Systematic Characteristics of Fucoidan: Intriguing Features for New Pharmacological Interventions
Abstract
:1. Introduction
2. The Role of Monosaccharides of Fucoidan in Bioactivity
Algae Source | Monosaccharide Composition | Bioactivity | Experimental Methodologies | Experiment Model | Concentration | Reference |
---|---|---|---|---|---|---|
Sargassum aquifolium | Fuccose, galactose, mannose, glucuronic acid, xylose | Anticoagulant and antitumor activities | In vitro | Human cancer cell lines HepG2 (hepatocellular carcinoma), LU-1 (lung adenocarcinoma), and RD (rhabdomiosarcoma) | ND | [43] |
Sargassum plagiophyllum | Fucose, galactose, xylose, mannose | Anticancer activity | In vitro | HepG2, A549, and HBL-100 | ND | [54] |
Sargassum horneri | Fucose, galactose, mannose, xylose, rhamnose | Anti-inflammatory activity | In vitro | RAW 264.7 cells | EC50 (μg/mL): 87.12 | [22] |
Fucose, galactose, mannose, glucuronic acid | Antitumor | In vitro | The DLD-1 (ATCC # CCL-221™) human colon carcinoma cell line | 200 μg/mL | [55] | |
Undaria pinnatifida | Fucose, glucuronic acid, galactose, mannose | Antioxidant activities | In vivo | Zebrafish | 0.625 mM | [45] |
Fucose, glucose, galactose | Anticancer activity | In vivo | Sprague Dawley rats | 100, 200, and 300 mg/kg of body weight | [56] | |
Fucose, glucuronic acid, galactose, mannose | Attenuation of SARS-CoV-2 infection | In vitro In vivo | Caco-2-Nint cells, a producer cell line expressing the SARS-CoV-2 N protein via lentiviral transduction | 7.8, 15.6, 31.3, 62.5, 125, 500, and 1000 μg/mL | [44] | |
Ascophyllum nodosum | Fucose, galactose, mannose, glucuronic acid, uronic acid | Four-week-old female specific-pathogen-free (SPF) Syrian hamsters | Orally gavaged with high dose (Hd; 200 mg/day/kg body weight) or low dose (Ld; 100 mg/day/kg body weight) | |||
Dictyopteris divaricata | Fucose, xylose, mannose, glucose, galactose | Antioxidant and immunomodulatory activities | In vivo | RAW 264.7 murine macrophages | ND | [57] |
Sargassum crassifolium | Fucose, galactose | Immunomodulatory activity | In vitro | Bone marrow cells from C3H/HeJ female mice | 3 μg/mL | [58] |
Stoechospermum polypodioides | Fucose, xylose, mannose, galactose, glucose, galacturonic acid | Antiviral activity | In vitro | Vero cells by a virus plaque reduction assay | EC50 (μg/mL): 3.55 ± 0.63 | [51] |
Sargassum polycystum | Fucose, xylose, mannose, galactose, glucose, rhamnose | Antioxidant activity, anticancer activity | In vitro | MCF-7 cells | 25, 50, 75, 100, 125, and 150 μg/mL | [59] |
Sargassum siliquosum | Fucose, xylose, mannose, galactose, glucose, rhamnose | Antioxidant activity, anti-inflammatory activity | In vitro | RAW 264.7 cell | 0.25–1 μg/mL | [15] |
Fucus serratus | Fucose, galactose, glucuronic acid, xylose | Bone formation and vascularization | In vitro | Human outgrowth endothelial cells (OECs), mesenchymal stem cells (MSCs) | 100 μg/mL | [48] |
Fucus distichus subsp. evanescens | Fucose, xylose, galactose | |||||
Fucose, xylose, mannose, galactose, glucose, glucuronic acid | Anticancer activity | In vitro | The SK-MEL-5 (ATCC # HTB-70), SK-MEL-28 (ATCC # HTB-72) human malignant melanoma cell lines | 100–400 μg/mL | [60] | |
Saccharina latissima | Fucose, xylose, galactose, mannose, glucuronic acid, uronic acid | Immunostimulatory, hypocholesterolemic activities | In vitro | Lymphocyte Stimulatory Activity (spleen cell of BALB/c mice) Assessment of Hypocholesterolemic Effect (in vitro intestinal model) | 25, 100, and 250 μg/mL | [49,50] |
Cladosiphon okamuranus | Fucose, uronic acid | Alleviates atopic dermatitis symptoms through immunomodulation | In vitro In vivo | RAW 264.7 cells; atopic dermatitis (AD) model_Male BALB/c mice aged 6 weeks old | 31.25, 62.5, 125, 250, 500, and 1000 μg/mL 100 mg of the cream | [52] |
Sargassum fusiforme | Fucose, galactose, mannose | Anti-inflammatory | In vitro In vivo | RAW 264.7 macrophages; zebrafish embryo | 25, 50, and 100 μg/mL | [47] |
Macrocystis pyrifera | Fucose, Xylose, Glucuronic acid | Antioxidant activities | In vivo | Zebrafish | 0.625 mM | [45] |
Padina boergesenii | Fucose, galactose, glucose, xylose | Antioxidant and anticancer | In vitro | Human cervical carcinoma cells (HeLa cell line) | 20, 40, and 60 μg/mL | [61] |
Fucus vesiculosus | Fucose, xylose, galactose, mannose | Antioxidant activities | In vivo | Zebrafish | 0.625 mM | [45] |
Fucose, xylose, galactose, uronic acids | Inhibition of inflammatory response | In vitro | RAW 264.7 macrophages | 0.1 μg/mL | [46] | |
Saccharina japonica | Fucose, mannose, glucose | Antibacterial activity and anti SARS-CoV-2 | In vitro | Bacteria including Staphylococcus aureus ATCC6538, Listeria monocytogenes ATCC19115, Escherichia coli ATCC25922, Shigella flexneri CMCC51574, Salmonella typhimurium ATCC14028, and Vibrio parahaemolyticus CGMCC1.1614 | 0, 6.25, 12.5, 25, and 50 μg/mL | [53] |
Ishige okamurae | Fucose, galactose, glucose, xylose | Effect on recovery from immunosuppression | In vivo | BALB/c mice induced CTX (cyclooxygenase-thromboxane A2 synthetase) immunomodulatory models | 20, 40, and 80 mg/kg | [62] |
3. The Role of Sulfate of Fucoidan in Bioactivity
Algae Source | Sulfate (%) | Fuc (%) | Glc (%) | Xyl (%) | Man (%) | GlcA (%) | Rha (%) | Gal (%) | UAs (%) | Bioactivity | Experimental Methodologies | Experiment Model | Concentration | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sargassum aquifolium | ND | 9.2 | ND | 2.2 | 2 | 2.2 | ND | 8.5 | 12.6 | Anticoagulant and antitumor activities | In vitro | Human cancer cell lines HepG2 (hepatocellular carcinoma), LU-1 (lung adenocarcinoma), and RD (rhabdomiosarcoma) | ND | [43] |
