Difference in the Catalytic Activity of Atoms in the Corners and at the Edges of Gold Nanoparticles: Hydrogen Isotope Exchange Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Nanoparticles
3.3. Preparation of Catalyst
3.4. Catalytic Procedure
3.5. Characterization
3.5.1. UV-Vis Spectroscopy
3.5.2. Dynamic Light Scattering
3.5.3. Electron Microscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, X.; Li, F.; Shi, J.; Zheng, Y.; Su, H.; Sun, L.; Peng, S.; Qi, C. Gold nanoparticles supported on MgOx-Al2O3 composite oxide: An efficient catalyst for selective hydrogenation of acetylene. Appl. Surf. Sci. 2019, 487, 625–633. [Google Scholar] [CrossRef]
- Holz, J.; Pfeffer, C.; Zuo, H.; Beierlein, D.; Richter, G.; Klemm, E.; Peters, R. In Situ Generated Gold Nanoparticles on Active Carbon as Reusable Highly Efficient Catalysts for a Csp3−Csp3 Stille Coupling. Angew. Chem. Int. Ed. 2019, 58, 10330–10334. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ge, L.; Yuan, H.; Liu, Y.; Gui, Y.; Zhang, B.; Zhou, L.; Fang, S. Heterogeneous gold catalysts for selective hydrogenation: From nanoparticles to atomically precise nanoclusters. Nanoscale 2019, 11, 11429–11436. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, J.; Zhu, D.; Li, T. One-pot synthesized porphyrin-based polymer supported gold nanoparticles as efficient catalysts for alkyne hydration and alcohol oxidation in water. Gold Bull. 2019, 52, 19–26. [Google Scholar] [CrossRef]
- Tran, T.D.; Nguyen, M.T.T.; Le, H.V.; Nguyen, D.N.; Truong, Q.D.; Tran, P.D. Gold nanoparticles as an outstanding catalyst for the hydrogen evolution reaction. Chem. Commun. 2018, 54, 3363–3366. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Tao, K.; Hua, D.; Ma, Z.; Zhou, S. Size Effect of Gold Nanoparticles in Catalytic Reduction of p-Nitrophenol with NaBH4. Molecules 2013, 18, 12609–12620. [Google Scholar] [CrossRef]
- Demirel-Gülen, S.; Lucas, M.; Claus, P. Liquid phase oxidation of glycerol over carbon supported gold catalysts. Catal. Today 2005, 102–103, 166–172. [Google Scholar] [CrossRef]
- Qian, K.; Luo, L.; Bao, H.; Hua, Q.; Jiang, Z.; Huang, W. Catalytically active structures of SiO2-supported Au nanoparticles in low-temperature CO oxidation. Catal. Sci. Technol. 2013, 3, 679–687. [Google Scholar] [CrossRef]
- Meyer, R.; Lemire, C.; Shaikhutdinov, S.K.; Freund, H.J. Surface chemistry of catalysis by gold. Gold Bull. 2004, 37, 72–124. [Google Scholar] [CrossRef]
- Gatin, A.; Grishin, M.; Dokhlikova, N.; Ozerin, S.; Sarvadii, S.; Kharitonov, V.; Shub, B. Effect of Size on Hydrogen Adsorption on the Surface of Deposited Gold Nanoparticles. Nanomaterials 2019, 9, 344. [Google Scholar] [CrossRef]
- Lin, S.D.; Bollinger, M.; Vannice, M.A. Low temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts. Catal. Lett. 1993, 17, 245–262. [Google Scholar] [CrossRef]
- Fujitani, T.; Nakamura, I.; Akita, T.; Okumura, M.; Haruta, M. Hydrogen Dissociation by Gold Clusters. Angew. Chem. Int. Ed. 2009, 48, 9515–9518. [Google Scholar] [CrossRef] [PubMed]
- Valden, M.; Lai, X.; Goodman, D.W. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 1998, 281, 1647–1650. [Google Scholar] [CrossRef] [PubMed]
- Chen; Cai, Y.; Yan, Z.; Goodman, D.W. On the Origin of the Unique Properties of Supported Au Nanoparticles. J. Am. Chem. Soc. 2006, 128, 6341–6346. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, K.; Ichikawa, S.; Maeda, Y.; Haruta, M.; Kohyama, M. Electronic structures of Au supported on TiO2. Appl. Catal. A Gen. 2005, 291, 45–54. [Google Scholar] [CrossRef]
