Clin. Oncol. 2019, 17, 91–107. [Google Scholar] [CrossRef]
- Kitajima, S.; Asahina, H.; Chen, T.; Guo, S.; Quiceno, L.G.; Cavanaugh, J.D.; Merlino, A.A.; Tange, S.; Terai, H.; Kim, J.W.; et al. Overcoming Resistance to Dual Innate Immune and MEK Inhibition Downstream of KRAS. Cancer Cell 2018, 34, 439–452.e6. [Google Scholar] [CrossRef] [PubMed]
- Juo, Y.-Y.; Gong, X.-J.; Mishra, A.; Cui, X.; Baylin, S.B.; Azad, N.S.; Ahuja, N. Epigenetic therapy for solid tumors: From bench science to clinical trials. Epigenomics 2015, 7, 215–235. [Google Scholar] [CrossRef] [PubMed]
- Seymour, L.; Ivy, S.P.; Sargent, D.; Spriggs, D.; Baker, L.; Rubinstein, L.; Ratain, M.J.; Le Blanc, M.; Stewart, D.; Crowley, J.; et al. The design of phase II clinical trials testing cancer therapeutics: Consensus recommendations from the Clinical Trial Design Task Force of the National Cancer Institute Investigational Drug Steering Committee. Clin. Cancer Res. 2010, 16, 1764–1769. [Google Scholar] [CrossRef]
- Leroy, L.; Satar, T.; Baldini, C.; Martin-Romano, P.; Hollebecque, A.; Michot, J.-M.; Ribrag, V.; Massard, C.; Paoletti, X.; Vinay, S.P. Safety profile of epigenetic therapies in early phase trials: Do epidrugs deserve specific drug development processes? Ann. Oncol. 2019, 30, i5. [Google Scholar] [CrossRef]
- Azad, N.; Zahnow, C.A.; Rudin, C.M.; Baylin, S.B. The future of epigenetic therapy in solid tumours—Lessons from the past. Nat. Rev. Clin. Oncol. 2013, 10, 256–266. [Google Scholar] [CrossRef]
Clinical Trial | Phase | Number of Patients | Type of Solid Tumors | Drug | Results |
---|---|---|---|---|---|
NCT02601950 [11] | II | 62 | advanced epithelioid sarcoma with loss of INI1/SMARCB1 | tazemetostat (EZH2 inh) | ORR: 15% (95% CI 7–26); Median PFS: 5.5 mo (95% CI 3.4–5.9); Median OS: 19.0 mo (11.0–NE). |
NCT02989857 [14] | III | 185 | IDH1-mutated advanced cholangiocarcinoma | ivosidenib (IDH1 inh) | Median PFS: 6.9 mo (ivosidenib) vs. 1.4 mo (placebo), HR 0.37, 95% CI, 0.25–0.54, p < 0.001. Median OS: 10.3 mo (ivosidenib) vs. 7.5 mo (placebo), HR 0.79, [95% CI, 0.56–1.12]; 1-sided p = 0.09. |
NCT04164901 [17] | III | 331 | IDH1 or IDH2 mutated low-grade glioma | vorasidenib (IDH1/IDH2 inh) vs. placebo | Median PFS: 27.7 mo vs. 11.1 mo (HR 0.39; 95% CI, 0.27 to 0.56; p < 0.001) |
Trial | Phase | Number of Patients | Type of Solid Tumors | Drugs | Results |
---|---|---|---|---|---|
NCT00481078 [21] | II | 94 | advanced NSCLC | CBDCA + TXL + vorinostat vs. CBDCA + TXL + placebo | ORR (primary endpoint): 34% (CBDCA + TXL + vorinostat) vs. 12%. (CBDCA + TXL + placebo), p = 0.02 |
NCT00473889 [22] | III | 253 | advanced NSCLC | CBDCA + TXL + vorinostat vs. CBDCA + TXL + placebo | OS (primary endpoint): 11 mo (0.2 to 17.3) (arm vorinostat + CBDCA + TXL) vs. 14 mo (0.03 to 18.7) (arm placebo+CBDCA + TXL), p = 0.992 |