Sargassum plagiophyllum | F1: 9.8 F2: 21.9 F3: 15.1 | F1: 55.5 F2: 71.1 F3: 69.1 | ND | F1: 4.5 F2: 2.5 F3: 1.9 | F1: 15.7 F2: 11.2 F3: 9.9 | ND | ND | F1: 22.9 F2: 13.5 F3: 12.2 | F1: 22.9 F2: 12.6 F3: 16.3 | Anticancer activity | In vitro | HepG2, A549, and HBL-100 | IC50 F1: 800 μg/mL F2: 600 μg/mL F3: 700 μg/mL | [54] |
Sargassum horneri | 18.47 | 36.86 | ND | 7.38 | 11.27 | ND | 5.23 | 30.09 | ND | Anti-inflammatory activity | In vitro | RAW 264.7 cells | IC50 = 87.12 μg/mL | [22] |
41 | 85 | 10 | ND | ND | ND | ND | 5 | ND | Antitumor | In vitro | The DLD-1 (ATCC # CCL-221™) human colon carcinoma cell line | 200 ug/mL | [55] | |
Sargassum crassifolium | 27.5 | 54.36 | ND | 1.49 | 0.6 | ND | ND | 43.55 | 7.6 | Immunomodulatory activity | In vitro | Bone marrow cells from C3H/HeJ female mice | 3 μg/mL | [74] |
Stoechospermum polypodioides | 13 | 96 | ND | 2 | ND | ND | ND | 2 | ND | Antiviral activity | In vitro | Vero cells by a virus plaque reduction assay | EC50 (μg/mL): 3.55 ± 0.63 | [51] |
Sargassum polycystum | 22.35 ± 0.23 | 46.8 | 11.5 | 13.2 | 5.6 | ND | 8.6 | 14.3 | ND | Antioxidant activity, anticancer activity | In vitro | MCF-7 cells | 25, 50, 75, 100, 125, and 150 μg/mL | [59] |
Sargassum siliquosum | 6.01 ± 0.53 | 47.13 ± 0.47 | 8.53 ± 4.13 | 9.07 ± 0.38 | 6.97 ± 2.93 | ND | 3.47 ± 0.12 | 24.83 ± 0.74 | ND | Antioxidant activity, anti-inflammatory activity | In vitro | RAW 264.7 cell | 0.25–1 μg/mL | [15] |
Fucus serratus | 21.54 | 76.2 | ND | 6.5 | ND | 11.2 | ND | 3.3 | ND | Bone formation and vascularization | In vitro | Human outgrowth endothelial cells (OECs), mesenchymal stem cells (MSCs) | 100 μg/mL | [48] |
Fucus distichus subsp. evanescens | 46.88 | 76.7 | ND | 9.8 | ND | ND | ND | 5.7 | ND | |||||
28 | 87.1 | 1.3 | 1.8 | 4.4 | 2 | ND | 1.6 | ND | Anticancer activity | In vitro | The SK-MEL-5 (ATCC # HTB-70), SK-MEL-28 (ATCC # HTB-72) human malignant melanoma cell lines | 100–400 μg/mL | [60] | |
Saccharina latissima | 14.3 | 59.1 ± 2.7 | 3.2 ± 1.6 | 3.0 ± 1.1 | 2.0 ± 0.6 | ND | ND | 20.8 ± 4.2 | 12.0 ± 2.1 | Immunostimulatory, hypocholesterolemic activities | In vitro | Lymphocyte Stimulatory Activity (spleen cell of BALB/c mice) Assessment of Hypocholesterolemic Effect (in vitro intestinal model) | 25, 100, 250 μg/mL | [49,50] |
Cladosiphon okamuranus | 17.6 | 52.7 | ND | ND | ND | ND | ND | ND | 18 | Alleviates atopic dermatitis symptoms through immunomodulation | In vitro In vivo | RAW 264.7 cells; Atopic dermatitis (AD) model_Male BALB/c mice aged 6 weeks old | 31.25, 62.5, 125, 250, 500, and 1000 μg/mL | [52] |
Sargassum fusiforme | 17.6 ± 0.36 | 46.32 | ND | ND | 24 | ND | 1.17 | 27.36 | ND | Anti-inflammatory | In vitro In vivo | RAW 264.7 macrophages; zebrafish embryo | 25, 50, and 100 μg/mL | [47] |
Macrocystis pyrifera | 26.0 ± 0.6 | ND | ND | ND | ND | ND | ND | ND | ND | Antioxidant activities | In vivo | Zebrafish | 0.625 mM | [45] |
Padina boergesenii | 17.72 ± 0.25 | 43.1 ± 0.23 | 11.6 ± 0.10 | 14.2 ± 0.12 | ND | ND | ND | 17.3 ± 0.17 | 9.43 ± 0.17 | Antioxidant and anticancer | In vitro | Human cervical carcinoma cells (HeLa cell line) | 20, 40, and 60 μg/mL | [61] |
Fucus vesiculosus | 30.8 ± 4.2 | ND | ND | ND | ND | ND | ND | ND | ND | Antioxidant activities | In vivo | Zebrafish | 0.625 mM | [45] |
9.9 ± 2.9 | 90.4 ± 2.0 | ND | 2.4 ± 0.7 | ND | ND | ND | 3.3 ± 0.7 | 3.8 ± 0.7 | Inhibition of inflammatory response | In vitro | RAW 264.7 macrophages | 0.1 μg/mL | [46] | |
Saccharina japonica | Fucoidan: 28.7 ± 2.6 Dfuc1: 24.7 ± 0.9 Dfuc2: 23.3 ± 1.0 | Fucoidan: 69.14 Dfuc1: 69.84 Dfuc2: 58.55 | ND | ND | Fucoidan: 12.86 Dfuc1: 13.69 Dfuc2: 20.73 | ND | ND | Fucoidan: 18.00 Dfuc1: 16.43 Dfuc2: 20.73 | Fucoidan: 16.2 ± 0.4 Dfuc1: 15.0 ± 0.6 Dfuc2: 15.5 ± 1.0 | Antibacterial activity and anti SARS-CoV-2 | In vitro | Bacteria including Staphylococcus aureus ATCC6538, Listeria monocytogenes ATCC19115, Escherichia coli ATCC25922, Shigella flexneri CMCC51574, Salmonella typhimurium ATCC14028, and Vibrio parahaemolyticus CGMCC1.1614 | 50, 25, 12.5, 6.25, and 0 μg/mL | [53] |
Undaria pinnatifida | 29.14 | 27.15 | 19.34 | ND | ND | ND | ND | 53.51 | 3.21 | Anticancer activity | In vivo | Sprague Dawley rats | 100, 200, and 300 mg/kg of body weight | [56] |
25.1 ± 1.4 | ND | ND | ND | ND | ND | ND | ND | ND | Antioxidant activities | In vivo | Zebrafish | 0.625 mM | [45] | |
29.9 ± 0.5 | 92.7 | ND | ND | 1.5 | 1 | ND | 33.1 | ND | Attenuation of SARS-CoV-2 infection | In vitro In vivo | Caco-2-Nint cells, a producer cell line expressing the SARS-CoV-2 N protein via lentiviral transduction | 7.8, 15.6, 31.3, 62.5, 125, 500, and 1000 μg/mL | [44] | |
Ascophyllum nodosum | 22.6 ± 0.8 | 56.9 | ND | ND | 1.5 | 1 | ND | 7.4 | 5.3 ± 0.1 | Four-week-old female specific-pathogen-free (SPF) Syrian hamsters | Orally gavaged with high dose (Hd; 200 mg/day/kg body weight) or low dose (Ld; 100 mg/day/kg body weight | |||
Ishige okamurae | 27.6 | 59 | ND | 10 | 9 | ND | 8 | 11 | ND | Effect on recovery from immunosuppression | In vivo | BALB/c mice induced CTX (cyclooxygenase-thromboxane A2 synthetase) immunomodulatory models | 20, 40, and 80 mg/kg | [62] |
4. The Role of Molecular Weight of Fucoidan in Bioactivity
Algae Source | Molecular Weight (kDa) | Bioactivity | Experimental Methodologies | Experiment Model | Concentration | Reference |
---|---|---|---|---|---|---|
Sargassum aquifolium | ND | Anticoagulant and antitumor activities | In vitro | Human cancer cell lines HepG2 (hepatocellular carcinoma), LU-1 (lung adenocarcinoma), and RD (rhabdomiosarcoma) | ND | [43] |
Sargassum plagiophyllum | F1: 20 F2: 35 F3: 30 | Anticancer activity | In vitro | HepG2, A549, and HBL-100 | ND | [54] |
Sargassum horneri | 20–140 | Antitumor | In vitro | The DLD-1 (ATCC # CCL-221™) human colon carcinoma cell line | 200 μg/mL | [55] |
30 | Anti-inflammatory activity | In vitro | RAW 264.7 cells | IC50 = 87.12 μg/mL | [22] | |
