Comprehensive Characterization of Anti-HLA and Non-HLA Antibodies in Patients on Kidney Transplant Waiting List and Evaluation of Their Impact on Alloimmunization Risk and Dialysis Treatment
Abstract
:1. Introduction
2. Results
2.1. Presence of Anti-HLA Antibodies in the Study Ppulation
2.2. Specificities of IgG Anti-HLA Antibodies in the Studied Population
2.3. Specificities of IgG Non-HLA Antibodies in the Studied Population
2.4. Association of IgG Non-HLA Antibodies with Previous Alloimmunization Events
2.5. Association of IgG Non-HLA Antibodies with the Method and Duration of Dialysis Treatment
3. Discussion
3.1. Characterization of Anti-HLA Antibodies in the Studied Population
3.2. Specificities of Non-HLA IgG Antibodies in the Studied Population
3.3. Correlation Between IgG Anti-HLA and IgG Non-HLA Antibodies
3.4. Association of Anti-HLA and Non-HLA Antibodies with Previous Alloimmunization Events
4. Materials and Methods
4.1. Participants
- Age > 18 years.
- Serum samples had been tested at least twice per year using the CDC method and solid-phase assay at CHC Rijeka.
- Available data on prior alloimmunization events.
- Were tested fewer than twice per year, or only partially tested (e.g., not using all methods).
- Were under the age of 18.
- Lacked relevant patient history data.
- Had been partially tested at another center.
- Had died during 2022.
4.2. Testing Methods
4.2.1. Complement-Dependent Lymphocytotoxicity
4.2.2. Solid-Phase Assays
Serum Testing for IgG Anti-HLA Antibodies by Solid-Phase Assays
Serum Testing for IgG Non-HLA Antibodies by the Solid-Phase Assay
4.3. Statistical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Živčić-Ćosić, S.; Trobonjača, Z. Immunobiology of kidney transplantation and mechanisms of immunosuppressive drugs. [Croatian] Imunobiologija transplantacije bubrega i mehanizmi djelovanja imunosupresivnih lijekova. Med. Flum. 2020, 56, 418–430. [Google Scholar] [CrossRef]
- Barker, D.J.; Maccari, G.; Georgiou, X.; Cooper, M.A.; Flicek, P.; Robinson, J.; Marsh, S.G.E. The IPD-IMGT/HLA Database. Nucleic Acids Res. 2023, 51, D1053–D1060. [Google Scholar] [CrossRef]
- Lobashevsky, A.L. Methodological aspects of anti-human leukocyte antigen antibody analysis in solid organ transplantation. World J. Transplant. 2014, 4, 153–167. [Google Scholar] [CrossRef]
- Santarsiero, D.; Aiello, S. The Complement System in Kidney Transplantation. Cells 2023, 12, 791. [Google Scholar] [CrossRef]
- Anwar, I.J.; Jackson, A.M.; Locke, J.E.; Kwun, J. Editorial: Sensitization and Desensitization in Organ Transplantation. Front. Immunol. 2021, 12, 784472. [Google Scholar] [CrossRef]
- Heidt, S.; Haasnoot, G.W.; van der Linden-van Oevelen, M.J.H.; Claas, F.H.J. Highly Sensitized Patients Are Well Served by Receiving a Compatible Organ Offer Based on Acceptable Mismatches. Front. Immunol. 2021, 12, 687254. [Google Scholar] [CrossRef]
- Bray, R.A.; Nickerson, P.W.; Kerman, R.H.; Gebel, H.M. Evolution of HLA antibody detection: Technology emulating biology. Immunol. Res. 2004, 29, 41–54. [Google Scholar] [CrossRef]
- Trpkov, K.; Campbell, P.; Pazderka, F.; Cockfield, S.; Solez, K.; Halloran, P.F. Pathologic features of acute renal allograft rejection associated with donor-specific antibody: Analysis using the Banff grading schema. Transplantation 1996, 61, 1586–1592. [Google Scholar] [CrossRef]
- Karuppan, S.S.; Ohlman, S.; Möller, E. The occurrence of cytotoxic and non-complement-fixing antibodies in the crossmatch serum of patients with early acute rejection episodes. Transplantation 1992, 54, 839–844. [Google Scholar] [CrossRef]
- Karpinski, M.; Rush, D.; Jeffery, J.; Exner, M.; Regele, H.; Dancea, S.; Pochinco, D.; Birk, P.; Nickerson, P. Flow cytometric crossmatching in primary renal transplant recipients with a negative anti-human globulin enhanced cytotoxicity crossmatch. J. Am. Soc. Nephrol. 2001, 12, 2807–2814. [Google Scholar] [CrossRef]
- Biglarnia, A.R.; Huber-Lang, M.; Mohlin, C.; Ekdahl, K.N.; Nilsson, B. The multifaceted role of complement in kidney transplantation. Nat. Rev. Nephrol. 2018, 14, 767–781. [Google Scholar] [CrossRef]
- Ugurlar, D.; Howes, S.C.; de Kreuk, B.J.; Koning, R.I.; de Jong, R.N.; Beurskens, F.J.; Schuurman, J.; Koster, A.J.; Sharp, T.H.; Parren, P.W. Structures of C1-IgG1 provide insights into how danger pattern recognition activates complement. Science 2018, 359, 794–797. [Google Scholar] [CrossRef]
- El-Awar, N.; Terasaki, P.I.; Nguyen, A.; Sasaki, N.; Morales-Buenrostro, L.E.; Saji, H.; Maruya, E.; Poli, F. Epitopes of human leukocyte antigen class I antibodies found in sera of normal healthy males and cord blood. Hum. Immunol. 2009, 70, 844–853. [Google Scholar] [CrossRef]
- Bentall, A.; Cornell, L.D.; Gloor, J.M.; Park, W.D.; Gandhi, M.J.; Winters, J.L.; Chedid, M.F.; Dean, P.G.; Stegall, M.D. Five-Year Outcomes in Living Donor Kidney Transplants with a Positive Crossmatch. Am. J. Transplant. 2012, 13, 76–85. [Google Scholar] [CrossRef]
