The Remarkable Diversity of Vertebrate Bitter Taste Receptors: Recent Advances in Genomic and Functional Studies
Abstract
:1. Introduction
2. T2R Receptors: Phylogeny and Evolutionary Origins
3. Evolution of Tas2r Gene Repertoires
3.1. Cartilaginous, Ray-Finned, and Lobe-Finned Fish
3.2. Amphibians
3.3. Birds and Reptiles
3.4. Mammals
4. Functional Evolution of T2Rs
4.1. Ancestral Functions of T2Rs
4.2. Relationships Between the Tuning Breadth and Repertoire Size of T2Rs
4.3. Functional Diversity of Orthologous T2Rs Among Species
5. Intraspecific Variation in T2Rs and Agonist Sensitivity
6. Extra-Oral Expressions of T2Rs in Vertebrates
6.1. Diverse Functions of Extra-Oral T2Rs
6.2. Interspecific Differences of Extra-Oral T2Rs
7. Structural Features of T2Rs in the GPCR Superfamily
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
T2R | Taste receptor type 2 (bitter taste receptor) protein |
Tas2r/TAS2R | Taste receptor type 2 (bitter taste receptor) gene |
T1R | Taste receptor type 1 (sweet/umami taste receptor) protein |
Tas1r/TAS1R | Taste receptor type 1 (sweet/umami taste receptor) gene |
OR | Olfactory receptor (protein in upright or gene in italic) |
TAAR | Trace amine-associated receptor (protein in upright or gene in italic) |
V1R | Vomeronasal receptor type 1 (protein in upright or gene in italic) |
V2R | Vomeronasal receptor type 2 (protein in upright or gene in italic) |
GPCR | G protein-coupled receptor |
TM | Transmembrane |
QSM | Quorum-sensing molecule |
EEC | Enteroendocrine cell |
References
- Adler, E.; Hoon, M.A.; Mueller, K.L.; Chandrashekar, J.; Ryba, N.J.P.; Zuker, C.S. A Novel Family of Mammalian Taste Receptors. Cell 2000, 100, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, J.; Mueller, K.L.; Hoon, M.A.; Adler, E.; Feng, L.; Guo, W.; Zuker, C.S.; Ryba, N.J.P. T2Rs Function as Bitter Taste Receptors. Cell 2000, 100, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Matsunami, H.; Montmayeur, J.-P.; Buck, L.B. A Family of Candidate Taste Receptors in Human and Mouse. Nature 2000, 404, 601–604. [Google Scholar] [CrossRef]
- Nissim, I.; Dagan-Wiener, A.; Niv, M.Y. The Taste of Toxicity: A Quantitative Analysis of Bitter and Toxic Molecules. IUBMB Life 2017, 69, 938–946. [Google Scholar] [CrossRef]
- Meyerhof, W.; Batram, C.; Kuhn, C.; Brockhoff, A.; Chudoba, E.; Bufe, B.; Appendino, G.; Behrens, M. The Molecular Receptive Ranges of Human TAS2R Bitter Taste Receptors. Chem. Senses 2010, 35, 157–170. [Google Scholar] [CrossRef]
- Lossow, K.; Hübner, S.; Roudnitzky, N.; Slack, J.P.; Pollastro, F.; Behrens, M.; Meyerhof, W. Comprehensive Analysis of Mouse Bitter Taste Receptors Reveals Different Molecular Receptive Ranges for Orthologous Receptors in Mice and Humans. J. Biol. Chem. 2016, 291, 15358–15377. [Google Scholar] [CrossRef]
- Kowatschew, D.; Korsching, S.I. Lamprey Possess Both V1R and V2R Olfactory Receptors, but Only V1Rs Are Expressed in Olfactory Sensory Neurons. Chem. Senses 2022, 47, bjac007. [Google Scholar] [CrossRef]
- Policarpo, M.; Baldwin, M.W.; Casane, D.; Salzburger, W. Diversity and Evolution of the Vertebrate Chemoreceptor Gene Repertoire. Nat. Commun. 2024, 15, 1421. [Google Scholar] [CrossRef]
- Churcher, A.M.; Taylor, J.S. Amphioxus (Branchiostoma Floridae) Has Orthologs of Vertebrate Odorant Receptors. BMC Evol. Biol. 2009, 9, 242. [Google Scholar] [CrossRef]
- Niimura, Y. On the Origin and Evolution of Vertebrate Olfactory Receptor Genes: Comparative Genome Analysis Among 23 Chordate Species. Genome Biol. Evol. 2009, 1, 34–44. [Google Scholar] [CrossRef]
- Churcher, A.M.; Taylor, J.S. The Antiquity of Chordate Odorant Receptors Is Revealed by the Discovery of Orthologs in the Cnidarian Nematostella Vectensis. Genome Biol. Evol. 2011, 3, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Niimura, Y. Olfactory Receptor Multigene Family in Vertebrates: From the Viewpoint of Evolutionary Genomics. Curr. Genom. 2012, 13, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Marquet, N.; Cardoso, J.C.R.; Louro, B.; Fernandes, S.A.; Silva, S.C.; Canário, A.V.M. Holothurians Have a Reduced GPCR and Odorant Receptor-like Repertoire Compared to Other Echinoderms. Sci. Rep. 2020, 10, 3348. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.R.; Kocot, K.M.; Baughman, K.W.; Fernandez-Valverde, S.L.; Gauthier, M.E.A.; Hatleberg, W.L.; Krishnan, A.; McDougall, C.; Motti, C.A.; Shoguchi, E.; et al. The Crown-of-Thorns Starfish Genome as a Guide for Biocontrol of This Coral Reef Pest. Nature 2017, 544, 231–234. [Google Scholar] [CrossRef]
- Krishnan, A.; Almén, M.S.; Fredriksson, R.; Schiöth, H.B. Remarkable Similarities between the Hemichordate (Saccoglossus kowalevskii) and Vertebrate GPCR Repertoire. Gene 2013, 526, 122–133. [Google Scholar] [CrossRef]
- Sharma, K.; Syed, A.S.; Ferrando, S.; Mazan, S.; Korsching, S.I. The Chemosensory Receptor Repertoire of a True Shark Is Dominated by a Single Olfactory Receptor Family. Genome Biol. Evol. 2019, 11, 398–405. [Google Scholar] [CrossRef]
- Nishihara, H.; Toda, Y.; Kuramoto, T.; Kamohara, K.; Goto, A.; Hoshino, K.; Okada, S.; Kuraku, S.; Okabe, M.; Ishimaru, Y. A Vertebrate-Wide Catalogue of T1R Receptors Reveals Diversity in Taste Perception. Nat. Ecol. Evol. 2024, 8, 111–120. [Google Scholar] [CrossRef]
- Baldwin, M.W.; Ko, M.-C. Functional Evolution of Vertebrate Sensory Receptors. Horm. Behav. 2020, 124, 104771. [Google Scholar] [CrossRef]
- Behrens, M.; Lang, T.; Korsching, S.I. A Singular Shark Bitter Taste Receptor Provides Insights into the Evolution of Bitter Taste Perception. Proc. Natl. Acad. Sci. USA 2023, 120, e2310347120. [Google Scholar] [CrossRef]
- Itoigawa, A.; Toda, Y.; Kuraku, S.; Ishimaru, Y. Evolutionary Origins of Bitter Taste Receptors in Jawed Vertebrates. Curr. Biol. 2024, 34, R271–R272. [Google Scholar] [CrossRef]
- Barreiro-Iglesias, A.; Anadón, R.; Rodicio, M.C. The Gustatory System of Lampreys. Brain Behav. Evol. 2010, 75, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Cvicek, V.; Iii, W.A.G.; Abrol, R. Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications. PLOS Comput. Biol. 2016, 12, e1004805. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Zhang, Z.; Hu, Y. The Repertoire of G-Protein-Coupled Receptors in Xenopus Tropicalis. BMC Genom. 2009, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- Gloriam, D.E.; Fredriksson, R.; Schiöth, H.B. The G Protein-Coupled Receptor Subset of the Rat Genome. BMC Genom. 2007, 8, 338. [Google Scholar] [CrossRef]