Dictyopteris divaricata | 58.05 | Antioxidant and immunomodulatory activities | In vivo | RAW 264.7 murine macrophages | ND | [57] |
Sargassum crassifolium | 230 | Immunomodulatory activity | In vitro | Bone marrow cells from C3H/HeJ female mice | 3 μg/mL | [74] |
Stoechospermum polypodioides | 40 | Antiviral activity | In vitro | Vero cells by a virus plaque reduction assay | EC50 (μg/mL): 3.55 ± 0.63 | [51] |
Sargassum polycystum | ND | Antioxidant activity, anticancer activity | In vitro | MCF-7 cells | 25, 50, 75, 100, 125, and 150 μg/mL | [59] |
Sargassum siliquosum | ND | Antioxidant activity, anti-inflammatory activity | In vitro | RAW 264.7 cell | 0.25–1 μg/mL | [15] |
Fucus serratus | 272 | Bone formation and vascularization | In vitro | Human outgrowth endothelial cells (OECs), mesenchymal stem cells (MSCs) | 100 μg/mL | [48] |
Fucus evanescens | 84 | |||||
60 | Anticancer activity | In vitro | The SK-MEL-5 (ATCC # HTB-70), SK-MEL-28 (ATCC # HTB-72) human malignant melanoma cell lines | 100–400 μg/mL | [60] | |
Saccharina latissima | 137 | Immunostimulatory, hypocholesterolemic activities | In vitro | Lymphocyte Stimulatory Activity (spleen cell of BALB/c mice) Assessment of Hypocholesterolemic Effect (in vitro intestinal model) | 25, 100, and 250 μg/mL | [49,50] |
Cladosiphon okamuranus | 49.8 | Alleviates atopic dermatitis symptoms through immunomodulation | In vitro In vivo | RAW 264.7 cells; atopic dermatitis (AD) model_Male BALB/c mice aged 6 weeks old | 31.25, 62.5, 125, 250, 500, and 1000 μg/mL | [52] |
Sargassum fusiforme | 60–150 | Anti-inflammatory | In vitro In vivo | RAW 264.7 macrophages; zebrafish embryo | 25, 50, and 100 μg/mL | [47] |
Macrocystis pyrifera | 70.4 | Antioxidant activities | In vivo | Zebrafish | 0.625 mM | [45] |
Padina boergesenii | 224 | Antioxidant and anticancer | In vitro | Human cervical carcinoma cells (HeLa cell line) | 20, 40, and 60 μg/mL | [61] |
Fucus vesiculosus | 97.7 | Antioxidant activities | In vivo | Zebrafish | 0.625 mM | [45] |
70 | Inhibition of inflammatory response | In vitro | RAW 264.7 macrophages | 0.1 μg/mL | [46] | |
Saccharina japonica | Fucoidan: 90.8 Dfuc1: 19.2 Dfuc2: 5.5 | Antibacterial activity and anti SARS-CoV-2 | In vitro | Bacteria including Staphylococcus aureus ATCC6538, Listeria monocytogenes ATCC19115, Escherichia coli ATCC25922, Shigella flexneri CMCC51574, Salmonella typhimurium ATCC14028, and Vibrio parahaemolyticus CGMCC1.1614 | 50, 25, 12.5, 6.25, and 0 μg/mL | [53] |
Undaria pinnatifida | 97.9 | Anticancer activity | In vivo | Sprague Dawley rats | 100, 200, and 300 mg/kg of body weight | [56] |
168.5 | Antioxidant activities | In vivo | Zebrafish | 0.625 mM | [45] | |
141.7 | Attenuation of SARS-CoV-2 infection | In vitro In vivo | Caco-2-Nint cells, a producer cell line expressing the SARS-CoV-2 N protein via lentiviral transduction | 7.8, 15.6, 31.3, 62.5, 125, 500, and 1000 μg/mL | [44] | |
Ascophyllum nodosum | 124.3 | Four-week-old female specific-pathogen-free (SPF) Syrian hamsters | Orally gavaged with high dose (Hd; 200 mg/day/kg body weight) or low dose (Ld; 100 mg/day/kg body weight) | |||
1.4–40 | Antioxidant activity | In vitro | Scavenging activity on DPPH radical | [80] | ||
Ishige okamurae | 12.9 | Effect on recovery from immunosuppression | In vivo | BALB/c mice induced CTX (cyclooxygenase-thromboxane A2 synthetase) immunomodulatory models | 20, 40, and 80 mg/kg | [62] |
5. The Role of Glycosidic Linkage of Fucoidan in Bioactivity
6. Advancements in Analytical Techniques: Exploring the Diverse Structure of Fucoidan
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karagoz, P.; Khiawjan, S.; Marques, M.P.; Santzouk, S.; Bugg, T.D.; Lye, G.J. Pharmaceutical applications of lignin-derived chemicals and lignin-based materials: Linking lignin source and processing with clinical indication. Biomass Convers. Biorefinery 2023, 14, 26553–26574. [Google Scholar] [CrossRef]
- Pei, W.; Deng, J.; Wang, P.; Wang, X.; Zheng, L.; Zhang, Y.; Huang, C. Sustainable lignin and lignin-derived compounds as potential therapeutic agents for degenerative orthopaedic diseases: A systemic review. Int. J. Biol. Macromol. 2022, 212, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Oliyaei, N.; Moosavi-Nasab, M.; Mazloomi, S.M. Therapeutic activity of fucoidan and carrageenan as marine algal polysaccharides against viruses. 3 Biotech 2022, 12, 154. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, V.; Saravanan, S.; Al-Maleki, A.; Ramesh, M.; Vadivelu, J. A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed. Pharmacother. 2018, 107, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-E.; Kim, H.; Seo, C.; Park, T.; Lee, K.B.; Yoo, S.-Y.; Hong, S.-C.; Kim, J.T.; Lee, J. Marine polysaccharides: Therapeutic efficacy and biomedical applications. Arch. Pharmacal Res. 2017, 40, 1006–1020. [Google Scholar] [CrossRef]
- Berteau, O.; Mulloy, B. Sulfated fucans, fresh perspectives: Structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 2003, 13, 29R–40R. [Google Scholar] [CrossRef]
- Cumashi, A.; Ushakova, N.A.; Preobrazhenskaya, M.E.; D’Incecco, A.; Piccoli, A.; Totani, L.; Tinari, N.; Morozevich, G.E.; Berman, A.E.; Bilan, M.I. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007, 17, 541–552. [Google Scholar] [CrossRef]
- Bilan, M.I.; Usov, A.I. Structural analysis of fucoidans. Nat. Prod. Commun. 2008, 3, 1934578X0800301011. [Google Scholar] [CrossRef]
- Anisha, G.S.; Padmakumari, S.; Patel, A.K.; Pandey, A.; Singhania, R.R. Fucoidan from marine macroalgae: Biological actions and applications in regenerative medicine, drug delivery systems and food industry. Bioengineering 2022, 9, 472. [Google Scholar] [CrossRef]
- Venkatesan, J.; Murugan, S.S.; Seong, G.H. Fucoidan-based nanoparticles: Preparations and applications. Int. J. Biol. Macromol. 2022, 217, 652–667. [Google Scholar] [CrossRef]