- Liang, C.; Cheong, J.Y.; Sitaru, G.; Rosenfeldt, S.; Schenk, A.S.; Gekle, S.; Kim, I.; Greiner, A. Size-Dependent Catalytic Behavior of Gold Nanoparticles. Adv. Mater. Interfaces 2022, 9, 2100867. [Google Scholar] [CrossRef]
- De, S.K.; Mondal, S.; Sen, P.; Pal, U.; Pathak, B.; Rawat, K.S.; Bardhan, M.; Bhattacharya, M.; Satpati, B.; De, A.; et al. Crystal-defect-induced facet-dependent electrocatalytic activity of 3D gold nanoflowers for the selective nanomolar detection of ascorbic acid. Nanoscale 2018, 10, 11091–11102. [Google Scholar] [CrossRef]
- Bus, E.; Miller, J.T.; van Bokhoven, J.A. Hydrogen Chemisorption on Al 2 O 3 -Supported Gold Catalysts. J. Phys. Chem. B 2005, 109, 14581–14587. [Google Scholar] [CrossRef]
- Abkhalimov, E.V.; Boeva, O.A.; Odintzov, A.A.; Solovov, R.D.; Zhavoronkova, K.N.; Ershov, B.G. The H2-D2 exchange reaction catalyzed by gold nanoparticles supported on γ-Al2O3: Effect of particle size on the reaction rate. Catal. Commun. 2020, 133, 105840. [Google Scholar] [CrossRef]
- Boeva, O.A.; Ershov, B.G.; Zhavoronkova, K.N.; Odintsov, A.A.; Solovov, R.D.; Abkhalimov, E.V.; Evdokimenko, N.D. Catalytic properties of gold nanoparticles in H2—D2 exchange and ortho—Para hydrogen conversion. Dokl. Phys. Chem. 2015, 463, 165–167. [Google Scholar] [CrossRef]
- Boeva, O.A.; Odintzov, A.A.; Solovov, R.D.; Abkhalimov, E.V.; Zhavoronkova, K.N.; Ershov, B.G. Low-temperature ortho–para hydrogen conversion catalyzed by gold nanoparticles: Particle size does not affect the rate. Int. J. Hydrogen Energy 2017, 42, 22897–22902. [Google Scholar] [CrossRef]
- Schimpf, S.; Lucas, M.; Mohr, C.; Rodemerck, U.; Brückner, A.; Radnik, J.; Hofmeister, H.; Claus, P. Supported gold nanoparticles: In-depth catalyst characterization and application in hydrogenation and oxidation reactions. Catal. Today 2002, 72, 63–78. [Google Scholar] [CrossRef]
- Van Hardeveld, R.; Hartog, F. The statistics of surface atoms and surface sites on metal crystals. Surf. Sci. 1969, 15, 189–230. [Google Scholar] [CrossRef]
- Boccuzzi, F.; Cerrato, G.; Pinna, F.; Strukul, G. FTIR, UV−Vis, and HRTEM Study of Au/ZrO2 Catalyst: Reduced Reactivity in the CO−O2 Reaction of Electron-Deficient Gold Sites Present on the Used Samples. J. Phys. Chem. B 1998, 102, 5733–5736. [Google Scholar] [CrossRef]
- Ershov, B.G.; Abkhalimov, E.V.; Solovov, R.D.; Roldughin, V.I. Gold nanoparticles in aqueous solutions: Influence of size and pH on hydrogen dissociative adsorption and Au(III) ion reduction. Phys. Chem. Chem. Phys. 2016, 18, 13459–13466. [Google Scholar] [CrossRef]
- Zaera, F. The Surface Chemistry of Metal-Based Hydrogenation Catalysis. ACS Catal. 2017, 7, 4947–4967. [Google Scholar] [CrossRef]
- Gentry, N.E.; Kurimoto, A.; Cui, K.; Cleron, J.L.; Xiang, C.M.; Hammes-Schiffer, S.; Mayer, J.M. Hydrogen on Colloidal Gold Nanoparticles. J. Am. Chem. Soc. 2024, 146, 14505–14520. [Google Scholar] [CrossRef]
- Ishida, R.; Hayashi, S.; Yamazoe, S.; Kato, K.; Tsukuda, T. Hydrogen-Mediated Electron Doping of Gold Clusters As Revealed by in Situ X-ray and UV-vis Absorption Spectroscopy. J. Phys. Chem. Lett. 2017, 8, 2368–2372. [Google Scholar] [CrossRef]
- Ershov, B.G.; Roldughin, V.I.; Abkhalimov, E.V.; Solovov, R.D.; Dement’eva, O.V.; Rudoy, V.M. The effects of hydrogen and ph on plasmon absorption of gold hydrosol. Electrochemical reactions on nanoelectrodes. Colloid J. 2014, 76, 308–313. [Google Scholar] [CrossRef]