- Morath, C.; Döhler, B.; Kälble, F.; Pego da Silva, L.; Echterdiek, F.; Schwenger, V.; Živčić-Ćosić, S.; Katalinić, N.; Kuypers, D.; Benöhr, P.; et al. Pre-transplant HLA Antibodies and Delayed Graft Function in the Current Era of Kidney Transplantation. Front. Immunol. 2020, 11, 1886. [Google Scholar] [CrossRef]
- Cicciarelli, J.; Helstab, K.; Mendez, R. Flow cytometry PRA, a new test that is highly correlated with graft survival. Clin. Transpl. 1992, 6 (Suppl. S1), 159–164. [Google Scholar] [CrossRef]
- Qi, R.; Qin, W. Role of complement system in kidney transplantation: Stepping from animal models to clinical application. Front. Immunol. 2022, 13, 811696. [Google Scholar] [CrossRef]
- Senev, A.; Coemans, M.; Lerut, E.; Van Sandt, V.; Daniëls, L.; Kuypers, D.; Sprangers, B.; Emonds, M.P.; Naesens, M. Histological picture of antibody-mediated rejection without donor-specific anti-HLA antibodies: Clinical presentation and implications for outcome. Am. J. Transplant. 2019, 19, 763–780. [Google Scholar] [CrossRef]
- Geneugelijk, K.; Wissing, J.; Koppenaal, D.; Niemann, M.; Spierings, E. Computational Approaches to Facilitate Epitope-Based HLA Matching in Solid Organ Transplantation. J. Immunol. Res. 2017, 2017, 9130879. [Google Scholar] [CrossRef]
- Lachmann, N.; Niemann, M.; Reinke, P.; Budde, K.; Schmidt, D.; Halleck, F.; Pruß, A.; Schönemann, C.; Spierings, E.; Staeck, O. Donor-Recipient Matching Based on Predicted Indirectly Recognizable HLA Epitopes Independently Predicts the Incidence of De Novo Donor-Specific HLA Antibodies Following Renal Transplantation. Am. J. Transplant. 2017, 17, 3076–3086. [Google Scholar] [CrossRef]
- Argani, H. Anti-HLA Antibody: The Role of Epitopes in Organ Transplantation. Exp. Clin. Transplant. 2019, 17, 38–42. [Google Scholar] [CrossRef]
- Lim, W.H.; Wong, G.; Heidt, S.; Claas, F.H.J. Novel aspects of epitope matching and practical application in kidney transplantation. Kidney Int. 2018, 93, 314–324. [Google Scholar] [CrossRef]
- Johnson, A.C.; Zhang, J.; Cliff Sullivan, H.; Wiebe, C.; Bray, R.; Gebel, H.; Larsen, C.P. hlaR: A rapid and reproducible tool to identify eplet mismatches between transplant donors and recipients. Hum. Immunol. 2022, 83, 248–255. [Google Scholar] [CrossRef]
- Lefaucheur, C.; Suberbielle-Boissel, C.; Hill, G.S.; Nochy, D.; Andrade, J.; Antoine, C.; Gautreau, C.; Charron, D.; Glotz, D. Clinical relevance of preformed HLA donor-specific antibodies in kidney transplantation. Am. J. Transplant. 2008, 8, 324–331. [Google Scholar] [CrossRef]
- Grafft, C.A.; Cornell, L.D.; Gloor, J.M.; Cosio, F.G.; Gandhi, M.J.; Dean, P.G.; Stegall, M.D.; Amer, H. Antibody-mediated rejection following transplantation from an HLA-identical sibling. Nephrol. Dial. Transplant. 2010, 25, 307–310. [Google Scholar] [CrossRef]
- Opelz, G.; Study, C.T. Non-HLA transplantation immunity revealed by lymphocytotoxic antibodies. Lancet 2005, 365, 1570–1576. [Google Scholar] [CrossRef]
- Lammerts, R.G.M.; Altulea, D.; Hepkema, B.G.; Sanders, J.S.; van den Born, J.; Berger, S.P. Antigen and Cell-Based Assays for the Detection of Non-HLA Antibodies. Front. Immunol. 2022, 13, 864671. [Google Scholar] [CrossRef]
- Kardol-Hoefnagel, T.; Otten, H.G. A Comprehensive overview of the clinical relevance and treatment options for antibody-mediated rejection associated with Non-HLA Antibodies. Transplantation 2021, 105, 1459–1470. [Google Scholar] [CrossRef]
- Sorohan, B.M.; Baston, C.; Tacu, D.; Bucșa, C.; Țincu, C.; Vizireanu, P.; Sinescu, I.; Constantinescu, I. Non-HLA Antibodies in Kidney Transplantation: Immunity and Genetic Insights. Biomedicines 2022, 10, 1506. [Google Scholar] [CrossRef]
- Fichtner, A.; Süsal, C.; Höcker, B.; Rieger, S.; Waldherr, R.; Westhoff, J.H.; Sander, A.; Dragun, D.; Tönshoff, B. Association of non-HLA antibodies against endothelial targets and donor-specific HLA antibodies with antibody-mediated rejection and graft function in pediatric kidney transplant recipients. Pediatr. Nephrol. 2021, 36, 2473–2484. [Google Scholar] [CrossRef]
- Lichtenstein, B.; Zheng, Y.; Gjertson, D.; Ferbas, K.G.; Rimoin, A.W.; Yang, O.O.; Aldrovandi, G.M.; Schaenman, J.M.; Reed, E.F.; Fulcher, J.A. Vascular and Non-HLA autoantibody profiles in hospitalized patients with COVID-19. Front. Immunol. 2023, 14, 1197326. [Google Scholar] [CrossRef] [PubMed]
- Michielsen, L.A.; van Zuilen, A.D.; Krebber, M.M.; Verhaar, M.C.; Otten, H.G. Clinical value of non-HLA antibodies in kidney transplantation: Still an enigma? Transplant. Rev. 2016, 30, 195–202. [Google Scholar] [CrossRef]
- Sanchez-Mazas, A.; Nunes, J.M.; Middleton, D.; Sauter, J.; Buhler, S.; McCabe, A.; Hofmann, J.; Baier, D.M.; Schmidt, A.H.; Nicoloso, G.; et al. Common and well-documented HLA alleles over all of Europe and within European sub-regions: A catalogue from the European Federation for Immunogenetics. HLA 2017, 89, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Cruz, E.; Alecsandru, D.; Sánchez Ramón, S. Mechanisms of action of immune globulin. Clin. Exp. Immunol. 2009, 157, 446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Reinsmoen, N.L. Impact of Non-Human Leukocyte Antigen-Specific Antibodies in Kidney and Heart Transplantation. Front. Immunol. 2017, 8, 434. [Google Scholar] [CrossRef]