- Wei, Q.; Fu, G.; Wang, K.; Yang, Q.; Zhao, J.; Wang, Y.; Ji, K.; Song, S. Advances in research on antiviral activities of sulfated polysaccharides from seaweeds. Pharmaceuticals 2022, 15, 581. [Google Scholar] [CrossRef] [PubMed]
- Fitton, J.H.; Stringer, D.N.; Park, A.Y.; Karpiniec, S.S. Therapies from fucoidan: New developments. Mar. Drugs 2019, 17, 571. [Google Scholar] [CrossRef]
- Ale, M.T.; Meyer, A.S. Fucoidans from brown seaweeds: An update on structures, extraction techniques and use of enzymes as tools for structural elucidation. Rsc Adv. 2013, 3, 8131–8141. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, M.; Cao, Q.; Ji, A.; Liang, H.; Song, S. Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies. Mar. Drugs 2019, 17, 183. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-H.; Huang, C.-Y.; Chen, C.-Y.; Chang, C.-C.; Huang, C.-Y.; Dong, C.-D.; Chang, J.-S. Structure and biological activity analysis of fucoidan isolated from Sargassum siliquosum. ACS Omega 2020, 5, 32447–32455. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Yang, Z.; Chen, J.; Wang, D.; Zhang, Y. Recent advances in antiviral activities and potential mechanisms of sulfated polysaccharides. Carbohydr. Polym. 2021, 272, 118526. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, D.; Wu, J.; Chen, Y.; Wang, S. In vitro antioxidant activities of sulfated polysaccharide fractions extracted from Corallina officinalis. Int. J. Biol. Macromol. 2011, 49, 1031–1037. [Google Scholar] [CrossRef]
- Pradhan, B.; Patra, S.; Nayak, R.; Behera, C.; Dash, S.R.; Nayak, S.; Sahu, B.B.; Bhutia, S.K.; Jena, M. Multifunctional role of fucoidan, sulfated polysaccharides in human health and disease: A journey under the sea in pursuit of potent therapeutic agents. Int. J. Biol. Macromol. 2020, 164, 4263–4278. [Google Scholar] [CrossRef]
- Ale, M.T.; Maruyama, H.; Tamauchi, H.; Mikkelsen, J.D.; Meyer, A.S. Fucose-containing sulfated polysaccharides from brown seaweeds inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro. Mar. Drugs 2011, 9, 2605–2621. [Google Scholar] [CrossRef]
- Costa, L.S.; Fidelis, G.P.; Cordeiro, S.L.; Oliveira, R.M.; Sabry, D.A.; Câmara, R.B.G.; Nobre, L.T.D.B.; Costa, M.S.S.P.; Almeida-Lima, J.; Farias, E. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed. Pharmacother. 2010, 64, 21–28. [Google Scholar] [CrossRef]
- Vo, T.-S.; Kim, S.-K. Fucoidans as a natural bioactive ingredient for functional foods. J. Funct. Foods 2013, 5, 16–27. [Google Scholar] [CrossRef]
- Sanjeewa, K.A.; Fernando, I.; Kim, S.-Y.; Kim, H.-S.; Ahn, G.; Jee, Y.; Jeon, Y.-J. In vitro and in vivo anti-inflammatory activities of high molecular weight sulfated polysaccharide; containing fucose separated from Sargassum horneri. Int. J. Biol. Macromol. 2018, 107, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-C.; Lee, H.; Choi, H.-D.; Jeon, Y.-J. Antioxidant properties of a sulfated polysaccharide isolated from an enzymatic digest of Sargassum thunbergii. Int. J. Biol. Macromol. 2019, 132, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Achmad, H.; Huldani, H.; Feby Ramadhany, Y. Antimicrobial activity and sulfated polysaccharides antibiofilms in marine algae against dental plaque bacteria: A literature review. Syst. Rev. Pharm. 2020, 11, 459–465. [Google Scholar]
- Hans, N.; Malik, A.; Naik, S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresour. Technol. Rep. 2021, 13, 100623. [Google Scholar] [CrossRef]
- Ushakova, N.; Morozevich, G.; Ustyuzhanina, N.; Bilan, M.; Usov, A.; Nifantiev, N.; Preobrazhenskaya, M. Anticoagulant activity of fucoidans from brown algae. Biochem. (Mosc.) Suppl. Ser. B Biomed. Chem. 2009, 3, 77–83. [Google Scholar] [CrossRef]
- Yoo, H.J.; You, D.-J.; Lee, K.-W. Characterization and immunomodulatory effects of high molecular weight fucoidan fraction from the sporophyll of Undaria pinnatifida in cyclophosphamide-induced immunosuppressed mice. Mar. Drugs 2019, 17, 447. [Google Scholar] [CrossRef]
- Ale, M.T.; Mikkelsen, J.D.; Meyer, A.S. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs 2011, 9, 2106–2130. [Google Scholar] [CrossRef]
- Ale, M.T.; Mikkelsen, J.D.; Meyer, A.S. Designed optimization of a single-step extraction of fucose-containing sulfated polysaccharides from Sargassum sp. J. Appl. Phycol. 2012, 24, 715–723. [Google Scholar] [CrossRef]
- Wijesinghe, W.; Jeon, Y.-J. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydr. Polym. 2012, 88, 13–20. [Google Scholar] [CrossRef]
- Mensah, E.O.; Kanwugu, O.N.; Panda, P.K.; Adadi, P. Marine fucoidans: Structural, extraction, biological activities and their applications in the food industry. Food Hydrocoll. 2023, 142, 108784. [Google Scholar] [CrossRef]
- Huang, L.; Shen, M.; Morris, G.A.; Xie, J. Sulfated polysaccharides: Immunomodulation and signaling mechanisms. Trends Food Sci. Technol. 2019, 92, 1–11. [Google Scholar] [CrossRef]
- Apostolova, E.; Lukova, P.; Baldzhieva, A.; Katsarov, P.; Nikolova, M.; Iliev, I.; Peychev, L.; Trica, B.; Oancea, F.; Delattre, C. Immunomodulatory and anti-inflammatory effects of fucoidan: A review. Polymers 2020, 12, 2338. [Google Scholar] [CrossRef] [PubMed]
- Bilan, M.I.; Grachev, A.A.; Shashkov, A.S.; Nifantiev, N.E.; Usov, A.I. Structure of a fucoidan from the brown seaweed Fucus serratus L. Carbohydr. Res. 2006, 341, 238–245. [Google Scholar] [CrossRef]
- Kusaykin, M.; Bakunina, I.; Sova, V.; Ermakova, S.; Kuznetsova, T.; Besednova, N.; Zaporozhets, T.; Zvyagintseva, T. Structure, biological activity, and enzymatic transformation of fucoidans from the brown seaweeds. Biotechnol. J. Healthc. Nutr. Technol. 2008, 3, 904–915. [Google Scholar] [CrossRef]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef]