NCT00004861 [23] | II | 174 | advanced PDAC | gemcitabine + tacedinaline (CI-994) vs. gemcitabine + placebo | Median OS (primary endpoint): 194 days (gemcitabine + tacedinaline) vs. 214 days (gemcitabine + placebo), p = 0.908 |
NCT00748527 [24] | II | 29 | advanced OC with or without methylated hMLH1 | CBDCA (arm A) vs. decitabine + CBDCA (arm B) | ORR by GCIG criteria in methylated hMLH1 tumor (primary endpoint): Responses (PR/CR) in 9/14 patients (arm A) vs. 3/15 patients (arm B). ORR regardless of methylation status (secondary endpoint): Responses (PR/CR) in 7/13 patients (arm A) vs. 1/12 patients (arm B). |
NCT01696032 [25] | II | 100 | Platinum-resistance-advanced OC | guadecitabine + carboplatin vs. treatment of choice (topotecan, pegylated liposomal doxorubicin, paclitaxel, or gemcitabine). | Median PFS (primary endpoint): 16.3 w (guadecitabine +carboplatin) vs. 9.1 w (treatment of choice); p = 0.07 |
Trial | Phase | Number of Patients | Type of Solid Tumors | Drugs | Results |
---|---|---|---|---|---|
NCT00983268 [28] | I | 21 | non-metastatic PDAC | vorinostat + CAPE + RT | MTD: vorinostat 400 mg daily + CAPE 1000 mg BID (during RT). ORR: 90% SD, 10% PD (at time of surgery). Resection: R0 (4/11 patients) Median OS: 1.1y (95% CI 0.78–1.35). |
NCT01019850 [29] | I | 27 | relapsed and/or refractory HR neuroblastoma | vorinostat + vectorized internal radiotherapy with 131-I-MIBG. | Safety: Feasible and tolerable. ORR: 12% at all dose levels and 17% at the RP2D |
NCT02035137 [30] | II | 114 | relapsed or refractory neuroblastoma | Arm A: MIBG. Arm B: MIBC + vincristine + irinotecan. Arm C: vorinostat + MIBG | ORR (after 1 course- primary endpoint): 32% (MIBG + vorinostat) vs. 14% (other arms). |
Trial | Phase | Number of Patients | Type of Solid Tumors | Drugs | Results |
---|---|---|---|---|---|
NCT00365599 [32] | II | 43 | ER-positive, hormone therapy-resistant mBC | vorinostat + tamoxifen | ORR: 19%. CBR (response or stable disease > 24 w) 40%; Median DOR: 10.3 mo (CI: 8.1–12.4). |
NCT00676663 [33] | II | 130 | postmenopausal advanced ER +BC | EXE + entinostat vs. EXE + placebo | Median PFS: 4.28 mo (EXE + entinostat) vs. 2.27 mo (EXE + placebo), HR 0.73, p = 0.06. |
NCT02115282 [34] | III | 608 | advanced HR + BC | EXE + entinostat vs. EXE + placebo | Median PFS: 3.3 mo (EXE + entinostat) vs. 3.1 mo (EXE + placebo), HR 0.87; p = 0.30; Median OS: 23.4 mo (EXE + entinostat) vs. 21.7 mo (EXE + placebo), HR 0.99, p = 0.94 |
NCT02482753 [35] | III | 365 | advanced HR + BC | EXE + tucidinostat vs. EXE + placebo | Median PFS: 7.4 mo (tucidinostat) vs. 3.8 mo (placebo), HR 0.75, p = 0.033. |
NCT00878436 [36] | I/II | 55 | mCRPC | panobinostat + bicalutamide Arm A: 40 mg panobinostat Arm B: 20 mg panobinostat | 36W-PFS: 47.5% (arm A) vs. 38.5% (arm B). |
NCT02711956 [38] | Ib/IIa | 75 | mCRPC | ZEN-3694 + ENZA | PFS: 9 mo (95% CI 4.6–12.9) |