- Kamburova, E.G.; Kardol-Hoefnagel, T.; Wisse, B.W.; Joosten, I.; Allebes, W.A.; van der Meer, A.; Hilbrands, L.B.; Baas, M.C.; Spierings, E.; Hack, C.E.; et al. Development and Validation of a Multiplex Non-HLA Antibody Assay for the Screening of Kidney Transplant Recipients. Front. Immunol. 2018, 9, 3002. [Google Scholar] [CrossRef] [PubMed]
- Senev, A.; Ray, B.; Lerut, E.; Hariharan, J.; Heylen, C.; Kuypers, D.; Sprangers, B.; Emonds, M.P.; Naesens, M. The Pre-Transplant Non-HLA antibody burden associates with the development of histology of antibody-mediated rejection after kidney transplantation. Front. Immunol. 2022, 13, 809059. [Google Scholar] [CrossRef] [PubMed]
- Debyser, T.; Callemeyn, J.; Coemans, M.; Kerkhofs, J.; Koshy, P.; Kuypers, D.; Senev, A.; Tambur, A.R.; Van Loon, E.; Wellekens, K.; et al. Sensitive HLA antibody testing and the risk of antibody-mediated rejection and graft failure. HLA 2024, 103, e15586. [Google Scholar] [CrossRef]
- Bhutani, S.; Harris, S.; Carr, M.; Russell-Lowe, M.; Worthington, J.; Wu, H.H.L.; Chinnadurai, R.; Poulton, K. Evaluating the Clinical Relevance of Antibodies against Non-Human Leukocyte Antigen in Kidney Transplantation. Antibodies 2024, 13, 44. [Google Scholar] [CrossRef]
- Tambur, A.R.; Bestard, O.; Campbell, P.; Chong, A.S.; Crespo, M.; Ford, M.L.; Gebel, H.M.; Heidt, S.; Hickey, M.; Jackson, A.; et al. Sensitization in transplantation: Assessment of risk 2022 working group meeting report. Am. J. Transplant. 2023, 23, 133–149. [Google Scholar] [CrossRef]
- Maskalan, M. HLA Allele and Haplotype Diversity in Croatia and Its Impact on Donor Selection in Hematopoietic Stem Cell Transplantation. [Croatian] Raznolikost Alela i Haplotipova HLA u Hrvatskoj i Utjecaj na Odabir Davatelja u Transplantaciji Krvotvornih Matičnih Stanica. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2020. Available online: https://urn.nsk.hr/urn:nbn:hr:217:345817 (accessed on 22 September 2024).
- Grubic, Z.; Zunec, R.; Cecuk-Jelicic, E.; Kerhin-Brkljacic, V.; Kastelan, A. Polymorphism of HLA-A, -B, -DRB1, -DQA1, and -DQB1 haplotypes in a Croatian population. Eur. J. Immunogenet. 2000, 27, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Reinsmoen, N.L.; Lai, C.H.; Heidecke, H.; Haas, M.; Cao, K.; Ong, G.; Naim, M.; Wang, Q.; Mirocha, J.; Kahwaji, J.; et al. Anti-angiotensin type 1 receptor antibodies associated with antibody mediated rejection in donor HLA antibody negative patients. Transplantation 2010, 90, 1473–1477. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, H.W., Jr.; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010, 125 (Suppl. S2), S41–S52. [Google Scholar] [CrossRef] [PubMed]
- Katalinić, N.; Marčetić, T.; Balen, S. Pre-transplant monitoring of HLA antibodies performed by Luminex-based assays. [Croatian] Praćenje protutijela HLA prije transplantacije bubrega Luminex tehnikom. Med. Flum. 2020, 56, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Doss, S.A.; Jacob, S.; Valson, A.T.; Alexander, S.; David, V.G.; Varughese, S.; Daniel, D. Association of prior sensitizing events with anti-human leukocyte antigen antibodies: An analysis of renal transplant recipients in a tertiary care centre in South India. Transfus. Apher. Sci. 2020, 59, 102808. [Google Scholar] [CrossRef]
- Pandey, P.; Pande, A.; Mandal, S.; Devra, A.K.; Sinha, V.K.; Bhatt, A.P.; Mishra, S. Effects of different sensitization events on HLA alloimmunization in renal transplant cases; a retrospective observation in 1066 cases. Transpl. Immunol. 2022, 75, 101680. [Google Scholar] [CrossRef]
- Grubić, Z.; Maskalan, M.; Štingl Janković, K.; Burek Kamenarić, M.; Žunec, R. Mapping the Human Leukocyte Antigen diversity among Croatian regions—Implication in transplantation. J. Immunol. Res. 2021, 6670960. [Google Scholar] [CrossRef]
- Grubic, Z. HLA allele and haplotype diversity in the Croatian population: State of the art. HLA 2018, 92, 51–56. [Google Scholar] [CrossRef]
- Tokić, S.; Žižkova, V.; Štefanić, M.; Glavaš-Obrovac, L.; Marczi, S.; Samardžija, M.; Sikorova, K.; Petrek, M. HLA-A, -B, -C, -DRB1, -DQA1, and -DQB1 allele and haplotype frequencies defined by next generation sequencing in a population of East Croatia blood donors. Sci. Rep. 2020, 10, 5513. [Google Scholar] [CrossRef]
- Idica, A.; Sasaki, N.; Hardy, S.; Terasaki, P. Unexpected frequencies of HLA antibody specificities present in sera of multitransfused patients. Clin. Transpl. 2006, 139–159. [Google Scholar]
- Fu, Q.; Wang, C.; Zeng, W.; Liu, L. The correlation of HLA allele frequencies and HLA antibodies in sensitized kidney transplantation candidates. Transplant. Proc. 2012, 44, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Kljajić, J. The Distribution of HLA Genes and HLA Sensitization Among Patients on Cadaveric Kidney Transplantation Waiting List. [Croatian] Raspodjela Gena HLA i Senzibilizacija HLA kod Bolesnika na Listi Čekanja za Kadaveričnu Transplantaciju Bubrega. Master’s Thesis, University of Zagreb, Zagreb, Croatia, 2018. Available online: https://urn.nsk.hr/urn:nbn:hr:217:278482 (accessed on 22 September 2024).