- Haruta, M. When Gold Is Not Noble: Catalysis by Nanoparticles. Chem. Rec. 2003, 3, 75–87. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Q.; Xiong, L. Molecular dynamics study on structure stability, lattice variation, and melting behavior of silver nanoparticles. J. Nanoparticle Res. 2017, 19, 300. [Google Scholar] [CrossRef]
- Geng, G.; Chen, P.; Guan, B.; Liu, Y.; Yang, C.; Wang, N.; Liu, M. Sheetlike gold nanostructures/graphene oxide composites via a one-pot green fabrication protocol and their interesting two-stage catalytic behaviors. RSC Adv. 2017, 7, 51838–51846. [Google Scholar] [CrossRef]
- Lin, T.H.; Lin, C.W.; Liu, H.H.; Sheu, J.T.; Hung, W.H. Potential-controlled electrodeposition of gold dendrites in the presence of cysteine. Chem. Commun. 2011, 47, 2044–2046. [Google Scholar] [CrossRef] [PubMed]
- Schrinner, M.; Polzer, F.; Mei, Y.; Lu, Y.; Haupt, B.; Ballauff, M.; Göldel, A.; Drechsler, M.; Preussner, J.; Glatzel, U. Mechanism of the Formation of Amorphous Gold Nanoparticles within Spherical Polyelectrolyte Brushes. Macromol. Chem. Phys. 2007, 208, 1542–1547. [Google Scholar] [CrossRef]
- Bond, G.C. Hydrogenation by gold catalysts: An unexpected discovery and a current assessment. Gold Bull. 2016, 49, 53–61. [Google Scholar] [CrossRef]
- Doronin, S.V.; Dokhlikova, N.V.; Grishin, M.V. Descriptor of catalytic activity nanoparticles surface: Atomic and molecular hydrogen on gold. Mol. Catal. 2022, 529, 112534. [Google Scholar] [CrossRef]
- Janssens, T.V.W.; Clausen, B.S.; Hvolbæk, B.; Falsig, H.; Christensen, C.H.; Bligaard, T.; Nørskov, J.K. Insights into the reactivity of supported Au nanoparticles: Combining theory and experiments. Top. Catal. 2007, 44, 15–26. [Google Scholar] [CrossRef]
- Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M.J.; Delmon, B. Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4. J. Catal. 1993, 144, 175–192. [Google Scholar] [CrossRef]
- Lyalin, A.; Taketsugu, T. A computational investigation of H2 adsorption and dissociation on Au nanoparticles supported on TiO2 surface. Faraday Discuss. 2011, 152, 185. [Google Scholar] [CrossRef]
- Svalova, A.I.; Stishenko, P.V. Distribution of Active Site Types on Au Nanoparticles with Different Structures: Study of Thermal Dependence. Procedia Eng. 2016, 152, 67–72. [Google Scholar] [CrossRef]
- Morozov, P.A.; Ershov, B.G.; Abkhalimov, E.V.; Dement’eva, O.V.; Filippenko, M.A.; Rudoy, V.M.; Roldughin, V.I. The effect of ozone on plasmon absorption of gold hydrosols. Quasi-metal and metal nanoparticles. Colloid J. 2012, 74, 502–509. [Google Scholar] [CrossRef]
- Logunov, S.L.; Ahmadi, T.S.; El-Sayed, M.A.; Khoury, J.T.; Whetten, R.L. Electron Dynamics of Passivated Gold Nanocrystals Probed by Subpicosecond Transient Absorption Spectroscopy. J. Phys. Chem. B 1997, 101, 3713–3719. [Google Scholar] [CrossRef]
- Guan, W.; Cheng, W.; Pei, S.; Chen, X.; Yuan, Z.; Lu, C. Probing Coordination Number of Single-Atom Catalysts by d-Band Center-Regulated Luminescence. Angew. Chem. Int. Ed. 2024, 63, e202401214. [Google Scholar] [CrossRef] [PubMed]
- Mohr, C.; Claus, P. Hydrogenation Properties of Supported Nanosized Gold Particles. Sci. Prog. 2001, 84, 311–334. [Google Scholar] [CrossRef] [PubMed]
- Che, M.; Bennett, C.O. The Influence of Particle Size on the Catalytic Properties of Supported Metals. In Advances in Catalysis; Academic Press: Cambridge, MA, USA, 1989; Volume 36, pp. 55–172. [Google Scholar]