- Pándy-Szekeres, G.; Caroli, J.; Mamyrbekov, A.; Kermani, A.A.; Keserű, G.M.; Kooistra, A.J.; Gloriam, D.E. GPCRdb in 2023: State-Specific Structure Models Using AlphaFold2 and New Ligand Resources. Nucleic Acids Res 2023, 51, D395–D402. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J. Diet Shapes the Evolution of the Vertebrate Bitter Taste Receptor Gene Repertoire. Mol. Biol. Evol. 2014, 31, 303–309. [Google Scholar] [CrossRef]
- Behrens, M.; Korsching, S.I.; Meyerhof, W. Tuning Properties of Avian and Frog Bitter Taste Receptors Dynamically Fit Gene Repertoire Sizes. Mol. Biol. Evol. 2014, 31, 3216–3227. [Google Scholar] [CrossRef]
- Behrens, M.; Di Pizio, A.; Redel, U.; Meyerhof, W.; Korsching, S.I. At the Root of T2R Gene Evolution: Recognition Profiles of Coelacanth and Zebrafish Bitter Receptors. Genome Biol. Evol. 2021, 13, evaa264. [Google Scholar] [CrossRef]
- Hayakawa, T.; Suzuki-Hashido, N.; Matsui, A.; Go, Y. Frequent Expansions of the Bitter Taste Receptor Gene Repertoire during Evolution of Mammals in the Euarchontoglires Clade. Mol. Biol. Evol. 2014, 31, 2018–2031. [Google Scholar] [CrossRef]
- Jiao, H.; Wang, Y.; Zhang, L.; Jiang, P.; Zhao, H. Lineage-Specific Duplication and Adaptive Evolution of Bitter Taste Receptor Genes in Bats. Mol. Ecol. 2018, 27, 4475–4488. [Google Scholar] [CrossRef]
- Johnson, R.N.; O’Meally, D.; Chen, Z.; Etherington, G.J.; Ho, S.Y.W.; Nash, W.J.; Grueber, C.E.; Cheng, Y.; Whittington, C.M.; Dennison, S.; et al. Adaptation and Conservation Insights from the Koala Genome. Nat. Genet. 2018, 50, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, G.; Hailer, F.; Orozco-terWengel, P.; Tan, X.; Tian, J.; Yan, Z.; Zhang, B.; Li, M. Dietary Specialization Drives Multiple Independent Losses and Gains in the Bitter Taste Gene Repertoire of Laurasiatherian Mammals. Front. Zool. 2016, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Wu, X.; Chen, J.; Zhang, H.; Zhong, H.; Wei, Q.; Yan, J.; Li, H.; Liu, G.; Sha, W.; et al. The Repertoire of Bitter Taste Receptor Genes in Canids. Amino Acids 2017, 49, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Zhang, H.; Wu, X.; Chen, J.; Zhong, H.; Wei, Q.; Zhao, C.; Yan, J.; Chen, Y.; Tang, X.; et al. The Repertoire of Bitter Taste Receptor Genes in Ovalentaria Fish. Environ. Biol. Fish. 2017, 100, 1489–1496. [Google Scholar] [CrossRef]
- Zhong, H.; Shang, S.; Zhang, H.; Chen, J.; Wu, X.; Zhang, H. Characterization and Phylogeny of Bitter Taste Receptor Genes (Tas2r) in Squamata. Genetica 2019, 147, 131–139. [Google Scholar] [CrossRef]
- Shiriagin, V.; Korsching, S.I. Massive Expansion of Bitter Taste Receptors in Blind Cavefish, Astyanax Mexicanus. Chem. Senses 2019, 44, 23–32. [Google Scholar] [CrossRef]
- Syed, A.S.; Korsching, S.I. Positive Darwinian Selection in the Singularly Large Taste Receptor Gene Family of an ‘Ancient’ Fish, Latimeria Chalumnae. BMC Genom. 2014, 15, 650. [Google Scholar] [CrossRef]
- Picone, B.; Hesse, U.; Panji, S.; Van Heusden, P.; Jonas, M.; Christoffels, A. Taste and Odorant Receptors of the Coelacanth—A Gene Repertoire in Transition. J. Exp. Zool. B Mol. Dev. Evol. 2014, 322, 403–414. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, H. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes. Genome Biol. Evol. 2015, 7, 2705–2715. [Google Scholar] [CrossRef]
- Zhong, H.; Shang, S.; Wu, X.; Chen, J.; Zhu, W.; Yan, J.; Li, H.; Zhang, H. Genomic Evidence of Bitter Taste in Snakes and Phylogenetic Analysis of Bitter Taste Receptor Genes in Reptiles. PeerJ 2017, 5, e3708. [Google Scholar] [CrossRef]
- Zhong, H.; Huang, J.; Shang, S.; Yuan, B. Evolutionary Insights into Umami, Sweet, and Bitter Taste Receptors in Amphibians. Ecol. Evol. 2021, 11, 18011–18025. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Jiao, H.; Zou, D.; Li, Q.; Yuan, X.; Liao, W.; Jiang, P.; Zhao, H. Evolution of Bitter Receptor Genes and Ontogenetic Dietary Shift in a Frog. Proc. Natl. Acad. Sci. USA 2023, 120, e2218183120. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shearwin-Whyatt, L.; Li, J.; Song, Z.; Hayakawa, T.; Stevens, D.; Fenelon, J.C.; Peel, E.; Cheng, Y.; Pajpach, F.; et al. Platypus and Echidna Genomes Reveal Mammalian Biology and Evolution. Nature 2021, 592, 756–762. [Google Scholar] [CrossRef]
- Kishida, T.; Thewissen, J.; Hayakawa, T.; Imai, H.; Agata, K. Aquatic Adaptation and the Evolution of Smell and Taste in Whales. Zool. Lett. 2015, 1, 9. [Google Scholar] [CrossRef]
- Zhao, H.; Li, J.; Zhang, J. Molecular Evidence for the Loss of Three Basic Tastes in Penguins. Curr. Biol. 2015, 25, R141–R142. [Google Scholar] [CrossRef]
- Zhu, K.; Zhou, X.; Xu, S.; Sun, D.; Ren, W.; Zhou, K.; Yang, G. The Loss of Taste Genes in Cetaceans. BMC Evol. Biol. 2014, 14, 218. [Google Scholar] [CrossRef]
- Hou, M.; Akhtar, M.S.; Hayashi, M.; Ashino, R.; Matsumoto-Oda, A.; Hayakawa, T.; Ishida, T.; Melin, A.D.; Imai, H.; Kawamura, S. Reduction of Bitter Taste Receptor Gene Family in Folivorous Colobine Primates Relative to Omnivorous Cercopithecine Primates. Primates 2024, 65, 311–331. [Google Scholar] [CrossRef]
- Go, Y. Lineage-Specific Expansions and Contractions of the Bitter Taste Receptor Gene Repertoire in Vertebrates. Mol. Biol. Evol. 2006, 23, 964–972. [Google Scholar] [CrossRef]
- Feng, P.; Zheng, J.; Rossiter, S.J.; Wang, D.; Zhao, H. Massive Losses of Taste Receptor Genes in Toothed and Baleen Whales. Genome Biol. Evol. 2014, 6, 1254–1265. [Google Scholar] [CrossRef]
- Niimura, Y.; Biswa, B.B.; Kishida, T.; Toyoda, A.; Fujiwara, K.; Ito, M.; Touhara, K.; Inoue-Murayama, M.; Jenkins, S.H.; Adenyo, C.; et al. Synchronized Expansion and Contraction of Olfactory, Vomeronasal, and Taste Receptor Gene Families in Hystricomorph Rodents. Mol. Biol. Evol. 2024, 41, msae071. [Google Scholar] [CrossRef]
- Berning, D.; Gross, J.B. The Constructive Evolution of Taste in Astyanax Cavefish: A Review. Front. Ecol. Evol. 2023, 11, 1177532. [Google Scholar] [CrossRef]
- Berning, D.; Heerema, H.; Gross, J.B. The Spatiotemporal and Genetic Architecture of Extraoral Taste Buds in Astyanax Cavefish. Commun. Biol. 2024, 7, 951. [Google Scholar] [CrossRef] [PubMed]
- Barlow, L.A. The Biology of Amphibian Taste. In Amphibian Biology, Volume 3: Sensory Perception; Heatwole, H., Dawley, E.M., Eds.; Surrey Beatty & Sons Pty Ltd.: Chipping Norton, NSW, Australia, 1998; pp. 743–782. ISBN 0-949324-72-8. [Google Scholar]
- Peel, E.; Silver, L.; Brandies, P.; Hayakawa, T.; Belov, K.; Hogg, C.J.; Silver, L.; Brandies, P.; Hayakawa, T.; Belov, K.; et al. Genome Assembly of the Numbat (Myrmecobius fasciatus), the Only Termitivorous Marsupial. Gigabyte 2022, 2022, gigabyte47. [Google Scholar] [CrossRef]
- Hong, W.; Zhao, H. Vampire Bats Exhibit Evolutionary Reduction of Bitter Taste Receptor Genes Common to Other Bats. Proc. R. Soc. B 2014, 281, 20141079. [Google Scholar] [CrossRef]