- Karnjanapratum, S.; You, S. Molecular characteristics of sulfated polysaccharides from Monostroma nitidum and their in vitro anticancer and immunomodulatory activities. Int. J. Biol. Macromol. 2011, 48, 311–318. [Google Scholar] [CrossRef]
- Shao, P.; Chen, M.; Pei, Y.; Sun, P. In intro antioxidant activities of different sulfated polysaccharides from chlorophytan seaweeds Ulva fasciata. Int. J. Biol. Macromol. 2013, 59, 295–300. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Harikrishnan, R.; Devi, G.; Bhat, E.A.; Paray, B.A. Stimulatory effects of seaweed Laminaria digitata polysaccharides additives on growth, immune-antioxidant potency and related genes induction in Rohu carp (Labeo rohita) during Flavobacterium columnare infection. Aquaculture 2024, 579, 740253. [Google Scholar] [CrossRef]
- El Rashed, Z.; Lupidi, G.; Kanaan, H.; Grasselli, E.; Canesi, L.; Khalifeh, H.; Demori, I. Antioxidant and Antisteatotic activities of a new Fucoidan extracted from Ferula hermonis roots harvested on Lebanese mountains. Molecules 2021, 26, 1161. [Google Scholar] [CrossRef]
- Ptak, S.H.; Errico, M.; Christensen, K.V. Extracting activity patterns: Exploratory data analysis on a fucoidan extract data set with mixed variables. Algal Res. 2021, 54, 102220. [Google Scholar] [CrossRef]
- Dobrinčić, A.; Dobroslavić, E.; Pedisić, S.; Balbino, S.; Garofulić, I.E.; Čož-Rakovac, R.; Dragović-Uzelac, V. The effectiveness of the Fucus virsoides and Cystoseira barbata fucoidan isolation as a function of applied pre-treatment and extraction conditions. Algal Res. 2021, 56, 102286. [Google Scholar] [CrossRef]
- Bilan, M.I.; Ustyuzhanina, N.E.; Shashkov, A.S.; Thanh, T.T.T.; Bui, M.L.; Van Tran, T.T.; Usov, A.I. Sulfated polysaccharides of the Vietnamese brown alga Sargassum aquifolium (Fucales, Sargassaceae). Carbohydr. Res. 2017, 449, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.-S.; Xie, Y.-H.; Yang, Y.-L.; Xu, L.-D.; Li, J.-J.; Wang, X.; Zhu, L.-Y.; Wang, W.-W.; Shen, P.-L.; Huang, Y.-W. Fucoidan from Ascophyllum nodosum and Undaria pinnatifida attenuate SARS-CoV-2 infection in vitro and in vivo by suppressing ACE2 and alleviating inflammation. Carbohydr. Polym. 2024, 332, 121884. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.M.C.L.; dos Santos Lisboa, L.; Paiva, W.S.; Batista, L.A.N.C.; Luchiari, A.C.; Rocha, H.A.O.; Camara, R.B.G. Comparison of in vitro and in vivo antioxidant activities of commercial fucoidans from Macrocystis pyrifera, Undaria pinnatifida, and Fucus vesiculosus. Int. J. Biol. Macromol. 2022, 216, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Oliveira, C.; Li, Q.; Ferreira, A.S.; Nunes, C.; Coimbra, M.A.; Reis, R.L.; Martins, A.; Wang, C.; Silva, T.H. Fucoidan from Fucus vesiculosus inhibits inflammatory response, both in vitro and in vivo. Mar. Drugs 2023, 21, 302. [Google Scholar] [CrossRef]
- Zhuang, S.-J.; Xu, H.-K.; Hu, X.; Wu, T.-C.; Li, J.-N.; Lee, H.-G.; Yu, P.; Dai, Y.-L.; Jeon, Y.-J. In vitro and in vivo anti-inflammatory properties of an active fucoidan fraction from Sargassum fusiforme and a fraction-based hydrogel. Int. J. Biol. Macromol. 2024, 265, 130866. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, Y.; Neupane, S.; Ptak, S.H.; Römer, R.; Xiong, J.; Ohmes, J.; Seekamp, A.; Fretté, X.; Alban, S. Influence of fucoidan extracts from different fucus species on adult stem cells and molecular mediators in in vitro models for bone formation and vascularization. Mar. Drugs 2021, 19, 194. [Google Scholar] [CrossRef]
- Michalak, L.; Morales-Lange, B.; Montero, R.; Horn, S.J.; Mydland, L.T.; Øverland, M. Impact of biorefinery processing conditions on the bioactive properties of fucoidan extracts from Saccharina latissima on SHK-1 cells. Algal Res. 2023, 75, 103221. [Google Scholar] [CrossRef]
- Moreira, A.S.; Gaspar, D.; Ferreira, S.S.; Correia, A.; Vilanova, M.; Perrineau, M.-M.; Kerrison, P.D.; Gachon, C.M.; Domingues, M.R.; Coimbra, M.A. Water-soluble Saccharina latissima polysaccharides and relation of their structural characteristics with in vitro immunostimulatory and hypocholesterolemic activities. Mar. Drugs 2023, 21, 183. [Google Scholar] [CrossRef]
- Adhikari, U.; Mateu, C.G.; Chattopadhyay, K.; Pujol, C.A.; Damonte, E.B.; Ray, B. Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry 2006, 67, 2474–2482. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.-R.; Hsu, K.-T.; Li, T.-L.; Chan, Y.-L.; Wu, C.-J. Topical application of fucoidan derived from Cladosiphon okamuranus alleviates atopic dermatitis symptoms through immunomodulation. Int. Immunopharmacol. 2021, 101, 108362. [Google Scholar] [CrossRef]
- Sun, X.; Ai, C.; Wen, C.; Peng, H.; Yang, J.; Cui, Y.; Song, S. Inhibitory effects of fucoidan from Laminaria japonica against some pathogenic bacteria and SARS-CoV-2 depend on its large molecular weight. Int. J. Biol. Macromol. 2023, 229, 413–421. [Google Scholar] [CrossRef]
- Suresh, V.; Senthilkumar, N.; Thangam, R.; Rajkumar, M.; Anbazhagan, C.; Rengasamy, R.; Gunasekaran, P.; Kannan, S.; Palani, P. Separation, purification and preliminary characterization of sulfated polysaccharides from Sargassum plagiophyllum and its in vitro anticancer and antioxidant activity. Process Biochem. 2013, 48, 364–373. [Google Scholar] [CrossRef]
- Rasin, A.B.; Silchenko, A.S.; Kusaykin, M.I.; Malyarenko, O.S.; Zueva, A.O.; Kalinovsky, A.I.; Airong, J.; Surits, V.V.; Ermakova, S.P. Enzymatic transformation and anti-tumor activity of Sargassum horneri fucoidan. Carbohydr. Polym. 2020, 246, 116635. [Google Scholar] [CrossRef]
- Han, Y.; Wu, J.; Liu, T.; Hu, Y.; Zheng, Q.; Wang, B.; Lin, H.; Li, X. Separation, characterization and anticancer activities of a sulfated polysaccharide from Undaria pinnatifida. Int. J. Biol. Macromol. 2016, 83, 42–49. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, X.; Li, S.; Hao, L.; Du, J.; Gao, D.; Kang, Q.; Lu, J. Extraction, characterization and biological activity of sulfated polysaccharides from seaweed Dictyopteris divaricata. Int. J. Biol. Macromol. 2018, 117, 256–263. [Google Scholar] [CrossRef]