- Merle, N.S.; Noe, R.; Halbwachs-Mecarelli, L.; Fremeaux-Bacchi, V.; Roumenina, L.T. Complement system part II: Role in immunity. Front. Immunol. 2015, 6, 257. [Google Scholar] [CrossRef]
- Delville, M.; Lamarthée, B.; Pagie, S.; See, S.B.; Rabant, M.; Burger, C.; Gatault, P.; Giral, M.; Thaunat, O.; Arzouk, N.; et al. Early Acute Microvascular Kidney Transplant Rejection in the Absence of Anti-HLA Antibodies Is Associated with Preformed IgG Antibodies against Diverse Glomerular Endothelial Cell Antigens. J. Am. Soc. Nephrol. 2019, 30, 692–709. [Google Scholar] [CrossRef] [PubMed]
- Reindl-Schwaighofer, R.; Heinzel, A.; Gualdoni, G.A.; Mesnard, L.; Claas, F.H.J.; Oberbauer, R. Novel Insights Into Non-HLA Alloimmunity in Kidney Transplantation. Transplant. Int. 2020, 33, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Filippone, E.J.; Farber, J.L. Histologic Antibody-Mediated Kidney Allograft Rejection in the Absence of Donor-Specific HLA Antibodies. Transplantation 2021, 105, e181–e190. [Google Scholar] [CrossRef]
- Callemeyn, J.; Lamarthée, B.; Koenig, A.; Koshy, P.; Thaunat, O.; Naesens, M. Allorecognition and the spectrum of kidney transplant rejection. Kidney Int. 2022, 101, 692–710. [Google Scholar] [CrossRef]
- Steers, N.J.; Li, Y.; Drace, Z.; D’Addario, J.A.; Fischman, C.; Liu, L.; Xu, K.; Na, Y.J.; Neugut, Y.D.; Zhang, J.Y.; et al. Genomic Mismatch at LIMS1 Locus and Kidney Allograft Rejection. N. Engl. J. Med. 2019, 380, 1918–1928. [Google Scholar] [CrossRef]
- Pineda, S.; Sigdel, T.K.; Chen, J.; Jackson, A.M.; Sirota, M.; Sarwal, M.M. Novel Non Histocompatibility Antigen Mismatched Variants Improve the Ability to Predict Antibody-Mediated Rejection Risk in Kidney Transplant. Front. Immunol. 2017, 8, 1687. [Google Scholar] [CrossRef]
- Reindl-Schwaighofer, R.; Heinzel, A.; Kainz, A.; van Setten, J.; Jelencsics, K.; Hu, K.; Loza, B.-L.; Kammer, M.; Heinze, G.; Hruba, P.; et al. Contribution of non-HLA incompatibility between donor and recipient to kidney allograft survival: Genome-wide analysis in a prospective cohort. Lancet 2019, 393, 910–917. [Google Scholar] [CrossRef]
- Lefaucheur, C.; Viglietti, D.; Bouatou, Y.; Philippe, A.; Pievani, D.; Aubert, O.; Duong Van Huyen, J.P.; Taupin, J.L.; Glotz, D.; Legendre, C.; et al. Non-HLA agonistic anti-angiotensin II type 1 receptor antibodies induce a distinctive phenotype of antibody-mediated rejection in kidney transplant recipients. Kidney Int. 2019, 96, 189–201. [Google Scholar] [CrossRef]
- Senev, A.; Otten, H.G.; Kamburova, E.G.; Callemeyn, J.; Lerut, E.; van Sandt, V.; Kuypers, D.; Emonds, M.P.; Naesens, M. Antibodies Against ARHGDIB and ARHGDIB Gene Expression Associate with Kidney Allograft Outcome. Transplantation 2020, 104, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.; Lee, H.J.; Kim, I.Y.; Choi, B.H.; Kim, H. Establishment of Reference Values for Non-HLA Antibodies in Patients with End-stage Renal Disease. Ann. Lab. Med. 2023, 43, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Burek Kamenaric, M.; Jukic, L.; Stingl Jankovic, K.; Maskalan, M.; Grubic, Z.; Martinez, N.; Zunec, R. Non-HLA antibodies in highly sensitized recipients on the kidney waiting list. HLA 2024, 103 (Suppl. S1), 89. [Google Scholar] [CrossRef]
- Butler, C.L.; Hickey, M.J.; Jiang, N.; Zheng, Y.; Gjertson, D.; Zhang, Q.; Rao, P.; Fishbein, G.A.; Cadeiras, M.; Deng, M.C.; et al. Discovery of non-HLA antibodies associated with cardiac allograft rejection and development and validation of a non-HLA antigen multiplex panel: From bench to bedside. Am. J. Transplant. 2020, 20, 2768–2780. [Google Scholar] [CrossRef] [PubMed]
- Murtas, C.; Bruschi, M.; Candiano, G.; Moroni, G.; Magistroni, R.; Magnano, A.; Bruno, F.; Radice, A.; Furci, L.; Argentiero, L.; et al. Coexistence of different circulating anti-podocyte antibodies in membranous nephropathy. Clin. J. Am. Soc. Nephrol. 2012, 7, 1394–1400. [Google Scholar] [CrossRef]
- Cho, J.; Mosher, D.F. Role of fibronectin assembly in platelet thrombus formation. J. Thromb. Haemost. 2006, 4, 1461–1469. [Google Scholar] [CrossRef]