- Lu, Q.; Jiao, H.; Wang, Y.; Norbu, N.; Zhao, H. Molecular Evolution and Deorphanization of Bitter Taste Receptors in a Vampire Bat. Integr. Zool. 2021, 16, 659–669. [Google Scholar] [CrossRef]
- Itoigawa, A.; Hayakawa, T.; Zhou, Y.; Manning, A.D.; Zhang, G.; Grutzner, F.; Imai, H. Functional Diversity and Evolution of Bitter Taste Receptors in Egg-Laying Mammals. Mol. Biol. Evol. 2022, 39, msac107. [Google Scholar] [CrossRef]
- Hughes, L.C.; Ortí, G.; Huang, Y.; Sun, Y.; Baldwin, C.C.; Thompson, A.W.; Arcila, D.; Betancur-R, R.; Li, C.; Becker, L.; et al. Comprehensive Phylogeny of Ray-Finned Fishes (Actinopterygii) Based on Transcriptomic and Genomic Data. Proc. Natl. Acad. Sci. USA 2018, 115, 6249–6254. [Google Scholar] [CrossRef]
- Stiller, J.; Feng, S.; Chowdhury, A.-A.; Rivas-González, I.; Duchêne, D.A.; Fang, Q.; Deng, Y.; Kozlov, A.; Stamatakis, A.; Claramunt, S.; et al. Complexity of Avian Evolution Revealed by Family-Level Genomes. Nature 2024, 629, 851–860. [Google Scholar] [CrossRef]
- Hime, P.M.; Lemmon, A.R.; Lemmon, E.C.M.; Prendini, E.; Brown, J.M.; Thomson, R.C.; Kratovil, J.D.; Noonan, B.P.; Pyron, R.A.; Peloso, P.L.V.; et al. Phylogenomics Reveals Ancient Gene Tree Discordance in the Amphibian Tree of Life. Syst. Biol. 2021, 70, 49–66. [Google Scholar] [CrossRef]
- Kumar, S.; Suleski, M.; Craig, J.M.; Kasprowicz, A.E.; Sanderford, M.; Li, M.; Stecher, G.; Hedges, S.B. TimeTree 5: An Expanded Resource for Species Divergence Times. Mol. Biol. Evol. 2022, 39, msac174. [Google Scholar] [CrossRef]
- Ziegler, F.; Steuer, A.; Di Pizio, A.; Behrens, M. Physiological Activation of Human and Mouse Bitter Taste Receptors by Bile Acids. Commun. Biol. 2023, 6, 612. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, S.; Ziegler, F.; Lang, T.; Steuer, A.; Di Pizio, A.; Behrens, M. Membrane-Bound Chemoreception of Bitter Bile Acids and Peptides Is Mediated by the Same Subset of Bitter Taste Receptors. Cell. Mol. Life Sci. 2024, 81, 217. [Google Scholar] [CrossRef]
- Lei, W.; Ravoninjohary, A.; Li, X.; Margolskee, R.F.; Reed, D.R.; Beauchamp, G.K.; Jiang, P. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus). PLoS ONE 2015, 10, e0139670. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, M.; Winnig, M.; Riva, I.; Dunlop, N.; Waller, D.; Klebansky, B.; Logan, D.W.; Briddon, S.J.; Holliday, N.D.; McGrane, S.J. Bitter Taste Sensitivity in Domestic Dogs (Canis familiaris) and Its Relevance to Bitter Deterrents of Ingestion. PLoS ONE 2022, 17, e0277607. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Kubozono, T.; Asaoka, R.; Toda, Y.; Ishimaru, Y. Expression Profiles and Functional Characterization of Common Carp (Cyprinus carpio) T2Rs. Biochem. Biophys. Rep. 2021, 28, 101123. [Google Scholar] [CrossRef]
- Kumar, P.; Redel, U.; Lang, T.; Korsching, S.I.; Behrens, M. Bitter Taste Receptors of the Zebra Finch (Taeniopygia guttata). Front. Physiol. 2023, 14, 1233711. [Google Scholar] [CrossRef]
- Wang, Y.; Jiao, H.; Jiang, P.; Zhao, H. Functional Divergence of Bitter Taste Receptors in a Nectar-Feeding Bird. Biol. Lett. 2019, 15, 20190461. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Hu, H.; Jiao, H.; Zhao, H. Genomic and Functional Insights into Dietary Diversification in New World Leaf-Nosed Bats (Phyllostomidae). J. Syst. Evol. 2024, 62, 928–941. [Google Scholar] [CrossRef]
- Ziegler, F.; Behrens, M. Bitter Taste Receptors of the Common Vampire Bat Are Functional and Show Conserved Responses to Metal Ions in Vitro. Proc. R. Soc. B 2021, 288, 20210418. [Google Scholar] [CrossRef]
- Wiener, A.; Shudler, M.; Levit, A.; Niv, M.Y. BitterDB: A Database of Bitter Compounds. Nucleic Acids Res. 2012, 40, D413–D419. [Google Scholar] [CrossRef]
- Dagan-Wiener, A.; Di Pizio, A.; Nissim, I.; Bahia, M.S.; Dubovski, N.; Margulis, E.; Niv, M.Y. BitterDB: Taste Ligands and Receptors Database in 2019. Nucleic Acids Res. 2019, 47, D1179–D1185. [Google Scholar] [CrossRef] [PubMed]
- Behrens, M.; Meyerhof, W. Vertebrate Bitter Taste Receptors: Keys for Survival in Changing Environments. J. Agric. Food Chem. 2018, 66, 2204–2213. [Google Scholar] [CrossRef] [PubMed]
- Imai, H.; Suzuki, N.; Ishimaru, Y.; Sakurai, T.; Yin, L.; Pan, W.; Abe, K.; Misaka, T.; Hirai, H. Functional Diversity of Bitter Taste Receptor TAS2R16 in Primates. Biol. Lett. 2012, 8, 652–656. [Google Scholar] [CrossRef]
- Yang, H.; Yang, S.; Fan, F.; Li, Y.; Dai, S.; Zhou, X.; Steiner, C.C.; Coppedge, B.; Roos, C.; Cai, X.; et al. A New World Monkey Resembles Human in Bitter Taste Receptor Evolution and Function via a Single Parallel Amino Acid Substitution. Mol. Biol. Evol. 2021, 38, 5472–5479. [Google Scholar] [CrossRef]
- Bufe, B.; Hofmann, T.; Krautwurst, D.; Raguse, J.-D.; Meyerhof, W. The Human TAS2R16 Receptor Mediates Bitter Taste in Response to β-Glucopyranosides. Nat. Genet. 2002, 32, 397–401. [Google Scholar] [CrossRef]
- Itoigawa, A.; Hayakawa, T.; Suzuki-Hashido, N.; Imai, H. A Natural Point Mutation in the Bitter Taste Receptor TAS2R16 Causes Inverse Agonism of Arbutin in Lemur Gustation. Proc. R. Soc. B 2019, 286, 20190884. [Google Scholar] [CrossRef]
- Wang, Y.; Zajac, A.L.; Lei, W.; Christensen, C.M.; Margolskee, R.F.; Bouysset, C.; Golebiowski, J.; Zhao, H.; Fiorucci, S.; Jiang, P. Metal Ions Activate the Human Taste Receptor TAS2R7. Chem. Senses 2019, 44, 339–347. [Google Scholar] [CrossRef]
- Behrens, M.; Redel, U.; Blank, K.; Meyerhof, W. The Human Bitter Taste Receptor TAS2R7 Facilitates the Detection of Bitter Salts. Biochem. Biophys. Res. Commun. 2019, 512, 877–881. [Google Scholar] [CrossRef]
- Itoigawa, A.; Fierro, F.; Chaney, M.E.; Lauterbur, M.E.; Hayakawa, T.; Tosi, A.J.; Niv, M.Y.; Imai, H. Lowered Sensitivity of Bitter Taste Receptors to β-Glucosides in Bamboo Lemurs: An Instance of Parallel and Adaptive Functional Decline in TAS2R16? Proc. R. Soc. B 2021, 288, 20210346. [Google Scholar] [CrossRef]
- Bufe, B.; Breslin, P.A.S.; Kuhn, C.; Reed, D.R.; Tharp, C.D.; Slack, J.P.; Kim, U.-K.; Drayna, D.; Meyerhof, W. The Molecular Basis of Individual Differences in Phenylthiocarbamide and Propylthiouracil Bitterness Perception. Curr. Biol. 2005, 15, 322–327. [Google Scholar] [CrossRef]
- Wooding, S.; Bufe, B.; Grassi, C.; Howard, M.T.; Stone, A.C.; Vazquez, M.; Dunn, D.M.; Meyerhof, W.; Weiss, R.B.; Bamshad, M.J. Independent Evolution of Bitter-Taste Sensitivity in Humans and Chimpanzees. Nature 2006, 440, 930–934. [Google Scholar] [CrossRef] [PubMed]
- Suzuki-Hashido, N.; Hayakawa, T.; Matsui, A.; Go, Y.; Ishimaru, Y.; Misaka, T.; Abe, K.; Hirai, H.; Satta, Y.; Imai, H. Rapid Expansion of Phenylthiocarbamide Non-Tasters among Japanese Macaques. PLoS ONE 2015, 10, e0132016. [Google Scholar] [CrossRef] [PubMed]