- Chang, Y.; Hu, Y.; Yu, L.; McClements, D.J.; Xu, X.; Liu, G.; Xue, C. Primary structure and chain conformation of fucoidan extracted from sea cucumber Holothuria tubulosa. Carbohydr. Polym. 2016, 136, 1091–1097. [Google Scholar] [CrossRef]
- Palanisamy, S.; Vinosha, M.; Marudhupandi, T.; Rajasekar, P.; Prabhu, N.M. Isolation of fucoidan from Sargassum polycystum brown algae: Structural characterization, in vitro antioxidant and anticancer activity. Int. J. Biol. Macromol. 2017, 102, 405–412. [Google Scholar] [CrossRef]
- Anastyuk, S.D.; Shevchenko, N.M.; Ermakova, S.P.; Vishchuk, O.S.; Nazarenko, E.L.; Dmitrenok, P.S.; Zvyagintseva, T.N. Anticancer activity in vitro of a fucoidan from the brown alga Fucus evanescens and its low-molecular fragments, structurally characterized by tandem mass-spectrometry. Carbohydr. Polym. 2012, 87, 186–194. [Google Scholar] [CrossRef]
- Cholaraj, R.; Venkatachalam, R. Investigation of antioxidant and anticancer potential of fucoidan (in-vitro & in-silico) from brown seaweed Padina boergesenii. Algal Res. 2024, 79, 103442. [Google Scholar]
- Qin, L.; Cao, J.; Xu, H.; Li, N.; Wang, K.; Zhang, L.; Qu, C.; Miao, J. Structural characterization of a sulfated polysaccharide from Ishige okamurae and its effect on recovery from immunosuppression. Int. J. Biol. Macromol. 2023, 236, 123948. [Google Scholar] [CrossRef]
- Veena, C.K.; Josephine, A.; Preetha, S.P.; Varalakshmi, P. Beneficial role of sulfated polysaccharides from edible seaweed Fucus vesiculosus in experimental hyperoxaluria. Food Chem. 2007, 100, 1552–1559. [Google Scholar] [CrossRef]
- Wang, J.; Guo, H.; Zhang, J.; Wang, X.; Zhao, B.; Yao, J.; Wang, Y. Sulfated modification, characterization and structure–antioxidant relationships of Artemisia sphaerocephala polysaccharides. Carbohydr. Polym. 2010, 81, 897–905. [Google Scholar] [CrossRef]
- Vishchuk, O.S.; Ermakova, S.P.; Zvyagintseva, T.N. The effect of sulfated (1→3)-α-l-fucan from the brown alga Saccharina cichorioides miyabe on resveratrol-induced apoptosis in colon carcinoma cells. Mar. Drugs 2013, 11, 194–212. [Google Scholar] [CrossRef]
- Schneider, T.; Ehrig, K.; Liewert, I.; Alban, S. Interference with the CXCL12/CXCR4 axis as potential antitumor strategy: Superiority of a sulfated galactofucan from the brown alga Saccharina latissima and fucoidan over heparins. Glycobiology 2015, 25, 812–824. [Google Scholar] [CrossRef]
- Alencar, P.O.C.; Lima, G.C.; Barros, F.C.N.; Costa, L.E.; Ribeiro, C.V.P.; Sousa, W.M.; Sombra, V.G.; Abreu, C.M.W.; Abreu, E.S.; Pontes, E.O. A novel antioxidant sulfated polysaccharide from the algae Gracilaria caudata: In vitro and in vivo activities. Food Hydrocoll. 2019, 90, 28–34. [Google Scholar] [CrossRef]
- Jayawardena, T.U.; Sanjeewa, K.A.; Nagahawatta, D.; Lee, H.-G.; Lu, Y.-A.; Vaas, A.; Abeytunga, D.; Nanayakkara, C.; Lee, D.-S.; Jeon, Y.-J. Anti-inflammatory effects of sulfated polysaccharide from Sargassum swartzii in macrophages via blocking TLR/NF-Κb signal transduction. Mar. Drugs 2020, 18, 601. [Google Scholar] [CrossRef]
- Lim, S.J.; Aida, W.M.W. Extraction of sulfated polysaccharides (fucoidan) from brown seaweed. In Seaweed Polysaccharides; Elsevier: Amsterdam, The Netherlands, 2017; pp. 27–46. [Google Scholar]
- Zhang, Z.; Till, S.; Jiang, C.; Knappe, S.; Reutterer, S.; Scheiflinger, F.; Szabo, C.M.; Dockal, M. Structure-activity relationship of the pro-and anticoagulant effects of Fucus vesiculosus fucoidan. Thromb. Haemost. 2014, 112, 429–437. [Google Scholar] [CrossRef]
- Zayed, A.; El-Aasr, M.; Ibrahim, A.-R.S.; Ulber, R. Fucoidan characterization: Determination of purity and physicochemical and chemical properties. Mar. Drugs 2020, 18, 571. [Google Scholar] [CrossRef] [PubMed]
- Silchenko, A.; Rasin, A.; Zueva, A.; Kusaykin, M.; Zvyagintseva, T.; Rubtsov, N.; Ermakova, S. Discovery of a fucoidan endo-4O-sulfatase: Regioselective 4O-desulfation of fucoidans and its effect on anticancer activity in vitro. Carbohydr. Polym. 2021, 271, 118449. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Wang, S.-H.; Huang, C.-Y.; Dong, C.-D.; Huang, C.-Y.; Chang, C.-C.; Chang, J.-S. Effect of molecular mass and sulfate content of fucoidan from Sargassum siliquosum on antioxidant, anti-lipogenesis, and anti-inflammatory activity. J. Biosci. Bioeng. 2021, 132, 359–364. [Google Scholar] [CrossRef]
- Yuguchi, Y.; Bui, L.M.; Takebe, S.; Suzuki, S.; Nakajima, N.; Kitamura, S.; Thanh, T.T.T. Primary structure, conformation in aqueous solution, and intestinal immunomodulating activity of fucoidan from two brown seaweed species Sargassum crassifolium and Padina australis. Carbohydr. Polym. 2016, 147, 69–78. [Google Scholar] [CrossRef]
- Yang, C.; Chung, D.; Shin, I.-S.; Lee, H.; Kim, J.; Lee, Y.; You, S. Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. Int. J. Biol. Macromol. 2008, 43, 433–437. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, F.; Hu, J.; Zhang, L.; Xue, C.; Zhang, Z.; Li, B. Antithrombotic activity of oral administered low molecular weight fucoidan from Laminaria japonica. Thromb. Res. 2016, 144, 46–52. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, X.; Miao, Y.; Zhou, Y.; Shi, J.; Yan, M.; Chen, A. Studies on antiviral and immuno-regulation activity of low molecular weight fucoidan from Laminaria japonica. J. Ocean Univ. China 2018, 17, 705–711. [Google Scholar] [CrossRef]
- Suprunchuk, V.E. Low-molecular-weight fucoidan: Chemical modification, synthesis of its oligomeric fragments and mimetics. Carbohydr. Res. 2019, 485, 107806. [Google Scholar] [CrossRef]