- Sarvadii, S.Y.; Gatin, A.K.; Dokhlikova, N.V.; Kharitonov, V.A.; Ozerin, S.A.; Doronin, S.V.; Grishin, M.V.; Shub, B.R. Hydrogenation of HOPG-Supported Gold Nanoparticles: Surface or Volume? Crystals 2021, 11, 597. [Google Scholar] [CrossRef]
- Odintsov, A.A.; Revina, A.A.; Zhavoronkova, K.N.; Boeva, O.A. Catalytic Properties of Gold Nanoparticles Prepared in Reverse Micelles. Prot. Met. Phys. Chem. Surfaces 2016, 52, 223–226. [Google Scholar] [CrossRef]
- Egorova, E.; Revina, A. Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids Surfaces A Physicochem. Eng. Asp. 2000, 168, 87–96. [Google Scholar] [CrossRef]
- Solovov, R.D.; Ershov, B.G. Preparation of palladium nanoparticles with desired sizes in aqueous solutions. Colloid J. 2014, 76, 595–599. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55. [Google Scholar] [CrossRef]
- Aswathy Aromal, S.; Philip, D. Facile one-pot synthesis of gold nanoparticles using tannic acid and its application in catalysis. Phys. E Low-Dimens. Syst. Nanostructures 2012, 44, 1692–1696. [Google Scholar] [CrossRef]
- Boeva, O.; Antonov, A.; Zhavoronkova, K. Influence of the nature of IB group metals on catalytic activity in reactions of homomolecular hydrogen exchange on Cu, Ag, Au nanoparticles. Catal. Commun. 2021, 148, 106173. [Google Scholar] [CrossRef]
- Boeva, O.; Kudinova, E.; Vorakso, I.; Zhavoronkova, K.; Antonov, A. Bimetallic gold-copper nanoparticles in the catalytic reaction of deuterium-hydrogen exchange: A synergistic effect. Int. J. Hydrogen Energy 2022, 47, 4759–4765. [Google Scholar] [CrossRef]
d, nm | SH, m2 g−1 | logKsp,ave, Molecules s−1 cm−2 | EaHT, kJ mol−1 | EaLT, kJ mol−1 |
---|---|---|---|---|
0.7 ± 0.2 | 0.11 ± 0.01 | 14.37 | 9.6 ± 2.1 | 0.16 ± 0.39 |
0.9 ± 0.3 | 0.09 ± 0.01 | 14.27 | 14.3 ± 1.1 | 0.05 ± 0.18 |
1.0 ± 0.3 | 0.13 ± 0.02 | 14.12 | 10.8 ± 1.7 | −0.9 ± 0.6 |
1.1 ± 0.3 | 0.13 ± 0.02 | 14.15 | 9.6 ± 1.7 | −0.76 ± 0.58 |
4.6 ± 0.8 | 0.11 ± 0.02 | 13.1 | 8.5 ± 1.9 | −0.69 ± 0.92 |
7.4 ± 1.1 | 0.12 ± 0.03 | 12.75 | 12.5 ± 2.8 | 1.1 ± 0.6 |
14.4 ± 2.2 | 0.10 ± 0.01 | 12.19 | 23.4 ± 8.8 | 1.7 ± 0.6 |
19.4 ± 4.2 | 0.08 ± 0.02 | 11.95 | 34.4 ± 7.8 | 2.1 ± 0.1 |
20.5 ± 4.5 | 0.09 ± 0.02 | 11.96 | 35.7 ± 11.3 | 1.8 ± 0.3 |
28.3 ± 3.1 | 0.08 ± 0.02 | 11.93 | 42.1 ± 9.3 | 1.5 ± 0.4 |
40.1 ± 5.4 | 0.07 ± 0.01 | 11.48 | 36 ± 13.3 | 2.0 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abkhalimov, E.V.; Ershov, B.G. Difference in the Catalytic Activity of Atoms in the Corners and at the Edges of Gold Nanoparticles: Hydrogen Isotope Exchange Reaction. Int. J. Mol. Sci. 2024, 25, 12022. https://doi.org/10.3390/ijms252212022
Abkhalimov EV, Ershov BG. Difference in the Catalytic Activity of Atoms in the Corners and at the Edges of Gold Nanoparticles: Hydrogen Isotope Exchange Reaction. International Journal of Molecular Sciences. 2024; 25(22):12022. https://doi.org/10.3390/ijms252212022
Chicago/Turabian StyleAbkhalimov, Evgeny V., and Boris G. Ershov. 2024. "Difference in the Catalytic Activity of Atoms in the Corners and at the Edges of Gold Nanoparticles: Hydrogen Isotope Exchange Reaction" International Journal of Molecular Sciences 25, no. 22: 12022. https://doi.org/10.3390/ijms252212022
APA StyleAbkhalimov, E. V., & Ershov, B. G. (2024). Difference in the Catalytic Activity of Atoms in the Corners and at the Edges of Gold Nanoparticles: Hydrogen Isotope Exchange Reaction. International Journal of Molecular Sciences, 25(22), 12022. https://doi.org/10.3390/ijms252212022