- Martin, P.; Duran, A.; Minguet, S.; Gaspar, M.L.; Diaz-Meco, M.T.; Rennert, P.; Leitges, M.; Moscat, J. Role of zeta PKC in B-cell signaling and function. EMBO J. 2002, 21, 4049–4057. [Google Scholar] [CrossRef]
- Sutherland, S.M.; Li, L.; Sigdel, T.K.; Wadia, P.P.; Miklos, D.B.; Butte, A.J.; Sarwal, M.M. Protein microarrays identify antibodies to protein kinase Czeta that are associated with a greater risk of allograft loss in pediatric renal transplant recipients. Kidney Int. 2009, 76, 1277–1283. [Google Scholar] [CrossRef]
- Angaswamy, N.; Klein, C.; Tiriveedhi, V.; Gaut, J.; Anwar, S.; Rossi, A.; Phelan, D.; Wellen, J.R.; Shenoy, S.; Chapman, W.C.; et al. Immune responses to collagen-IV and fibronectin in renal transplant recipients with transplant glomerulopathy. Am. J. Transplant. 2014, 14, 685–693. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, L. Inflammation and cardiovascular disease associated with hemodialysis for end-stage renal disease. Front. Pharmacol. 2022, 13. [Google Scholar] [CrossRef]
- Simtong, P.; Sudwilai, Y.; Cheunta, S.; Leelayuwat, C.; Romphruk, A. Prevalence of leucocyte antibodies in non-transfused male and female platelet apheresis donors. Transfus. Med. 2021, 31, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Morales-Buenrostro, L.E.; Terasaki, P.I.; Marino-Vázquez, L.A.; Lee, J.H.; El-Awar, N.; Alberú, J. “Natural” human leukocyte antigen antibodies found in nonalloimmunized healthy males. Transplantation 2008, 86, 1111–1115. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, J.; Nakajima, F.; Kamada, H.; Tadokoro, K.; Nagai, T.; Satake, M. Males without apparent alloimmunization could have HLA antibodies that recognize target HLA specificities expressed on cells. HLA 2017, 89, 285–292. [Google Scholar] [CrossRef]
- Fernández, M.M.; Guan, R.; Swaminathan, C.P.; Malchiodi, E.L.; Mariuzza, R.A. Crystal structure of staphylococcal enterotoxin I (SEI) in complex with a human major histocompatibility complex class II molecule. J. Biol. Chem. 2006, 281, 25356–25364. [Google Scholar] [CrossRef]
- Sriskandan, S.; Faulkner, L.; Hopkins, P. Streptococcus pyogenes: Insight into the function of the streptococcal superantigens. Int. J. Biochem. Cell Biol. 2007, 39, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Rodey, G.E.; Fuller, T.C. Public epitopes and the antigenic structure of the HLA molecules. Crit. Rev. Immunol. 1987, 7, 229–267. [Google Scholar]
- Sorohan, B.M.; Ismail, G.; Leca, N.; Tacu, D.; Obriscă, B.; Constantinescu, I.; Baston, C.; Sinescu, I. Angiotensin II type 1 receptor antibodies in kidney transplantation: An evidence-based comprehensive review. Transplant. Rev. 2020, 34, 100573. [Google Scholar] [CrossRef]
- Cardinal, H.; Dieudé, M.; Hébert, M.J. The Emerging Importance of Non-HLA Autoantibodies in Kidney Transplant Complications. J. Am. Soc. Nephrol. 2016, 28, 400–406. [Google Scholar] [CrossRef]
Antigen HLA-A | Number of Participants with Specific Anti-HLA Antibody | Frequency of Specific Anti-HLA Antibody in Study Population | Frequency of Antigen-Encoding HLA Alleles in Croatian Population [41] | Comparison of Frequencies * (p-Value) |
---|---|---|---|---|
A1 | 5 | 6.8% | 13.18% | 0.1031 |
A2 | 11 | 14.9% | 30.26% | 0.0040 |
A3 | 5 | 6.8% | 11.48% | 0.2041 |
A11 | 8 | 10.8% | 7.21% | 0.2340 |
A23 | 9 | 12.2% | 2.30% | <0.00001 |
A24 | 10 | 13.5% | 11.79% | 0.6455 |
A25 | 9 | 12.2% | 2.87% | <0.00001 |
A26 | 6 | 8.1% | 4.98% | 0.2187 |
A29 | 4 | 5.4% | 0.75% | <0.00001 |
A30 | 5 | 6.8% | 1.69% | 0.0009 |
A31 | 6 | 8.1% | 2.16% | 0.0005 |
A32 | 9 | 12.2% | 4.29% | 0.0009 |
A33 | 4 | 5.4% | 2.06% | 0.0444 |
A34 | 6 | 8.1% | 0.02% | <0.00001 |
A36 | 5 | 6.8% | 0.00% | N/A |
A43 | 6 | 8.1% | 0.00% | N/A |
A66 | 6 | 8.1% | 0.40% | <0.00001 |
A68 | 8 | 10.8% | 4.46% | 0.0088 |
A69 | 9 | 12.2% | 0.07% | <0.00001 |
A74 | 4 | 5.4% | 0.01% | <0.00001 |
A80 | 4 | 5.4% | 0.07% | <0.00001 |