- Morya, V.; Kim, J.; Kim, E.-K. Algal fucoidan: Structural and size-dependent bioactivities and their perspectives. Appl. Microbiol. Biotechnol. 2012, 93, 71–82. [Google Scholar] [CrossRef]
- Yuan, Y.; Macquarrie, D. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr. Polym. 2015, 129, 101–107. [Google Scholar] [CrossRef]
- Kopplin, G.; Rokstad, A.M.; Mélida, H.; Bulone, V.; Skjåk-Bræk, G.; Aachmann, F.L. Structural characterization of fucoidan from Laminaria hyperborea: Assessment of coagulation and inflammatory properties and their structure–function relationship. ACS Appl. Bio Mater. 2018, 1, 1880–1892. [Google Scholar] [CrossRef]
- Wen, Y.; Gao, L.; Zhou, H.; Ai, C.; Huang, X.; Wang, M.; Zhang, Y.; Zhao, C. Opportunities and challenges of algal fucoidan for diabetes management. Trends Food Sci. Technol. 2021, 111, 628–641. [Google Scholar] [CrossRef]
- Wang, M.; Veeraperumal, S.; Zhong, S.; Cheong, K.-L. Fucoidan-derived functional oligosaccharides: Recent developments, preparation, and potential applications. Foods 2023, 12, 878. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Qi, X.; Liu, H.; Xue, K.; Xu, S.; Tian, Z. The anti-cancer effects of fucoidan: A review of both in vivo and in vitro investigations. Cancer Cell Int. 2020, 20, 154. [Google Scholar] [CrossRef]
- Atashrazm, F.; Lowenthal, R.M.; Woods, G.M.; Holloway, A.F.; Dickinson, J.L. Fucoidan and cancer: A multifunctional molecule with anti-tumor potential. Mar. Drugs 2015, 13, 2327–2346. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.-O.; Yadav, D.; Madhwani, K.; Puranik, N.; Chavda, V.; Song, M. Seaweeds in the oncology arena: Anti-cancer potential of fucoidan as a drug—A review. Molecules 2022, 27, 6032. [Google Scholar] [CrossRef]
- Lee, J.-B.; Hayashi, K.; Hashimoto, M.; Nakano, T.; Hayashi, T. Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem. Pharm. Bull. 2004, 52, 1091–1094. [Google Scholar] [CrossRef]
- Yang, C.-W.; Hsu, H.-Y.; Lee, Y.-Z.; Jan, J.-T.; Chang, S.-Y.; Lin, Y.-L.; Yang, R.-B.; Chao, T.-L.; Liang, J.-J.; Lin, S.-J. Natural fucoidans inhibit coronaviruses by targeting viral spike protein and host cell furin. Biochem. Pharmacol. 2023, 215, 115688. [Google Scholar] [CrossRef]
- Chaisuwan, W.; Phimolsiripol, Y.; Chaiyaso, T.; Techapun, C.; Leksawasdi, N.; Jantanasakulwong, K.; Rachtanapun, P.; Wangtueai, S.; Sommano, S.R.; You, S. The antiviral activity of bacterial, fungal, and algal polysaccharides as bioactive ingredients: Potential uses for enhancing immune systems and preventing viruses. Front. Nutr. 2021, 8, 772033. [Google Scholar] [CrossRef]
- Pradhan, B.; Nayak, R.; Patra, S.; Bhuyan, P.P.; Behera, P.K.; Mandal, A.K.; Behera, C.; Ki, J.-S.; Adhikary, S.P.; MubarakAli, D. A state-of-the-art review on fucoidan as an antiviral agent to combat viral infections. Carbohydr. Polym. 2022, 291, 119551. [Google Scholar] [CrossRef]
- Krylova, N.V.; Ermakova, S.P.; Lavrov, V.F.; Leneva, I.A.; Kompanets, G.G.; Iunikhina, O.V.; Nosik, M.N.; Ebralidze, L.K.; Falynskova, I.N.; Silchenko, A.S. The comparative analysis of antiviral activity of native and modified fucoidans from brown algae Fucus evanescens in vitro and in vivo. Mar. Drugs 2020, 18, 224. [Google Scholar] [CrossRef]
- Striegel, A.M.; Boone, M.A. Influence of glycosidic linkage on solution conformational entropy of oligosaccharides: Malto-vs. isomalto-and cello-vs. laminarioligosaccharides. Biopolymers 2011, 95, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.J.; Mustapha, W.A.W.; Maskat, M.Y.; Latip, J.; Badri, K.H.; Hassan, O. Chemical properties and toxicology studies of fucoidan extracted from Malaysian Sargassum binderi. Food Sci. Biotechnol. 2016, 25, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, S.; Li, J.; Ye, X.; Ding, T.; Liu, D.; Chen, J.; Ge, Z.; Chen, S. Identification of a highly sulfated fucoidan from sea cucumber Pearsonothuria graeffei with well-repeated tetrasaccharides units. Carbohydr. Polym. 2015, 134, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.J.; Aida, W.M.W.; Schiehser, S.; Rosenau, T.; Böhmdorfer, S. Structural elucidation of fucoidan from Cladosiphon okamuranus (Okinawa mozuku). Food Chem. 2019, 272, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Marais, M.-F.; Joseleau, J.-P. A fucoidan fraction from Ascophyllum nodosum. Carbohydr. Res. 2001, 336, 155–159. [Google Scholar] [CrossRef]
- Crawford, C.; Schultz-Johansen, M.; Luong, P.; Vidal-Melgosa, S.; Hehemann, J.-H.; Seeberger, P. Automated synthesis of fucoidan enables molecular investigations in marine glycobiology. ChemRxiv 2024. [Google Scholar] [CrossRef]
- Duarte, M.E.; Cardoso, M.A.; Noseda, M.D.; Cerezo, A.S. Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydr. Res. 2001, 333, 281–293. [Google Scholar] [CrossRef]
- Fernando, I.S.; Kim, D.; Nah, J.-W.; Jeon, Y.-J. Advances in functionalizing fucoidans and alginates (bio) polymers by structural modifications: A review. Chem. Eng. J. 2019, 355, 33–48. [Google Scholar] [CrossRef]
- Karmakar, P.; Pujol, C.A.; Damonte, E.B.; Ghosh, T.; Ray, B. Polysaccharides from Padina tetrastromatica: Structural features, chemical modification and antiviral activity. Carbohydr. Polym. 2010, 80, 513–520. [Google Scholar] [CrossRef]
- Deepak, P.; Perumal, P.; Balakrishnan, R.; Balasubramanian, B.; Velmurugan, P. Assessment of antioxidant and digestive enzyme inhibition by phyco-molecules isolated from marine brown alga Sargassum wightii. Food Humanit. 2024, 2, 100226. [Google Scholar] [CrossRef]
- Ganapathy, S.; Lingappa, S.; Naidu, K.; Selvaraj, U.; Ramachandiran, S.; Ponnusamy, S.; Somasundaram, S.T. Isolation and bioactive potential of fucoidan from marine macroalgae Turbinaria conoides. ChemistrySelect 2019, 4, 14114–14119. [Google Scholar] [CrossRef]