- Purba, L.H.P.S.; Widayati, K.A.; Tsutsui, K.; Suzuki-Hashido, N.; Hayakawa, T.; Nila, S.; Suryobroto, B.; Imai, H. Functional Characterization of the TAS2R38 Bitter Taste Receptor for Phenylthiocarbamide in Colobine Monkeys. Biol. Lett. 2017, 13, 20160834. [Google Scholar] [CrossRef]
- Purba, L.H.P.S.; Widayati, K.A.; Suzuki-Hashido, N.; Itoigawa, A.; Hayakawa, T.; Nila, S.; Juliandi, B.; Suryobroto, B.; Imai, H. Evolution of the Bitter Taste Receptor TAS2R38 in Colobines. Primates 2020, 61, 485–494. [Google Scholar] [CrossRef]
- Tsutsui, K.; Otoh, M.; Sakurai, K.; Suzuki-Hashido, N.; Hayakawa, T.; Misaka, T.; Ishimaru, Y.; Aureli, F.; Melin, A.D.; Kawamura, S.; et al. Variation in Ligand Responses of the Bitter Taste Receptors TAS2R1 and TAS2R4 among New World Monkeys. BMC Evol. Biol. 2016, 16, 208. [Google Scholar] [CrossRef]
- Risso, D.; Behrens, M.; Sainz, E.; Meyerhof, W.; Drayna, D. Probing the Evolutionary History of Human Bitter Taste Receptor Pseudogenes by Restoring Their Function. Mol. Biol. Evol. 2017, 34, 1587–1595. [Google Scholar] [CrossRef]
- Soranzo, N.; Bufe, B.; Sabeti, P.C.; Wilson, J.F.; Weale, M.E.; Marguerie, R.; Meyerhof, W.; Goldstein, D.B. Positive Selection on a High-Sensitivity Allele of the Human Bitter-Taste Receptor TAS2R16. Curr. Biol. 2005, 15, 1257–1265. [Google Scholar] [CrossRef]
- Roudnitzky, N.; Bufe, B.; Thalmann, S.; Kuhn, C.; Gunn, H.C.; Xing, C.; Crider, B.P.; Behrens, M.; Meyerhof, W.; Wooding, S.P. Genomic, Genetic and Functional Dissection of Bitter Taste Responses to Artificial Sweeteners. Hum. Mol. Genet. 2011, 20, 3437–3449. [Google Scholar] [CrossRef]
- Pronin, A.N.; Xu, H.; Tang, H.; Zhang, L.; Li, Q.; Li, X. Specific Alleles of Bitter Receptor Genes Influence Human Sensitivity to the Bitterness of Aloin and Saccharin. Curr. Biol. 2007, 17, 1403–1408. [Google Scholar] [CrossRef]
- Wooding, S.; Kim, U.; Bamshad, M.J.; Larsen, J.; Jorde, L.B.; Drayna, D. Natural Selection and Molecular Evolution in PTC, a Bitter-Taste Receptor Gene. Am. J. Hum. Genet. 2004, 74, 637–646. [Google Scholar] [CrossRef]
- Wang, X.; Thomas, S.D.; Zhang, J. Relaxation of Selective Constraint and Loss of Function in the Evolution of Human Bitter Taste Receptor Genes. Hum. Mol. Genet. 2004, 13, 2671–2678. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.C.; Ranciaro, A.; Zinshteyn, D.; Rawlings-Goss, R.; Hirbo, J.; Thompson, S.; Woldemeskel, D.; Froment, A.; Rucker, J.B.; Omar, S.A.; et al. Origin and Differential Selection of Allelic Variation at TAS2R16 Associated with Salicin Bitter Taste Sensitivity in Africa. Mol. Biol. Evol. 2014, 31, 288–302. [Google Scholar] [CrossRef] [PubMed]
- Kulichová, I.; Mouterde, M.; Mokhtar, M.G.; Diallo, I.; Tříska, P.; Diallo, Y.M.; Hofmanová, Z.; Poloni, E.S.; Černý, V. Demographic History Was a Formative Mechanism of the Genetic Structure for the Taste Receptor TAS2R16 in Human Populations Inhabiting Africa’s Sahel/Savannah Belt. Am. J. Biol. Anthr. 2022, 177, 540–555. [Google Scholar] [CrossRef] [PubMed]
- Risso, D.S.; Mezzavilla, M.; Pagani, L.; Robino, A.; Morini, G.; Tofanelli, S.; Carrai, M.; Campa, D.; Barale, R.; Caradonna, F.; et al. Global Diversity in the TAS2R38 Bitter Taste Receptor: Revisiting a Classic Evolutionary PROPosal. Sci. Rep. 2016, 6, 25506. [Google Scholar] [CrossRef] [PubMed]
- Valente, C.; Alvarez, L.; Marques, P.I.; Gusmão, L.; Amorim, A.; Seixas, S.; João Prata, M. Genes from the TAS1R and TAS2R Families of Taste Receptors: Looking for Signatures of Their Adaptive Role in Human Evolution. Genome Biol. Evol. 2018, 10, 1139–1152. [Google Scholar] [CrossRef]
- Wooding, S.P.; Ramirez, V.A. Global Population Genetics and Diversity in the TAS2R Bitter Taste Receptor Family. Front. Genet. 2022, 13, 952299. [Google Scholar] [CrossRef]
- Hayakawa, T.; Sugawara, T.; Go, Y.; Udono, T.; Hirai, H.; Imai, H. Eco-Geographical Diversification of Bitter Taste Receptor Genes (TAS2Rs) among Subspecies of Chimpanzees (Pan Troglodytes). PLoS ONE 2012, 7, e43277. [Google Scholar] [CrossRef]
- Widayati, K.A.; Yan, X.; Suzuki-Hashido, N.; Itoigawa, A.; Purba, L.H.P.S.; Fahri, F.; Terai, Y.; Suryobroto, B.; Imai, H. Functional Divergence of the Bitter Receptor TAS2R38 in Sulawesi Macaques. Ecol. Evol. 2019, 9, 10387–10403. [Google Scholar] [CrossRef]
- SU, Y.; LI, D.; GAUR, U.; WANG, Y.; WU, N.; CHEN, B.; XU, Z.; YIN, H.; HU, Y.; ZHU, Q. Genetic Diversity of Bitter Taste Receptor Gene Family in Sichuan Domestic and Tibetan Chicken Populations. J. Genet. 2016, 95, 675–681. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, T.; Xie, J.; Zhang, S.; Nevo, E.; Su, J.; Lin, G. Genetic Variation in Bitter Taste Receptor Genes Influences the Foraging Behavior of Plateau Zokor (Eospalax baileyi). Ecol. Evol. 2016, 6, 2359–2367. [Google Scholar] [CrossRef]
- Davenport, K.M.; Taylor, J.B.; Henslee, D.; Southerland, C.; Yelich, J.; Ellison, M.J.; Murdoch, B.M. Variation in Type Two Taste Receptor Genes Is Associated with Bitter Tasting Phenylthiocarbamide Consumption in Mature Targhee and Rambouillet Rams. Transl. Anim. Sci. 2021, 5, txab142. [Google Scholar] [CrossRef] [PubMed]
- Jiao, H.; Wang, Q.; Wang, B.-J.; Li, K.; Lövy, M.; Nevo, E.; Li, Q.; Su, W.; Jiang, P.; Zhao, H. Local Adaptation of Bitter Taste and Ecological Speciation in a Wild Mammal. Mol. Biol. Evol. 2021, 38, 4562–4572. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wang, G.; Shan, L.; Sun, S.; Hu, Y.; Wei, F. TAS2R20 Variants Confer Dietary Adaptation to High-Quercitrin Bamboo Leaves in Qinling Giant Pandas. Ecol. Evol. 2020, 10, 5913–5921. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.; Jorgenson, E.; Coon, H.; Leppert, M.; Risch, N.; Drayna, D. Positional Cloning of the Human Quantitative Trait Locus Underlying Taste Sensitivity to Phenylthiocarbamide. Science 2003, 299, 1221–1225. [Google Scholar] [CrossRef]
- Suzuki, N.; Sugawara, T.; Matsui, A.; Go, Y.; Hirai, H.; Imai, H. Identification of Non-Taster Japanese Macaques for a Specific Bitter Taste. Primates 2010, 51, 285–289. [Google Scholar] [CrossRef]
- Sugawara, T.; Go, Y.; Udono, T.; Morimura, N.; Tomonaga, M.; Hirai, H.; Imai, H. Diversification of Bitter Taste Receptor Gene Family in Western Chimpanzees. Mol. Biol. Evol. 2011, 28, 921–931. [Google Scholar] [CrossRef]
- Gilca, M.; Dragos, D. Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology. Evid.-Based Complement. Altern. Med. 2017, 2017, 5435831. [Google Scholar] [CrossRef]
- Tuzim, K.; Korolczuk, A. An Update on Extra-Oral Bitter Taste Receptors. J. Transl. Med. 2021, 19, 440. [Google Scholar] [CrossRef]