Antigen HLA-B | Number of Participants with Specific Anti-HLA Antibody | Frequency of Specific Anti-HLA Antibody in Study Population | Frequency of Antigen-Encoding HLA Allelesin Croatian Population [41] | Comparison of Frequencies * (p-Value) |
---|---|---|---|---|
B7 | 7 | 9.5% | 7.31% | 0.4777 |
B8 | 5 | 6.8% | 8.06% | 0.6818 |
B13 | 10 | 13.5% | 3.38% | <0.00001 |
B14 | 9 | 12.2% | 2.71% | <0.00001 |
B15 | 50 | 67.6% | 4.88% | <0.00001 |
B18 | 4 | 5.4% | 8.67% | 0.3173 |
B27 | 9 | 12.2% | 6.30% | 0.0394 |
B35 | 5 | 6.8% | 13.42% | 0.0930 |
B37 | 9 | 12.2% | 0.91% | <0.00001 |
B38 | 10 | 13.5% | 4.66% | 0.0003 |
B39 | 6 | 8.1% | 2.96% | 0.0096 |
B40 | 15 | 20.3% | 3.85% | <0.00001 |
B41 | 5 | 6.8% | 1.02% | <0.00001 |
B42 | 6 | 8.1% | 0.00% | N/A |
B44 | 8 | 10.8% | 9.73% | 0.7566 |
B45 | 4 | 5.4% | 0.18% | 0.0209 |
B46 | 4 | 5.4% | 0.01% | <0.00001 |
B47 | 8 | 10.8% | 0.14% | <0.00001 |
B48 | 4 | 5.4% | 0.16% | 0.0099 |
B49 | 10 | 13.5% | 1.74% | <0.00001 |
B50 | 6 | 8.1% | 1.26% | <0.00001 |
B51 | 10 | 13.5% | 10.63% | 0.4237 |
B52 | 9 | 12.2% | 1.45% | <0.00001 |
B53 | 9 | 12.2% | 0.40% | <0.00001 |
B54 | 6 | 8.1% | 0.03% | <0.00001 |
B55 | 6 | 8.1% | 1.35% | <0.00001 |
B56 | 9 | 12.2% | 1.11% | <0.00001 |
B57 | 14 | 18.9% | 2.54% | <0.00001 |
B58 | 13 | 17.6% | 1.16% | <0.00001 |
B59 | 11 | 14.9% | 0.00% | N/A |
B67 | 6 | 8.1% | 0.00% | N/A |
B73 | 6 | 8.1% | 0.05% | <0.00001 |
B78 | 7 | 9.5% | 0.00% | N/A |
B81 | 5 | 6.8% | 0.00% | N/A |
B82 | 4 | 5.4% | 0.00% | N/A |
Antigen HLA-C | Number of Participants with Specific Anti-HLA Antibody | Frequency of Specific Anti-HLA Antibody in Study Population | Frequency of Antigen-Encoding HLA Allelesin Croatian Population [41] | Comparison of Frequencies * (p-Value) |
---|---|---|---|---|
Cw1 | 4 | 5.4% | 4.83% | 0.8181 |
Cw2 | 2 | 2.7% | 9.19% | 0.0536 |
Cw3 | 9 | 12.2% | 7.52% | 0.1310 |
Cw4 | 4 | 5.4% | 14.87% | 0.0226 |
Cw5 | 1 | 1.4% | 4.11% | 0.2340 |
Cw6 | 3 | 4.1% | 8.59% | 0.1645 |
Cw7 | 5 | 6.8% | 25.65% | 0.0002 |
Cw8 | 4 | 5.4% | 2.83% | 0.1835 |
Cw12 | 5 | 6.8% | 13.54% | 0.0891 |
Cw14 | 3 | 4.1% | 2.41% | 0.3576 |
Cw15 | 4 | 5.4% | 3.86% | 0.4902 |
Cw16 | 3 | 4.1% | 1.71% | 0.1236 |
Cw17 | 2 | 2.7% | 0.88% | 0.0969 |
Cw18 | 2 | 2.7% | 0.05% | <0.00001 |
Antigen HLA-DR | Number of Participants with Specific Anti-HLA Antibody | Frequency of Specific Anti-HLA Antibody in Study Population | Frequency of Antigen-Encoding HLA Alleles in Croatian Population [41] | Comparison of Frequencies * (p-Value) |
---|---|---|---|---|
DR1 | 6 | 8.1% | 10.92% | 0.4413 |
DR3 | 5 | 6.8% | 10.61% | 0.2846 |
DR4 | 3 | 4.1% | 9.34% | 0.1188 |
DR7 | 6 | 8.1% | 8.96% | 0.7949 |
DR8 | 6 | 8.1% | 3.37% | 0.0251 |
DR9 | 4 | 5.4% | 0.24% | <0.00001 |
DR10 | 2 | 2.7% | 0.96% | 0.1285 |
DR11 | 5 | 6.8% | 17.42% | 0.0160 |
DR12 | 4 | 5.4% | 1.56% | 0.0083 |
DR13 | 6 | 8.1% | 11.84% | 0.3222 |
DR14 | 5 | 6.8% | 3.89% | 0.2041 |
DR15 | 8 | 10.8% | 10.19% | 0.9045 |
DR16 | 7 | 9.5% | 10.74% | 0.7263 |
DR51 | 6 | 8.1% | 0.00% | N/A |
DR52 | 5 | 6.8% | 0.00% | N/A |
Antigen HLA-DQ | Number of Participants with Specific Anti-HLA Antibody | Frequency of Specific Anti-HLA Antibody in Study Population | Frequency of Antigen-Encoding HLA Alleles in Croatian Population [42] | Comparison of Frequencies * (p-Value) |
---|---|---|---|---|
DQ2 | 1 | 1.4% | 15.7% | 0.0011 |
DQ4 | 7 | 9.5% | 3.6% | 0.0615 |
DQ5 | 5 | 6.8% | 28.5% | 0.0001 |
DQ6 | 8 | 10.8% | 22.4% | 0.0300 |
DQ7 | 4 | 5.4% | 22.1% | 0.0014 |
DQ8 | 8 | 10.8% | 4.8% | 0.0658 |
DQ9 | 7 | 9.5% | 2.9% | 0.0193 |
IgG Non-HLA Antibody | Number of Sera of the Study Participants Positive for Antibody, N | Frequency of Each Antibody Among Study Participants, % (N = 74) | Percentage of Total Number of IgG Non-HLA Antibodies, % (N = 605) | IgG Non-HLA Antibody | Number of Sera of the Study Participants Positive for Antibody, N | Frequency of Each Antibody Among Study Participants, % (N = 74) | Percentage of Total Number of IgG Non-HLA Antibodies, % (N = 605) | IgG Non-HLA Antibody | Number of Sera of the Study Participants Positive for Antibody, N | Frequency of Each Antibody Among Study Participants, % (N = 74) | Percentage of Total Number of IgG Non-HLA Antibodies, % (N = 605) |