Trial | Phase | Number of Patients | Type of Solid Tumors | Drugs | Results |
---|---|---|---|---|---|
NCT02416739 [42] | IIb | 110 | EGFR-mutated NSCLC | erlotinib/gefitinib + nicotinamide vs. erlotinib/gefitinib + placebo | mPFS (primary endpoint): no statistically significant difference (12.7 m vs. 10.9 m, p = 0.2). Subgroup analysis: significant reduction in mortality risk in females and non-smokers. |
NCT00324870 [43] | I/II | 36 | ccRCC | BEV + vorinostat | Feasible and tolerable. ORR: 18% mPFS: 5.7 mo mOS: 13.9 mo |
NCT00943449 [45] | I/II | 57 | HCC | resminostat +/− sorafenib | 12w-PFS (primary endpoint): 62.5% with the combination, 12.5% with sorafenib. Feasible and tolerable. |
NCT00859222 [46] | I | 10 | high-grade glioma | BEV + panobinostat | ORR: 30% PR; 70% SD. |
Trial | Phase | Number of Patients | Type of Solid Tumors | Drugs | Results |
---|---|---|---|---|---|
NCT02546986 [60] | II | 100 | NSCLC | azacitidine (CC-486) + PEMBRO | Median PFS (primary endpoint) 2.9 mo (PEMBRO + CC-486) vs. 4.0 mo (PEMBRO + placebo) |
NCT02393794 [63] | I/II | 51 | locally recurrent or metastatic TNBC | romidepsin + CDDP + NIVO | ORR: 44%; Median PFS: 4.4 mo; 1-year-PFS: 23%; Median OS: 10.3 mo. |
NCT02538510 [66] | I/II | 25 HNSCC 25 SGC | recurrent/metastatic HNSCC or salivary gland cancer | vorinostat + PEMBRO | Primary endpoints were safety and ORR: - in HNSCC: CR = 0, PR = 8 (32%), SD = 5 (20%). - in SGCs: CR = 0, PR = 4 (16%), SD = 14 (56%) |
NCT03854474 [67] | I/II | 12 | advanced UC | tazemetostat + PEMBRO | Primary endpoint: safety: no DLTs. ORR: PR in 3 patients (25%), SD in 3 patients (25%). Median PFS: 3.1 months (95%CI: 2.3–NA); Median OS: 8.0 months (95% CI: 4.7–NA). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, A.; Zacchi, F.; Reni, A.; Rota, M.; Palmerio, S.; Menis, J.; Zivi, A.; Milleri, S.; Milella, M. Progresses and Pitfalls of Epigenetics in Solid Tumors Clinical Trials. Int. J. Mol. Sci. 2024, 25, 11740. https://doi.org/10.3390/ijms252111740
Rossi A, Zacchi F, Reni A, Rota M, Palmerio S, Menis J, Zivi A, Milleri S, Milella M. Progresses and Pitfalls of Epigenetics in Solid Tumors Clinical Trials. International Journal of Molecular Sciences. 2024; 25(21):11740. https://doi.org/10.3390/ijms252111740
Chicago/Turabian StyleRossi, Alice, Francesca Zacchi, Anna Reni, Michele Rota, Silvia Palmerio, Jessica Menis, Andrea Zivi, Stefano Milleri, and Michele Milella. 2024. "Progresses and Pitfalls of Epigenetics in Solid Tumors Clinical Trials" International Journal of Molecular Sciences 25, no. 21: 11740. https://doi.org/10.3390/ijms252111740
APA StyleRossi, A., Zacchi, F., Reni, A., Rota, M., Palmerio, S., Menis, J., Zivi, A., Milleri, S., & Milella, M. (2024). Progresses and Pitfalls of Epigenetics in Solid Tumors Clinical Trials. International Journal of Molecular Sciences, 25(21), 11740. https://doi.org/10.3390/ijms252111740