- Behrens, M. International Union of Basic and Clinical Pharmacology. CXVII: Taste 2 Receptors: Structures, Functions, Activators and Blockers. Pharmacol. Rev. 2024, 76, 1063–1088. [Google Scholar] [CrossRef]
- Wang, Q.; Liszt, K.I.; Depoortere, I. Extra-Oral Bitter Taste Receptors: New Targets against Obesity? Peptides 2020, 127, 170284. [Google Scholar] [CrossRef]
- Deshpande, D.A.; Wang, W.C.H.; McIlmoyle, E.L.; Robinett, K.S.; Schillinger, R.M.; An, S.S.; Sham, J.S.K.; Liggett, S.B. Bitter Taste Receptors on Airway Smooth Muscle Bronchodilate by Localized Calcium Signaling and Reverse Obstruction. Nat. Med. 2010, 16, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Zhai, K.; Yang, Z.; Zhu, X.; Nyirimigabo, E.; Mi, Y.; Wang, Y.; Liu, Q.; Man, L.; Wu, S.; Jin, J.; et al. Activation of Bitter Taste Receptors (Tas2rs) Relaxes Detrusor Smooth Muscle and Suppresses Overactive Bladder Symptoms. Oncotarget 2016, 7, 21156–21167. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, J.D.; Singh, N.; Sikarwar, A.S.; Chakraborty, R.; Pydi, S.P.; Bhullar, R.P.; Dakshinamurti, S.; Chelikani, P. Dextromethorphan Mediated Bitter Taste Receptor Activation in the Pulmonary Circuit Causes Vasoconstriction. PLoS ONE 2014, 9, e110373. [Google Scholar] [CrossRef]
- Avau, B.; Rotondo, A.; Thijs, T.; Andrews, C.N.; Janssen, P.; Tack, J.; Depoortere, I. Targeting Extra-Oral Bitter Taste Receptors Modulates Gastrointestinal Motility with Effects on Satiation. Sci. Rep. 2015, 5, 15985. [Google Scholar] [CrossRef]
- Zheng, K.; Lu, P.; Delpapa, E.; Bellve, K.; Deng, R.; Condon, J.C.; Fogarty, K.; Lifshitz, L.M.; Simas, T.A.M.; Shi, F.; et al. Bitter Taste Receptors as Targets for Tocolytics in Preterm Labor Therapy. FASEB J. 2017, 31, 4037–4052. [Google Scholar] [CrossRef]
- Manson, M.L.; Säfholm, J.; Al-Ameri, M.; Bergman, P.; Orre, A.-C.; Swärd, K.; James, A.; Dahlén, S.-E.; Adner, M. Bitter Taste Receptor Agonists Mediate Relaxation of Human and Rodent Vascular Smooth Muscle. Eur. J. Pharmacol. 2014, 740, 302–311. [Google Scholar] [CrossRef]
- Chen, J.-G.; Ping, N.-N.; Liang, D.; Li, M.-Y.; Mi, Y.-N.; Li, S.; Cao, L.; Cai, Y.; Cao, Y.-X. The Expression of Bitter Taste Receptors in Mesenteric, Cerebral and Omental Arteries. Life Sci. 2017, 170, 16–24. [Google Scholar] [CrossRef]
- Foster, S.R.; Porrello, E.R.; Purdue, B.; Chan, H.-W.; Voigt, A.; Frenzel, S.; Hannan, R.D.; Moritz, K.M.; Simmons, D.G.; Molenaar, P.; et al. Expression, Regulation and Putative Nutrient-Sensing Function of Taste GPCRs in the Heart. PLoS ONE 2013, 8, e64579. [Google Scholar] [CrossRef]
- Woo, J.-A.A.; Castaño, M.; Kee, T.R.; Lee, J.; Koziol-White, C.J.; An, S.S.; Kim, D.; Kang, D.E.; Liggett, S.B. A Par3/LIM Kinase/Cofilin Pathway Mediates Human Airway Smooth Muscle Relaxation by TAS2R14. Am. J. Respir. Cell Mol. Biol. 2023, 68, 417–429. [Google Scholar] [CrossRef]
- Zhou, Y.-W.; Sun, J.; Wang, Y.; Chen, C.-P.; Tao, T.; Ma, M.; Chen, X.; Zhang, X.-N.; Yang, L.-Y.; Zhang, Z.-L.; et al. Tas2R Activation Relaxes Airway Smooth Muscle by Release of Gαt Targeting on AChR Signaling. Proc. Natl. Acad. Sci. USA 2022, 119, e2121513119. [Google Scholar] [CrossRef]
- Conaway Jr, S.; Huang, W.; Hernandez-Lara, M.A.; Kane, M.A.; Penn, R.B.; Deshpande, D.A. Molecular Mechanism of Bitter Taste Receptor Agonist-Mediated Relaxation of Airway Smooth Muscle. FASEB J. 2024, 38, e23842. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Woo, J.A.; Geffken, E.; An, S.S.; Liggett, S.B. Coupling of Airway Smooth Muscle Bitter Taste Receptors to Intracellular Signaling and Relaxation Is via Gαi1,2,3. Am. J. Respir. Cell Mol. Biol. 2017, 56, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Carey, R.M.; Lee, R.J. Taste Receptors in Upper Airway Innate Immunity. Nutrients 2019, 11, 2017. [Google Scholar] [CrossRef] [PubMed]
- Tizzano, M.; Gulbransen, B.D.; Vandenbeuch, A.; Clapp, T.R.; Herman, J.P.; Sibhatu, H.M.; Churchill, M.E.A.; Silver, W.L.; Kinnamon, S.C.; Finger, T.E. Nasal Chemosensory Cells Use Bitter Taste Signaling to Detect Irritants and Bacterial Signals. Proc. Natl. Acad. Sci. USA 2010, 107, 3210–3215. [Google Scholar] [CrossRef]
- Chen, J.; Larson, E.D.; Anderson, C.B.; Agarwal, P.; Frank, D.N.; Kinnamon, S.C.; Ramakrishnan, V.R. Expression of Bitter Taste Receptors and Solitary Chemosensory Cell Markers in the Human Sinonasal Cavity. Chem. Senses 2019, 44, 483–495. [Google Scholar] [CrossRef]
- Ualiyeva, S.; Hallen, N.; Kanaoka, Y.; Ledderose, C.; Matsumoto, I.; Junger, W.G.; Barrett, N.A.; Bankova, L.G. Airway Brush Cells Generate Cysteinyl Leukotrienes through the ATP Sensor P2Y2. Sci. Immunol. 2020, 5, eaax7224. [Google Scholar] [CrossRef]
- Saunders, C.J.; Christensen, M.; Finger, T.E.; Tizzano, M. Cholinergic Neurotransmission Links Solitary Chemosensory Cells to Nasal Inflammation. Proc. Natl. Acad. Sci. USA 2014, 111, 6075–6080. [Google Scholar] [CrossRef]
- Lee, R.J.; Kofonow, J.M.; Rosen, P.L.; Siebert, A.P.; Chen, B.; Doghramji, L.; Xiong, G.; Adappa, N.D.; Palmer, J.N.; Kennedy, D.W.; et al. Bitter and Sweet Taste Receptors Regulate Human Upper Respiratory Innate Immunity. J. Clin. Investig. 2014, 124, 1393–1405. [Google Scholar] [CrossRef]
- Hollenhorst, M.I.; Jurastow, I.; Nandigama, R.; Appenzeller, S.; Li, L.; Vogel, J.; Wiederhold, S.; Althaus, M.; Empting, M.; Altmüller, J.; et al. Tracheal Brush Cells Release Acetylcholine in Response to Bitter Tastants for Paracrine and Autocrine Signaling. FASEB J. 2020, 34, 316–332. [Google Scholar] [CrossRef]
- Krasteva, G.; Canning, B.J.; Papadakis, T.; Kummer, W. Cholinergic Brush Cells in the Trachea Mediate Respiratory Responses to Quorum Sensing Molecules. Life Sci. 2012, 91, 992–996. [Google Scholar] [CrossRef]
- Perniss, A.; Liu, S.; Boonen, B.; Keshavarz, M.; Ruppert, A.-L.; Timm, T.; Pfeil, U.; Soultanova, A.; Kusumakshi, S.; Delventhal, L.; et al. Chemosensory Cell-Derived Acetylcholine Drives Tracheal Mucociliary Clearance in Response to Virulence-Associated Formyl Peptides. Immunity 2020, 52, 683–699.e11. [Google Scholar] [CrossRef] [PubMed]
- Hollenhorst, M.I.; Nandigama, R.; Evers, S.B.; Gamayun, I.; Wadood, N.A.; Salah, A.; Pieper, M.; Wyatt, A.; Stukalov, A.; Gebhardt, A.; et al. Bitter Taste Signaling in Tracheal Epithelial Brush Cells Elicits Innate Immune Responses to Bacterial Infection. J. Clin. Investig. 2022, 132, e150951. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.J.; Xiong, G.; Kofonow, J.M.; Chen, B.; Lysenko, A.; Jiang, P.; Abraham, V.; Doghramji, L.; Adappa, N.D.; Palmer, J.N.; et al. T2R38 Taste Receptor Polymorphisms Underlie Susceptibility to Upper Respiratory Infection. J. Clin. Investig. 2012, 122, 4145–4159. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.; Ben-Shahar, Y.; Moninger, T.O.; Kline, J.N.; Welsh, M.J. Motile Cilia of Human Airway Epithelia Are Chemosensory. Science 2009, 325, 1131–1134. [Google Scholar] [CrossRef]