---|---|---|---|---|---|---|---|---|---|---|---|
ENO1 | 21 | 28.4% | 3.5% | TUBULIN | 12 | 16.2% | 2.0% | CXCL11 | 8 | 10.8% | 1.3% |
FIBR1 | 17 | 23.0% | 2.8% | EMCN | 11 | 14.9% | 1.8% | NCL | 8 | 10.8% | 1.3% |
PRKCZ | 17 | 23.0% | 2.8% | FAS | 11 | 14.9% | 1.8% | SNRPB2 | 8 | 10.8% | 1.3% |
P2RY11 | 16 | 21.6% | 2.6% | LMNA | 11 | 14.9% | 1.8% | ACTIN | 7 | 9.5% | 1.2% |
THYRO | 15 | 20.3% | 2.5% | ROR1 | 11 | 14.9% | 1.8% | ARHGDIB | 7 | 9.5% | 1.2% |
ATP5B | 14 | 18.9% | 2.3% | SSB | 11 | 14.9% | 1.8% | COL V | 7 | 9.5% | 1.2% |
COL III | 14 | 18.9% | 2.3% | APOL2 | 10 | 13.5% | 1.7% | SNRPN | 7 | 9.5% | 1.2% |
DEXI | 14 | 18.9% | 2.3% | CD40 | 10 | 13.5% | 1.7% | VCL | 7 | 9.5% | 1.2% |
ICAM1 | 14 | 18.9% | 2.3% | GDNF | 10 | 13.5% | 1.7% | VIM | 7 | 9.5% | 1.2% |
STAT6 | 14 | 18.9% | 2.3% | IFNG | 10 | 13.5% | 1.7% | AGRN | 6 | 8.1% | 1.0% |
COL VI | 13 | 17.6% | 2.1% | IL8 | 10 | 13.5% | 1.7% | IL21 | 6 | 8.1% | 1.0% |
CSF2 | 13 | 17.6% | 2.1% | KRT8 | 10 | 13.5% | 1.7% | PRKCH | 6 | 8.1% | 1.0% |
GSTT1 | 13 | 17.6% | 2.1% | LPHN1 | 10 | 13.5% | 1.7% | SHC3 | 6 | 8.1% | 1.0% |
HSPB1 | 13 | 17.6% | 2.1% | PLA2R1 | 10 | 13.5% | 1.7% | TRANSF | 6 | 8.1% | 1.0% |
MYOSIN | 13 | 17.6% | 2.1% | KRT18 | 9 | 12.2% | 1.5% | TUBA1B | 6 | 8.1% | 1.0% |
TUBB | 13 | 17.6% | 2.1% | LGALS3 | 9 | 12.2% | 1.5% | CCP | 5 | 6.8% | 0.8% |
FLRT2 | 12 | 16.2% | 2.0% | PECR | 9 | 12.2% | 1.5% | HARS | 5 | 6.8% | 0.8% |
GAPDH | 12 | 16.2% | 2.0% | COL I | 8 | 10.8% | 1.3% | VEGFA | 5 | 6.8% | 0.8% |
LGALS8 | 12 | 16.2% | 2.0% | COL II | 8 | 10.8% | 1.3% | CGB5 | 4 | 5.4% | 0.7% |
PTPRO | 12 | 16.2% | 2.0% | COL IV | 8 | 10.8% | 1.3% | CXCL9 | 4 | 5.4% | 0.7% |
TOTAL IgG non-HLA antibodies | 605 | - | 100.0% |
Number of Distinct IgG Non-HLA Antibody Specificities | 0 | 1 | 2–10 | 11–30 | 31–50 | 51–60 | Total |
---|---|---|---|---|---|---|---|
Number of participants | 6 | 10 | 43 | 10 | 2 | 3 | 74 |
Frequency (%) | 8.1 | 13.5 | 58.1 | 13.5 | 2.7 | 4.1 | 100.0 |
Participants (N = 74) | IgG Non-HLA Antibody | Total, N (%) | |
---|---|---|---|
Negative | Positive | ||
IgG anti-HLA negative, N (%) | 3 (4.1%) | 39 (52.7%) | 42 (56.8%) |
IgG anti-HLA positive, N (%) | 3 (4.1%) | 29 (39.2%) | 32 (43.2%) |
Total, N (%) | 6 (8.1%) | 68 (91.9%) | 74 (100.0%) |
Groups of Antibodies (IgG Anti-HLA, IgG Non-HLA) | Comparison of Groups by Mann–Whitney U Test | |
---|---|---|
z-Value | p-Value | |
IgG anti-HLA class I vs. IgG non-HLA antibodies | 4.39 | p < 0.001 |
IgG anti-HLA class II vs. IgG non-HLA antibodies | 6.68 | p < 0.001 |
Number of Distinct Specificities Detected | Median (IQR) | Mean (SD) |
---|---|---|
IgG anti-HLA class I | 0.00 (8.00) | 7.27 (14.61) |
IgG anti-HLA class II | 0.00 (1.00) | 1.62 (3.54) |
IgG non-HLA (60 antigen panel) | 3.00 (6.00) | 8.18 (13.07) |
Groups of Participants Stratified by the Exposure to Alloimmunization Events | IgG Anti-HLA Positive Sera, N = 32 | IgG Anti-HLA Negative Sera, N = 42 | IgG Non-HLA Positive Sera, N = 68 | IgG Non-HLA Negative Sera, N = 6 |
---|---|---|---|---|
Participants not exposed to any alloimmunization events (N = 19) | 2 (10.5%) | 17 (89.5%) | 18 (94.7%) | 1 (5.3%) |
p < 0.00001 | p < 0.00001 | |||
Participants exposed to alloimmunization via transfusion (N = 49) | 25 (51.0%) | 24 (49.0%) | 44 (89.8%) | 5 (10.2%) |
p = 0.8415 | p < 0.00001 | |||
Participants exposed to alloimmunization through pregnancy (N = 18) | 13 (72.2%) | 5 (27.8%) | 16 (88.9%) | 2 (11.1%) |
p = 0.0076 | p < 0.00001 | |||
Participants exposed to alloimmunization through both transfusion and pregnancy (N = 14) | 10 (71.4%) | 4 (28.6%) | 12 (85.7%) | 2 (14.3%) |
p = 0.0232 | p = 0.0002 | |||
Participants exposed to alloimmunization through a previous kidney transplant, i.e., HLA antigens (N = 18) | 16 (88.9%) | 2 (11.1%) | 16 (88.9%) | 2 (11.1%) |
p < 0.00001 | p < 0.00001 |
Transfusion of Blood Products in Patient History | Yes | No |
---|---|---|
Number of participants, N (%) | 49 (66.2%) | 25 (33.8%) |