- An, Z.; Zhang, Z.; Zhang, X.; Yang, H.; Lu, H.; Liu, M.; Shao, Y.; Zhao, X.; Zhang, H. Oligosaccharide mapping analysis by HILIC-ESI-HCD-MS/MS for structural elucidation of fucoidan from sea cucumber Holothuria floridana. Carbohydr. Polym. 2022, 275, 118694. [Google Scholar] [CrossRef] [PubMed]
- Thanh, T.T.T.; Tran, V.T.T.; Yuguchi, Y.; Bui, L.M.; Nguyen, T.T. Structure of fucoidan from brown seaweed Turbinaria ornata as studied by electrospray ionization mass spectrometry (ESIMS) and small angle X-ray scattering (SAXS) techniques. Mar. Drugs 2013, 11, 2431–2443. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-I.; Lee, S.G.; Han, S.J.; Cho, M.; Lee, P.C. Effect of gamma irradiation on the structure of fucoidan. Radiat. Phys. Chem. 2014, 100, 54–58. [Google Scholar] [CrossRef]
- Pielesz, A.; Biniaś, W. Cellulose acetate membrane electrophoresis and FTIR spectroscopy as methods of identifying a fucoidan in Fucus vesiculosus Linnaeus. Carbohydr. Res. 2010, 345, 2676–2682. [Google Scholar] [CrossRef]
- Shang, Q. Revisit the effects of fucoidan on gut microbiota in health and disease: What do we know and what do we need to know? Bioact. Carbohydr. Diet. Fibre 2020, 23, 100221. [Google Scholar] [CrossRef]
- Etman, S.M.; Elnaggar, Y.S.; Abdallah, O.Y. Fucoidan, a natural biopolymer in cancer combating: From edible algae to nanocarrier tailoring. Int. J. Biol. Macromol. 2020, 147, 799–808. [Google Scholar] [CrossRef]
- Oliveira, C.; Neves, N.M.; Reis, R.L.; Martins, A.; Silva, T.H. A review on fucoidan antitumor strategies: From a biological active agent to a structural component of fucoidan-based systems. Carbohydr. Polym. 2020, 239, 116131. [Google Scholar] [CrossRef]
Algae Source | Glycosidic Bond Connection | Bioactivity | Experimental Methodologies | Experiment Model | Concentration | Reference |
---|---|---|---|---|---|---|
Sargassum aquifolium | [2-linked α-d-Manp and 4-linked β-d-GlcpA] | Anticoagulant and antitumor activities | In vitro | Human cancer cell lines HepG2 (hepatocellular carcinoma), LU-1 (lung adenocarcinoma), and RD (rhabdomiosarcoma) | ND | [43] |
Sargassum horneri | [α-l-Fucp-1→3-α-l-Fucp(4SO3−)-1→] | Antitumor | In vitro | The DLD-1 (ATCC # CCL-221™) human colon carcinoma cell line | 200 μg/mL | [55] |
Fucus distichus subsp. evanescens | [3)-α-L-Fucp-(2SO3−)-(1→4)-α-L-Fucp-(2,3SO3−)-(1→] | Anticancer activity | In vitro | The SK-MEL-5 (ATCC # HTB-70), SK-MEL-28 (ATCC # HTB-72) human malignant melanoma cell lines | 100–400 μg/mL | [60] |
Sargassum crassifolium | [3)-α-L-Fucp-(1→3)-α-L-Fucp (SO3−)-(1→4)-α-L-Fucp-(SO3−)-(1→] | Immunomodulatory activity | In vitro | Bone marrow cells from C3H/HeJ female mice | 3 μg/mL | [74] |
Sargassum polycystum | [3)-α-L-Fucp-(1→3)-α-L-Fucp-(1→] | Antioxidant activity, anticancer activity | In vitro | MCF-7 cells | 25, 50, 75, 100, 125, and 150 μg/ml | [59] |
Sargassum siliquosum | [3)-α-L-Fucp-(2SO3−)-(1→4)-α-L-Fucp-(1→] | Antioxidant activity, anti-inflammatory activity | In vitro | RAW 264.7 cell | 0.25–1 μg/mL | [15] |
Padina boergesenii | (1–4)-L fucose, (1–6) β-D galactose, α and β-D Manncronic acid | Antioxidant and anticancer | In vitro | Human cervical carcinoma cells (HeLa cell line) | 20, 40, and 60 μg/mL | [61] |
Saccharinajaponica | A:→3)-α-l-Fucp(2,4S)-(1→ B:→3)-α-l-Fucp(2S)-( C:→3)-α-l-Fucp-(1→ D:→4)-β-d-Manp(1→ E:→6)-β-d-Galp(1→ | Antibacterial activity and anti SARS-CoV-2 | In vitro | Bacteria including Staphylococcus aureus ATCC6538, Listeria monocytogenes ATCC19115, Escherichia coli ATCC25922, Shigella flexneri CMCC51574, Salmonella typhimurium ATCC14028, and Vibrio parahaemolyticus CGMCC1.1614 | 50, 25, 12.5, 6.25, and 0 μg/mL | [53] |
Undaria pinnatifida | [β-D-Galp, α-type glycosidic linkages] | Anticancer activity | In vivo | Sprague Dawley rats | 100, 200, and 300 mg/kg of body weight | [56] |
α(1,4)-linked L-fucopyranose | Attenuation of SARS-CoV-2 infection | In vitro In vivo | Caco-2-Nint cells, a producer cell line expressing the SARS-CoV-2 N protein via lentiviral transduction | 7.8, 15.6, 31.3, 62.5, 125, 500, 1000 μg/mL | [44] | |
Ascophyllum nodosum | [(1→3) and (1→4) linked α-l-fucopyranose] | Four-week-old female specific-pathogen-free (SPF) Syrian hamsters | Orally gavaged with high dose (Hd; 200 mg/day/kg body weight) or low dose (Ld; 100 mg/day/kg body weight) | |||
Ishige okamurae | [→3)-α-l-Fucp-(1→, →4)-α-l-Fucp-(1→, →6)-β-d-Galp-(1→ and →3)-β-d-Galp-(1 → residues with sulfate groups at C-2/C-4 the of (1→3)-α-l-Fucp and C-6 the of (1→3)-β-d-Galp] | Effect on recovery from immunosuppression | In vivo | BALB/c mice induced CTX (cyclooxygenase-thromboxane A2 synthetase) immunomodulatory models | 20, 40, and 80 mg/kg | [62] |
Stoechospermum polypodioides | [(1→4)- and (1→3)-linked-α-l-fucopyranosyl] | Antiviral activity | In vitro | Vero cells by a virus plaque reduction assay | EC50 (μg/mL): 3.55 ± 0.63 | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.; Lee, S.; Lee, G.; Hyun, J.; Ryu, B. Systematic Characteristics of Fucoidan: Intriguing Features for New Pharmacological Interventions. Int. J. Mol. Sci. 2024, 25, 11771. https://doi.org/10.3390/ijms252111771
Jeong S, Lee S, Lee G, Hyun J, Ryu B. Systematic Characteristics of Fucoidan: Intriguing Features for New Pharmacological Interventions. International Journal of Molecular Sciences. 2024; 25(21):11771. https://doi.org/10.3390/ijms252111771
Chicago/Turabian StyleJeong, Seungjin, Seokmin Lee, Geumbin Lee, Jimin Hyun, and Bomi Ryu. 2024. "Systematic Characteristics of Fucoidan: Intriguing Features for New Pharmacological Interventions" International Journal of Molecular Sciences 25, no. 21: 11771. https://doi.org/10.3390/ijms252111771
APA StyleJeong, S., Lee, S., Lee, G., Hyun, J., & Ryu, B. (2024). Systematic Characteristics of Fucoidan: Intriguing Features for New Pharmacological Interventions. International Journal of Molecular Sciences, 25(21), 11771. https://doi.org/10.3390/ijms252111771