- Yan, C.H.; Hahn, S.; McMahon, D.; Bonislawski, D.; Kennedy, D.W.; Adappa, N.D.; Palmer, J.N.; Jiang, P.; Lee, R.J.; Cohen, N.A. Nitric Oxide Production Is Stimulated by Bitter Taste Receptors Ubiquitously Expressed in the Sinonasal Cavity. Am. J. Rhinol. Allergy 2017, 31, 85–92. [Google Scholar] [CrossRef]
- Hariri, B.M.; McMahon, D.B.; Chen, B.; Freund, J.R.; Mansfield, C.J.; Doghramji, L.J.; Adappa, N.D.; Palmer, J.N.; Kennedy, D.W.; Reed, D.R.; et al. Flavones Modulate Respiratory Epithelial Innate Immunity: Anti-Inflammatory Effects and Activation of the T2R14 Receptor. J. Biol. Chem. 2017, 292, 8484–8497. [Google Scholar] [CrossRef]
- Lee, R.J.; Chen, B.; Redding, K.M.; Margolskee, R.F.; Cohen, N.A. Mouse Nasal Epithelial Innate Immune Responses to Pseudomonas Aeruginosa Quorum-Sensing Molecules Require Taste Signaling Components. Innate Immun. 2014, 20, 606–617. [Google Scholar] [CrossRef]
- Hollenhorst, M.I.; Krasteva-Christ, G. Chemosensory Cells in the Respiratory Tract as Crucial Regulators of Innate Immune Responses. J. Physiol. 2023, 601, 1555–1572. [Google Scholar] [CrossRef]
- Montoro, D.T.; Haber, A.L.; Biton, M.; Vinarsky, V.; Lin, B.; Birket, S.E.; Yuan, F.; Chen, S.; Leung, H.M.; Villoria, J.; et al. A Revised Airway Epithelial Hierarchy Includes CFTR-Expressing Ionocytes. Nature 2018, 560, 319–324. [Google Scholar] [CrossRef]
- Nadjsombati, M.S.; McGinty, J.W.; Lyons-Cohen, M.R.; Jaffe, J.B.; DiPeso, L.; Schneider, C.; Miller, C.N.; Pollack, J.L.; Gowda, G.A.N.; Fontana, M.F.; et al. Detection of Succinate by Intestinal Tuft Cells Triggers a Type 2 Innate Immune Circuit. Immunity 2018, 49, 33–41.e7. [Google Scholar] [CrossRef]
- Prandi, S.; Bromke, M.; Hübner, S.; Voigt, A.; Boehm, U.; Meyerhof, W.; Behrens, M. A Subset of Mouse Colonic Goblet Cells Expresses the Bitter Taste Receptor Tas2r131. PLoS ONE 2013, 8, e82820. [Google Scholar] [CrossRef] [PubMed]
- Prandi, S.; Voigt, A.; Meyerhof, W.; Behrens, M. Expression Profiling of Tas2r Genes Reveals a Complex Pattern along the Mouse GI Tract and the Presence of Tas2r131 in a Subset of Intestinal Paneth Cells. Cell. Mol. Life Sci. 2018, 75, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Vegezzi, G.; Anselmi, L.; Huynh, J.; Barocelli, E.; Rozengurt, E.; Raybould, H.; Sternini, C. Diet-Induced Regulation of Bitter Taste Receptor Subtypes in the Mouse Gastrointestinal Tract. PLoS ONE 2014, 9, e107732. [Google Scholar] [CrossRef] [PubMed]
- Latorre, R.; Huynh, J.; Mazzoni, M.; Gupta, A.; Bonora, E.; Clavenzani, P.; Chang, L.; Mayer, E.A.; Giorgio, R.D.; Sternini, C. Expression of the Bitter Taste Receptor, T2R38, in Enteroendocrine Cells of the Colonic Mucosa of Overweight/Obese vs. Lean Subjects. PLoS ONE 2016, 11, e0147468. [Google Scholar] [CrossRef]
- Gonda, S.; Matsumura, S.; Saito, S.; Go, Y.; Imai, H. Expression of Taste Signal Transduction Molecules in the Caecum of Common Marmosets. Biol. Lett. 2013, 9, 20130409. [Google Scholar] [CrossRef]
- Imai, H.; Hakukawa, M.; Hayashi, M.; Iwatsuki, K.; Masuda, K. Expression of Bitter Taste Receptors in the Intestinal Cells of Non-Human Primates. Int. J. Mol. Sci. 2020, 21, 902. [Google Scholar] [CrossRef]
- Hayashi, M.; Inaba, A.; Hakukawa, M.; Iwatsuki, K.; Imai, H.; Masuda, K. Expression of TAS2R14 in the Intestinal Endocrine Cells of Non-Human Primates. Genes. Genom. 2021, 43, 259–267. [Google Scholar] [CrossRef]
- Wu, S.V.; Rozengurt, N.; Yang, M.; Young, S.H.; Sinnett-Smith, J.; Rozengurt, E. Expression of Bitter Taste Receptors of the T2R Family in the Gastrointestinal Tract and Enteroendocrine STC-1 Cells. Proc. Natl. Acad. Sci. USA 2002, 99, 2392–2397. [Google Scholar] [CrossRef]
- Dotson, C.D.; Zhang, L.; Xu, H.; Shin, Y.-K.; Vigues, S.; Ott, S.H.; Elson, A.E.T.; Choi, H.J.; Shaw, H.; Egan, J.M.; et al. Bitter Taste Receptors Influence Glucose Homeostasis. PLoS ONE 2008, 3, e3974. [Google Scholar] [CrossRef]
- Descamps-Solà, M.; Vilalta, A.; Jalsevac, F.; Blay, M.T.; Rodríguez-Gallego, E.; Pinent, M.; Beltrán-Debón, R.; Terra, X.; Ardévol, A. Bitter Taste Receptors along the Gastrointestinal Tract: Comparison between Humans and Rodents. Front. Nutr. 2023, 10, 1215889. [Google Scholar] [CrossRef]
- Xie, C.; Wang, X.; Young, R.L.; Horowitz, M.; Rayner, C.K.; Wu, T. Role of Intestinal Bitter Sensing in Enteroendocrine Hormone Secretion and Metabolic Control. Front. Endocrinol. 2018, 9, 576. [Google Scholar] [CrossRef] [PubMed]
- Janssen, S.; Laermans, J.; Verhulst, P.-J.; Thijs, T.; Tack, J.; Depoortere, I. Bitter Taste Receptors and α-Gustducin Regulate the Secretion of Ghrelin with Functional Effects on Food Intake and Gastric Emptying. Proc. Natl. Acad. Sci. USA 2011, 108, 2094–2099. [Google Scholar] [CrossRef] [PubMed]
- Avau, B.; Thijs, T.; Laermans, J.; Tack, J.; Depoortere, I. Endocrine and Smooth Muscle Responses of the Bitter Agonist, Denatonium Benzoate, in the Stomach. Regul. Pept. 2012, 177, S15. [Google Scholar] [CrossRef]
- Deloose, E.; Janssen, P.; Corsetti, M.; Biesiekierski, J.; Masuy, I.; Rotondo, A.; Van Oudenhove, L.; Depoortere, I.; Tack, J. Intragastric Infusion of Denatonium Benzoate Attenuates Interdigestive Gastric Motility and Hunger Scores in Healthy Female Volunteers1, 2, 3. Am. J. Clin. Nutr. 2017, 105, 580–588. [Google Scholar] [CrossRef]
- Deloose, E.; Corsetti, M.; Van Oudenhove, L.; Depoortere, I.; Tack, J. Intragastric Infusion of the Bitter Tastant Quinine Suppresses Hormone Release and Antral Motility during the Fasting State in Healthy Female Volunteers. Neurogastroenterol. Motil. 2018, 30, e13171. [Google Scholar] [CrossRef]
- Chen, M.C.; Wu, S.V.; Reeve, J.R.; Rozengurt, E. Bitter Stimuli Induce Ca2+ Signaling and CCK Release in Enteroendocrine STC-1 Cells: Role of L-Type Voltage-Sensitive Ca2+ Channels. Am. J. Physiol.-Cell Physiol. 2006, 291, C726–C739. [Google Scholar] [CrossRef]
- Jeon, T.-I.; Zhu, B.; Larson, J.L.; Osborne, T.F. SREBP-2 Regulates Gut Peptide Secretion through Intestinal Bitter Taste Receptor Signaling in Mice. J. Clin. Investig. 2008, 118, 3693–3700. [Google Scholar] [CrossRef]
- Jeon, T.-I.; Seo, Y.-K.; Osborne, T.F. Gut Bitter Taste Receptor Signalling Induces ABCB1 through a Mechanism Involving CCK. Biochem. J. 2011, 438, 33–37. [Google Scholar] [CrossRef]
- Le Nevé, B.; Foltz, M.; Daniel, H.; Gouka, R. The Steroid Glycoside H.g.-12 from Hoodia Gordonii Activates the Human Bitter Receptor TAS2R14 and Induces CCK Release from HuTu-80 Cells. Am. J. Physiol.-Gastrointest. Liver Physiol. 2010, 299, G1368–G1375. [Google Scholar] [CrossRef]
