Comparison Length of Linker in Compound for Nuclear Medicine Targeting Fibroblast Activation Protein as Molecular Target
Abstract
:1. Introduction
2. Results
2.1. FAPα Expression in 3D Sphere Culture Cells
2.2. Evaluation of Astatine Labels for FAPI Compounds
2.3. Intracellular Uptake of FAPI1 and FAPI2
2.4. Distribution of Tissues in Tumor Bearing Mice
2.5. Distribution in BxPC3 Tumors
2.6. Excretion of FAPI1 and FAPI2 from Animals
2.7. Anti-Tumor Effects of 211At-FAPI1 and 211At-FAPI2
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Manufacturing of Astatine-211(211At) and Labeling
4.3. In Vitro Evaluation
4.3.1. Cell Culture
4.3.2. Evaluation of FAPα Expression
4.3.3. Uptake Assay Under 3D Culture Condition
4.4. In Vivo Experiment
4.4.1. Distribution of Tissues
4.4.2. Comparison of Anti-Tumor Effect Between 211At-FAPI1 and 211At-FAPI2
4.5. Confirmation by Chemical Experiment
TLC Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, T.; Huang, Y.; Simms, A.E.; Mazur, A. Fibroblast activation protein α is a key modulator of the microenvironment in various pathologies. Int. Rev. Cell Mol. Biol. 2012, 297, 83–116. [Google Scholar] [PubMed]
- Hamson, E.J.; Keane, F.M.; Tholen, S.; Schilling, O.; Gorrell, M.D. Understanding fibroblast activation protein (FAP): Substrates, activities, expression and targeting for cancer therapy. Proteom. Clin. Appl. 2014, 8, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, A.A.; Weiner, L.M. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 2020, 39, 783–803. [Google Scholar] [CrossRef] [PubMed]
- Kaneda-Nakashima, K.; Shirakami, Y.; Kadonaga, Y.; Watabe, T. Fibroblast Activation Protein Inhibitor Theranostics: Preclinical Considerations. PET Clin. 2023, 18, 397–408. [Google Scholar] [CrossRef]
- Jansen, K.; Heirbaut, L.; Verkerk, R.; Cheng, J.D.; Joossens, J.; Cos, P.; Maes, L.; Lambeir, A.-M.; De Meester, I.; Augustyns, K.; et al. Extended Structure-Activity Relationship and Pharmacokinetic Investigation of (4-Quinolinoyl)glycyl-2-cyanopyrrolidine Inhibitors of Fibroblast Activation Protein (FAP). J. Med. Chem. 2014, 57, 3053–3074. [Google Scholar] [CrossRef]
- Giesel, F.L.; Heussel, C.P.; Lindner, T.; Röhrich, M.; Rathke, H.; Kauczor, H.-U.; Debus, J.; Haberkorn, U.; Kratochwil, C. FAPI-PET/CT improves staging in a lung cancer patient with cerebral metastasis. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1754–1755. [Google Scholar] [CrossRef]
- Koerber, S.A.; Staudinger, F.; Kratochwil, C.; Adeberg, S.; Haefner, M.F.; Ungerechts, G.; Rathke, H.; Winter, E.; Lindner, T.; Syed, M.; et al. The Role of 68Ga-FAPI PET/CT for Patients with Malignancies of the Lower Gastrointestinal Tract: First Clinical Experience. J. Nucl. Med. 2020, 61, 1331–1336. [Google Scholar] [CrossRef]
- Aso, A.; Nabetani, H.; Matsuura, Y.; Kadonaga, Y.; Shirakami, Y.; Watabe, T.; Yoshiya, T.; Mochizuki, M.; Ooe, K.; Kawakami, A.; et al. Evaluation of Astatine-211-Labeled Fibroblast Activation Protein Inhibitor (FAPI): Comparison of Different Linkers with Polyethylene Glycol and Piperazine. Int. J. Mol. Sci. 2023, 24, 8701. [Google Scholar] [CrossRef]
- Shirakami, Y.; Watabe, T.; Obata, H.; Kaneda, K.; Ooe, K.; Liu, Y.; Teramoto, T.; Toyoshima, A.; Shinohara, A.; Shimosegawa, E.; et al. Synthesis of [211At]4-astato-L-phenylalanine by dihydroxyboryl-astatine substitution reaction in aqueous solution. Sci. Rep. 2021, 11, 12982. [Google Scholar] [CrossRef]