Mean of distinct IgG non-HLA antibody specificities | 8.80 | 6.96 |
Median of distinct IgG non-HLA antibody specificities | 3 | 3 |
Minimum | 0 | 0 |
Maximum | 59 | 57 |
Comparison of mean values of distinct IgG non-HLA antibody specificities in both groups * | p = 0.683 |
Pregnancy in Patient History | Yes | No |
---|---|---|
Number of female participants, N (%) | 18 (75.0%) | 6 (25.0%) |
Mean of distinct IgG non-HLA antibody specificities | 7.89 | 19.71 |
Median of distinct IgG non-HLA antibody specificities | 2.5 | 15 |
Minimum | 0 | 2 |
Maximum | 58 | 57 |
Comparison of mean values of distinct IgG non-HLA antibody specificities in both groups * | p = 0.083 |
Alloimmunization Event | Correlation Coefficient * | Significance Level |
---|---|---|
Pregnancy | 0.01 | p > 0.05 |
Transfusion | −0.07 | p > 0.05 |
Transplantation | 0.011 | p > 0.05 |
Dialysis Procedure in Patient History | No Dialysis Treatment | Peritoneal Dialysis | Hemodialysis |
---|---|---|---|
Number of participants, N (%) | 14 (18.9%) | 15 (20.3%) | 45 (60.8%) |
Mean of distinct IgG non-HLA specificities | 10.4 | 12.2 | 6.2 |
Median of distinct IgG non-HLA specificities | 4.5 | 3 | 3 |
Minimum | 0 | 0 | 0 |
Maximum | 59 | 57 | 58 |
Comparison: no dialysis vs. peritoneal dialysis | p = 0.965 | ||
Comparison: no dialysis vs. hemodialysis | p = 0.306 | ||
Comparison: peritoneal dialysis vs. hemodialysis | p = 0.326 | ||
Comparison of all three groups | p = 0.445 |
Dialysis Type | Duration of Dialysis Treatment (in Months) | Total, N % | Mean (Months) | Median (Months) | Minimum (Months) | Maximum (Months) | ||||
---|---|---|---|---|---|---|---|---|---|---|
1–6 | 7–12 | 13–24 | 25–60 | 61–102 | ||||||
Participants on peritoneal dialysis, N (%) | 2 (3.3%) | 3 (5.0%) | 5 (8.3%) | 3 (5.0%) | 2 (3.3%) | 15 (25.0%) | 27.1 | 19 | 5 | 79 |
Participants on hemodialysis, N (%) | 5 (8.3%) | 2 (3.3%) | 8 (13.3%) | 23 (38.3%) | 7 (11.7%) | 45 (75.0%) | 38.1 | 34 | 1 | 102 |
Total, N (%) | 7 (11.7%) | 5 (8.3%) | 13 (21.7%) | 26 (43.3%) | 9 (15.0%) | 60 (100.0%) | 35.4 | 30 | 1 | 102 |
Comparison (p-Values) * | Duration of Dialysis Treatment (in Months) | 1–6 Months | 7–12 Months | 13–24 Months | 25–60 Months | 61–102 Months | All Participants, N = 60 |
---|---|---|---|---|---|---|---|
Type of dialysis treatment | Hemodialysis (N = 45) | 1.000 | 1.000 | 0.598 | 0.983 | 0.782 | 0.602 |
Peritoneal dialysis (N = 15) | 0.417 | 0.718 | 1000 | 0.532 | 0.567 | 0.830 | |
All participants receiving dialysis treatment (N = 60) | 0.855 | 0.745 | 0.851 | 0.944 | 0.576 | 0.827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mujić Franić, A.; Lilić, M.; Katalinić, N.; Glavaš-Obrovac, L. Comprehensive Characterization of Anti-HLA and Non-HLA Antibodies in Patients on Kidney Transplant Waiting List and Evaluation of Their Impact on Alloimmunization Risk and Dialysis Treatment. Int. J. Mol. Sci. 2024, 25, 12103. https://doi.org/10.3390/ijms252212103
Mujić Franić A, Lilić M, Katalinić N, Glavaš-Obrovac L. Comprehensive Characterization of Anti-HLA and Non-HLA Antibodies in Patients on Kidney Transplant Waiting List and Evaluation of Their Impact on Alloimmunization Risk and Dialysis Treatment. International Journal of Molecular Sciences. 2024; 25(22):12103. https://doi.org/10.3390/ijms252212103
Chicago/Turabian StyleMujić Franić, Aida, Marko Lilić, Nataša Katalinić, and Ljubica Glavaš-Obrovac. 2024. "Comprehensive Characterization of Anti-HLA and Non-HLA Antibodies in Patients on Kidney Transplant Waiting List and Evaluation of Their Impact on Alloimmunization Risk and Dialysis Treatment" International Journal of Molecular Sciences 25, no. 22: 12103. https://doi.org/10.3390/ijms252212103
APA StyleMujić Franić, A., Lilić, M., Katalinić, N., & Glavaš-Obrovac, L. (2024). Comprehensive Characterization of Anti-HLA and Non-HLA Antibodies in Patients on Kidney Transplant Waiting List and Evaluation of Their Impact on Alloimmunization Risk and Dialysis Treatment. International Journal of Molecular Sciences, 25(22), 12103. https://doi.org/10.3390/ijms252212103