- Kim, K.-S.; Egan, J.M.; Jang, H.-J. Denatonium Induces Secretion of Glucagon-like Peptide-1 through Activation of Bitter Taste Receptor Pathways. Diabetologia 2014, 57, 2117–2125. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.-S.; Kim, K.-H.; Lee, I.-S.; Jeong, H.; Kim, Y.; Jang, H.-J. GLP-1 Secretion Is Stimulated by 1,10-Phenanthroline via Colocalized T2R5 Signal Transduction in Human Enteroendocrine L Cell. Biochem. Biophys. Res. Commun. 2015, 468, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Liang, J.; Gu, F.; Du, D.; Chen, F. Berberine Activates Bitter Taste Responses of Enteroendocrine STC-1 Cells. Mol. Cell Biochem. 2018, 447, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Hao, G.; Zhang, Q.; Hua, W.; Wang, M.; Zhou, W.; Zong, S.; Huang, M.; Wen, X. Berberine Induces GLP-1 Secretion through Activation of Bitter Taste Receptor Pathways. Biochem. Pharmacol. 2015, 97, 173–177. [Google Scholar] [CrossRef]
- Pham, H.; Hui, H.; Morvaridi, S.; Cai, J.; Zhang, S.; Tan, J.; Wu, V.; Levin, N.; Knudsen, B.; Goddard, W.A.; et al. A Bitter Pill for Type 2 Diabetes? The Activation of Bitter Taste Receptor TAS2R38 Can Stimulate GLP-1 Release from Enteroendocrine L-Cells. Biochem. Biophys. Res. Commun. 2016, 475, 295–300. [Google Scholar] [CrossRef]
- Luo, X.-C.; Chen, Z.-H.; Xue, J.-B.; Zhao, D.-X.; Lu, C.; Li, Y.-H.; Li, S.-M.; Du, Y.-W.; Liu, Q.; Wang, P.; et al. Infection by the Parasitic Helminth Trichinella Spiralis Activates a Tas2r-Mediated Signaling Pathway in Intestinal Tuft Cells. Proc. Natl. Acad. Sci. USA 2019, 116, 5564–5569. [Google Scholar] [CrossRef]
- Liszt, K.I.; Wang, Q.; Farhadipour, M.; Segers, A.; Thijs, T.; Nys, L.; Deleus, E.; der Schueren, B.V.; Gerner, C.; Neuditschko, B.; et al. Human Intestinal Bitter Taste Receptors Regulate Innate Immune Responses and Metabolic Regulators in Obesity. J. Clin. Investig. 2022, 132, e144828. [Google Scholar] [CrossRef]
- Tran, H.T.T.; Herz, C.; Ruf, P.; Stetter, R.; Lamy, E. Human T2R38 Bitter Taste Receptor Expression in Resting and Activated Lymphocytes. Front. Immunol. 2018, 9, 2949. [Google Scholar] [CrossRef]
- Maurer, S.; Wabnitz, G.H.; Kahle, N.A.; Stegmaier, S.; Prior, B.; Giese, T.; Gaida, M.M.; Samstag, Y.; Hänsch, G.M. Tasting Pseudomonas Aeruginosa Biofilms: Human Neutrophils Express the Bitter Receptor T2R38 as Sensor for the Quorum Sensing Molecule N-(3-Oxododecanoyl)-l-Homoserine Lactone. Front. Immunol. 2015, 6, 369. [Google Scholar] [CrossRef]
- Grassin-Delyle, S.; Salvator, H.; Mantov, N.; Abrial, C.; Brollo, M.; Faisy, C.; Naline, E.; Couderc, L.-J.; Devillier, P. Bitter Taste Receptors (TAS2Rs) in Human Lung Macrophages: Receptor Expression and Inhibitory Effects of TAS2R Agonists. Front. Physiol. 2019, 10, 1267. [Google Scholar] [CrossRef]
- Kobayashi, D.; Watarai, T.; Ozawa, M.; Kanda, Y.; Saika, F.; Kiguchi, N.; Takeuchi, A.; Ikawa, M.; Matsuzaki, S.; Katakai, T. Tas2R Signaling Enhances Mouse Neutrophil Migration via a ROCK-Dependent Pathway. Front. Immunol. 2022, 13, 973880. [Google Scholar] [CrossRef]
- Gopallawa, I.; Freund, J.R.; Lee, R.J. Bitter Taste Receptors Stimulate Phagocytosis in Human Macrophages through Calcium, Nitric Oxide, and Cyclic-GMP Signaling. Cell. Mol. Life Sci. 2021, 78, 271–286. [Google Scholar] [CrossRef] [PubMed]
- Malki, A.; Fiedler, J.; Fricke, K.; Ballweg, I.; Pfaffl, M.W.; Krautwurst, D. Class I Odorant Receptors, TAS1R and TAS2R Taste Receptors, Are Markers for Subpopulations of Circulating Leukocytes. J. Leukoc. Biol. 2015, 97, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Kouakou, Y.I.; Lee, R.J. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023, 11, 1295. [Google Scholar] [CrossRef]
- Voigt, A.; Hübner, S.; Lossow, K.; Hermans-Borgmeyer, I.; Boehm, U.; Meyerhof, W. Genetic Labeling of Tas1r1 and Tas2r131 Taste Receptor Cells in Mice. Chem. Senses 2012, 37, 897–911. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhou, M. Depletion of Bitter Taste Transduction Leads to Massive Spermatid Loss in Transgenic Mice. Mol. Hum. Reprod. 2012, 18, 289–297. [Google Scholar] [CrossRef]
- Xu, J.; Cao, J.; Iguchi, N.; Riethmacher, D.; Huang, L. Functional Characterization of Bitter-Taste Receptors Expressed in Mammalian Testis. Mol. Hum. Reprod. 2013, 19, 17–28. [Google Scholar] [CrossRef]
- Governini, L.; Semplici, B.; Pavone, V.; Crifasi, L.; Marrocco, C.; De Leo, V.; Arlt, E.; Gudermann, T.; Boekhoff, I.; Luddi, A.; et al. Expression of Taste Receptor 2 Subtypes in Human Testis and Sperm. J. Clin. Med. 2020, 9, 264. [Google Scholar] [CrossRef]
- Wu, S.; Xue, P.; Grayson, N.; Bland, J.S.; Wolfe, A. Bitter Taste Receptor Ligand Improves Metabolic and Reproductive Functions in a Murine Model of PCOS. Endocrinology 2019, 160, 143–155. [Google Scholar] [CrossRef]
- Liu, S.; Lu, S.; Xu, R.; Atzberger, A.; Günther, S.; Wettschureck, N.; Offermanns, S. Members of Bitter Taste Receptor Cluster Tas2r143/Tas2r135/Tas2r126 Are Expressed in the Epithelium of Murine Airways and Other Non-Gustatory Tissues. Front. Physiol. 2017, 8, 849. [Google Scholar] [CrossRef]
- Semplici, B.; Luongo, F.P.; Passaponti, S.; Landi, C.; Governini, L.; Morgante, G.; De Leo, V.; Piomboni, P.; Luddi, A. Bitter Taste Receptors Expression in Human Granulosa and Cumulus Cells: New Perspectives in Female Fertility. Cells 2021, 10, 3127. [Google Scholar] [CrossRef]
- Wölfle, U.; Elsholz, F.A.; Kersten, A.; Haarhaus, B.; Schumacher, U.; Schempp, C.M. Expression and Functional Activity of the Human Bitter Taste Receptor TAS2R38 in Human Placental Tissues and JEG-3 Cells. Molecules 2016, 21, 306. [Google Scholar] [CrossRef] [PubMed]
- Taher, S.; Borja, Y.; Cabanela, L.; Costers, V.J.; Carson-Marino, M.; Bailes, J.C.; Dhar, B.; Beckworth, M.T.; Rabaglino, M.B.; Post Uiterweer, E.D.; et al. Cholecystokinin, Gastrin, Cholecystokinin/Gastrin Receptors, and Bitter Taste Receptor TAS2R14: Trophoblast Expression and Signaling. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2019, 316, R628–R639. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Moore Simas, T.A.; Delpapa, E.; ZhuGe, R. Bitter Taste Receptors in the Reproductive System: Function and Therapeutic Implications. J. Cell. Physiol. 2024, 239, e31179. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Liu, S.; Qi, L.; Wei, Q.; Shi, F. Activation of Ovarian Taste Receptors Inhibits Progesterone Production Potentially via NO/cGMP and Apoptotic Signaling. Endocrinology 2021, 162, bqaa240. [Google Scholar] [CrossRef]
- Bloxham, C.J.; Foster, S.R.; Thomas, W.G. A Bitter Taste in Your Heart. Front. Physiol. 2020, 11, 431. [Google Scholar] [CrossRef]