- Wang, Y.; Sato, N.; Komori, Y.; Yokokita, T.; Mori, D.; Usuda, S.; Haba, H. Present status of 211At production at the RIKEN AVF cyclotron. RIKEN Accel. Progress. Rep. 2019, 53, 192. [Google Scholar]
- Tansi, F.L.; Schrepper, A.; Schwarzer, M.; Teichgräber, U.; Hilger, I. Identifying the Morphological and Molecular Features of a Cell-Based Orthotopic Pancreatic Cancer Mouse Model during Growth over Time. Int. J. Mol. Sci. 2024, 25, 5619. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.J.; Oh, M.S.; Lee, D.W.; Kuh, H.J. Multiplex quantitative analysis of stroma-mediated cancer cell invasion, matrix remodeling, and drug response in a 3D co-culture model of pancreatic tumor spheroids and stellate cells. J. Exp. Clin. Cancer Res. 2019, 38, 258. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Niu, B.; Fang, J.; Pang, Y.; Li, S.; Xie, C.; Sun, L.; Zhang, X.; Guo, Z.; Lin, Q.; et al. Synthesis, Preclinical Evaluation, and a Pilot Clinical PET Imaging Study of (68)Ga-Labeled FAPI Dimer. J. Nucl. Med. 2022, 63, 862–868. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Zhao, L.; Fang, J.; Chen, J.; Meng, L.; Sun, L.; Wu, H.; Guo, Z.; Lin, Q.; Chen, H. Development of FAPI Tetramers to Improve Tumor Uptake and Efficacy of FAPI Radioligand Therapy. J. Nucl. Med. 2023, 64, 1449–1455. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Guo, J.; Han, X.; Wu, W.; Yang, R.; Zhang, J.; Shao, G. Synthesis and Preclinical Evaluation of a Novel FAPI-04 Dimer for Cancer Theranostics. Mol. Pharm. 2023, 20, 2402–2414. [Google Scholar] [CrossRef]
- Millul, J.; Koepke, L.; Haridas, G.R.; Sparrer, K.M.J.; Mansi, R.; Fani, M. Head-to-head comparison of different classes of FAP radioligands designed to increase tumor residence time: Monomer, dimer, albumin binders, and small molecules vs peptides. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3050–3061. [Google Scholar] [CrossRef]
- Tan, Y.; Li, J.; Zhao, T.; Zhou, M.; Liu, K.; Xiang, S.; Tang, Y.; Jakobsson, V.; Xu, P.; Chen, X.; et al. Clinical translation of a novel FAPI dimer [(68)Ga]Ga-LNC1013. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 2761–2773. [Google Scholar] [CrossRef]
- Qin, C.; Song, Y.; Cai, W.; Lan, X. Dimeric FAPI with potential for tumor theranostics. Am. J. Nucl. Med. Mol. Imaging 2021, 11, 537–541. [Google Scholar]
- Yadav, M.P.; Ballal, S.; Martin, M.; Roesch, F.; Satapathy, S.; Moon, E.S.; Tripathi, M.; Gogia, A.; Bal, C. Therapeutic potential of [(177)Lu]Lu-DOTAGA-FAPi dimers in metastatic breast cancer patients with limited treatment options: Efficacy and safety assessment. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 805–819. [Google Scholar] [CrossRef]
- Younis, M.H.; Lan, X.; Cai, W. PET with a (68)Ga-Labeled FAPI Dimer: Moving Toward Theranostics. J. Nucl. Med. 2022, 63, 860–861. [Google Scholar] [CrossRef]
- Martin, M.; Ballal, S.; Yadav, M.P.; Bal, C.; Van Rymenant, Y.; De Loose, J.; Verhulst, E.; De Meester, I.; Van Der Veken, P.; Roesch, F. Novel Generation of FAP Inhibitor-Based Homodimers for Improved Application in Radiotheranostics. Cancers 2023, 15, 1889. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Pang, Y.; Fu, K.; Guo, Z.; Sun, L.; Lin, Q.; Chen, H. Development of Fibroblast Activation Protein Inhibitor-Based Dimeric Radiotracers with Improved Tumor Retention and Anti-tumor Efficacy. Mol. Pharm. 2022, 19, 3640–3651. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Fang, J.; Zhang, J.; Li, H.; Xia, D.; Zhuang, R.; Chen, H.; Huang, J.; Li, Y.; Zhang, X.; et al. Rational Design and Comparison of Novel (99m)Tc-Labeled FAPI Dimers for Visualization of Multiple Tumor Types. J. Med. Chem. 2024, 67, 8460–8472. [Google Scholar] [CrossRef]
- Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. A systematic analysis of peptide linker length and liposomal polyethylene glycol coating on cellular uptake of peptide-targeted liposomes. ACS Nano. 2013, 7, 2935–2947. [Google Scholar] [CrossRef]
- Lim, C.; Shin, Y.; Kang, K.; Husni, P.; Lee, D.; Lee, S.; Choi, H.G.; Lee, E.S.; Youn, Y.S.; Oh, K.T. Effects of PEG-Linker Chain Length of Folate-Linked Liposomal Formulations on Targeting Ability and Anti-tumor Activity of Encapsulated Drug. Int. J. Nanomed. 2023, 18, 1615–1630. [Google Scholar] [CrossRef]
- Bayly, R.J.; Weigel, H. Self-Decomposition of Compounds Labeled with Radioactive Isotopes. Nature 1960, 188, 384–387. [Google Scholar] [CrossRef]
3 | hr | 24 | hr | |
---|---|---|---|---|
(%ID/g) | FAPI1 | FAPI2 | FAPI1 | FAPI2 |
Tumor | 1.24 ± 0.43 | 2.75 ± 0.35 | 2.39 ± 0.87 | 3.61 ± 0.63 |
Gall bladder | 17.54 ± 16.23 | 38.05 ± 9.39 | 2.04 ± 0.65 | 3.23 ± 2.35 |
Liver | 0.99 ± 0.10 | 1.67 ± 0.17 * | 0.43 ± 0.02 | 0.93 ± 0.13 * |
Kidney | 1.66 ± 0.13 | 2.88 ± 0.18 ** | 1.09 ± 0.04 | 1.96 ± 0.11 ** |
Colon | 2.66 ± 1.19 | 5.05 ± 1.19 | 0.87 ± 0.07 | 1.58 ± 0.07 ** |
Colon contents | 11.12 ± 42.88 | 51.77 ± 20.60 | 3.98 ± 1.04 | 21.62 ± 9.44 |
Small intestine | 3.05 ± 0.77 | 4.08 ± 0.31 | 0.80 ± 0.04 | 3.85 ± 2.24 |
Small intestine contents | 25.50 ± 9.34 | 14.56 ± 3.14 | 1.44 ± 0.29 | 6.54 ± 3.76 |
Cecum | 7.43 ± 0.41 | 13.79 ± 1.91 * | 1.18 ± 0.07 | 4.23 ± 2.09 |
Cecum contents | 53.13 ± 8.64 | 50.06 ± 7.52 | 3.02 ± 0.61 | 11.08 ± 4.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hisada, K.; Kaneda-Nakashima, K.; Shirakami, Y.; Kadonaga, Y.; Saito, A.; Watabe, T.; Feng, S.; Ooe, K.; Yin, X.; Haba, H.; et al. Comparison Length of Linker in Compound for Nuclear Medicine Targeting Fibroblast Activation Protein as Molecular Target. Int. J. Mol. Sci. 2024, 25, 12296. https://doi.org/10.3390/ijms252212296
Hisada K, Kaneda-Nakashima K, Shirakami Y, Kadonaga Y, Saito A, Watabe T, Feng S, Ooe K, Yin X, Haba H, et al. Comparison Length of Linker in Compound for Nuclear Medicine Targeting Fibroblast Activation Protein as Molecular Target. International Journal of Molecular Sciences. 2024; 25(22):12296. https://doi.org/10.3390/ijms252212296
Chicago/Turabian StyleHisada, Kentaro, Kazuko Kaneda-Nakashima, Yoshifumi Shirakami, Yuichiro Kadonaga, Atsuko Saito, Tadashi Watabe, Sifan Feng, Kazuhiro Ooe, Xiaojie Yin, Hiromitsu Haba, and et al. 2024. "Comparison Length of Linker in Compound for Nuclear Medicine Targeting Fibroblast Activation Protein as Molecular Target" International Journal of Molecular Sciences 25, no. 22: 12296. https://doi.org/10.3390/ijms252212296
APA StyleHisada, K., Kaneda-Nakashima, K., Shirakami, Y., Kadonaga, Y., Saito, A., Watabe, T., Feng, S., Ooe, K., Yin, X., Haba, H., Murakami, M., Toyoshima, A., Cardinale, J., Giesel, F. L., & Fukase, K. (2024). Comparison Length of Linker in Compound for Nuclear Medicine Targeting Fibroblast Activation Protein as Molecular Target. International Journal of Molecular Sciences, 25(22), 12296. https://doi.org/10.3390/ijms252212296