- Luo, M.; Ni, K.; Jin, Y.; Yu, Z.; Deng, L. Toward the Identification of Extra-Oral TAS2R Agonists as Drug Agents for Muscle Relaxation Therapies via Bioinformatics-Aided Screening of Bitter Compounds in Traditional Chinese Medicine. Front. Physiol. 2019, 10, 861. [Google Scholar] [CrossRef]
- Behrens, M.; Lang, T. Extra-Oral Taste Receptors—Function, Disease, and Perspectives. Front. Nutr. 2022, 9, 881177. [Google Scholar] [CrossRef]
- Luddi, A.; Governini, L.; Wilmskötter, D.; Gudermann, T.; Boekhoff, I.; Piomboni, P. Taste Receptors: New Players in Sperm Biology. Int. J. Mol. Sci. 2019, 20, 967. [Google Scholar] [CrossRef]
- Kong, S.; Dong, C.; Lv, H.; Chen, L.; Zhang, J.; Pu, F.; Li, X.; Xu, P. Genome Wide Identification of Taste receptor Genes in Common Carp (Cyprinus carpio) and Phylogenetic Analysis in Teleost. Gene 2018, 678, 65–72. [Google Scholar] [CrossRef]
- Hamdard, E.; Lv, Z.; Jiang, J.; Wei, Q.; Shi, Z.; Malyar, R.M.; Yu, D.; Shi, F. Responsiveness Expressions of Bitter Taste Receptors Against Denatonium Benzoate and Genistein in the Heart, Spleen, Lung, Kidney, and Bursa Fabricius of Chinese Fast Yellow Chicken. Animals 2019, 9, 532. [Google Scholar] [CrossRef]
- Birdal, G.; D’Gama, P.P.; Jurisch-Yaksi, N.; Korsching, S.I. Expression of Taste Sentinels, T1R, T2R, and PLCβ2, on the Passageway for Olfactory Signals in Zebrafish | Chemical Senses | Oxford Academic. Chem. Senses 2023, 48, bjad040. [Google Scholar] [CrossRef] [PubMed]
- Mayeur, H.; Leyhr, J.; Mulley, J.; Leurs, N.; Michel, L.; Sharma, K.; Lagadec, R.; Aury, J.-M.; Osborne, O.G.; Mulhair, P.; et al. The Sensory Shark: High-Quality Morphological, Genomic and Transcriptomic Data for the Small-Spotted Catshark Scyliorhinus Canicula Reveal the Molecular Bases of Sensory Organ Evolution in Jawed Vertebrates. bioRxiv 2024. [Google Scholar] [CrossRef]
- Cheled-Shoval, S.L.; Druyan, S.; Uni, Z. Bitter, Sweet and Umami Taste Receptors and Downstream Signaling Effectors: Expression in Embryonic and Growing Chicken Gastrointestinal Tract. Poult. Sci. 2015, 94, 1928–1941. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, Y.; Qin, D.; Song, Z.; Huang, Z.; Meng, K.; Cao, J.; Xu, F.; Cheng, G.; Ji, W.; et al. Expression Analysis of Taste Receptor Genes (T1R1, T1R3, and T2R4) in Response to Bacterial, Viral and Parasitic Infection in Rainbow Trout, Oncorhynchus mykiss. Fish. Shellfish. Immunol. 2020, 101, 176–185. [Google Scholar] [CrossRef]
- Wu, H.; Wang, C.; Gregory, K.J.; Han, G.W.; Cho, H.P.; Xia, Y.; Niswender, C.M.; Katritch, V.; Meiler, J.; Cherezov, V.; et al. Structure of a Class C GPCR Metabotropic Glutamate Receptor 1 Bound to an Allosteric Modulator. Science 2014, 344, 58–64. [Google Scholar] [CrossRef]
- Munk, C.; Mutt, E.; Isberg, V.; Nikolajsen, L.F.; Bibbe, J.M.; Flock, T.; Hanson, M.A.; Stevens, R.C.; Deupi, X.; Gloriam, D.E. An Online Resource for GPCR Structure Determination and Analysis. Nat. Methods 2019, 16, 151–162. [Google Scholar] [CrossRef]
- Ammon, C.; Schäfer, J.; Kreuzer, O.J.; Meyerhof, W. Presence of a Plasma Membrane Targeting Sequence in the Amino-Terminal Region of the Rat Somatostatin Receptor 3. Arch. Physiol. Biochem. 2002, 110, 137–145. [Google Scholar] [CrossRef]
- Tan, S.M.; Seetoh, W.-G. Construction of a Bioluminescence-Based Assay for Bitter Taste Receptors (TAS2Rs). Sci. Rep. 2022, 12, 17658. [Google Scholar] [CrossRef]
- Isberg, V.; de Graaf, C.; Bortolato, A.; Cherezov, V.; Katritch, V.; Marshall, F.H.; Mordalski, S.; Pin, J.-P.; Stevens, R.C.; Vriend, G.; et al. Generic GPCR Residue Numbers—Aligning Topology Maps While Minding the Gaps. Trends Pharmacol. Sci. 2015, 36, 22–31. [Google Scholar] [CrossRef]
- Di Pizio, A.; Levit, A.; Slutzki, M.; Behrens, M.; Karaman, R.; Niv, M.Y. Comparing Class A GPCRs to Bitter Taste Receptors: Structural Motifs, Ligand Interactions and Agonist-to-Antagonist Ratios. In Methods in Cell Biology; Shukla, A.K., Ed.; G Protein-Coupled Receptors; Academic Press: Cambridge, MA, USA, 2016; Volume 132, pp. 401–427. [Google Scholar]
- Xu, W.; Wu, L.; Liu, S.; Liu, X.; Cao, X.; Zhou, C.; Zhang, J.; Fu, Y.; Guo, Y.; Wu, Y.; et al. Structural Basis for Strychnine Activation of Human Bitter Taste Receptor TAS2R46. Science 2022, 377, 1298–1304. [Google Scholar] [CrossRef]
- Peri, L.; Matzov, D.; Huxley, D.R.; Rainish, A.; Fierro, F.; Sapir, L.; Pfeiffer, T.; Waterloo, L.; Huebner, H.; Weikert, D.; et al. Intracellular Binding Pocket Revealed in the Human Bitter Taste Receptor TAS2R14. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kim, Y.; Gumpper, R.H.; Liu, Y.; Kocak, D.D.; Xiong, Y.; Cao, C.; Deng, Z.; Krumm, B.E.; Jain, M.K.; Zhang, S.; et al. Bitter Taste Receptor Activation by Cholesterol and an Intracellular Tastant. Nature 2024, 628, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Ao, W.; Gao, M.; Wu, L.; Pei, Y.; Liu, S.; Wu, Y.; Zhao, F.; Sun, Q.; Liu, J.; et al. Bitter Taste TAS2R14 Activation by Intracellular Tastants and Cholesterol. Nature 2024, 631, 459–466. [Google Scholar] [CrossRef]
- Born, S.; Levit, A.; Niv, M.Y.; Meyerhof, W.; Behrens, M. The Human Bitter Taste Receptor TAS2R10 Is Tailored to Accommodate Numerous Diverse Ligands. J. Neurosci. 2013, 33, 201–213. [Google Scholar] [CrossRef]
- Thomas, A.; Sulli, C.; Davidson, E.; Berdougo, E.; Phillips, M.; Puffer, B.A.; Paes, C.; Doranz, B.J.; Rucker, J.B. The Bitter Taste Receptor TAS2R16 Achieves High Specificity and Accommodates Diverse Glycoside Ligands by Using a Two-Faced Binding Pocket. Sci. Rep. 2017, 7, 7753. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itoigawa, A.; Nakagita, T.; Toda, Y. The Remarkable Diversity of Vertebrate Bitter Taste Receptors: Recent Advances in Genomic and Functional Studies. Int. J. Mol. Sci. 2024, 25, 12654. https://doi.org/10.3390/ijms252312654
Itoigawa A, Nakagita T, Toda Y. The Remarkable Diversity of Vertebrate Bitter Taste Receptors: Recent Advances in Genomic and Functional Studies. International Journal of Molecular Sciences. 2024; 25(23):12654. https://doi.org/10.3390/ijms252312654
Chicago/Turabian StyleItoigawa, Akihiro, Tomoya Nakagita, and Yasuka Toda. 2024. "The Remarkable Diversity of Vertebrate Bitter Taste Receptors: Recent Advances in Genomic and Functional Studies" International Journal of Molecular Sciences 25, no. 23: 12654. https://doi.org/10.3390/ijms252312654
APA StyleItoigawa, A., Nakagita, T., & Toda, Y. (2024). The Remarkable Diversity of Vertebrate Bitter Taste Receptors: Recent Advances in Genomic and Functional Studies. International Journal of Molecular Sciences, 25(23), 12654. https://doi.org/10.3390/ijms252312654