Therapeutic Potential of a Natural Blend of Aronia melancarpa, Lonicera caerulea, and Echinacea purpurea Extracts in Treating Upper Respiratory Tract Infections: Preliminary Clinical and In Vitro Immunomodulatory Insights
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Influence of the ELA Blend in Capsule and Syrup Form on the Frequency and Duration of Symptoms
2.3. Influence of ELA Blend on Serum Parameters and Cytokine Production in Stimulated Peripheral Blood Mononuclear Cells (PBMCs) Isolated from Study Participants
2.4. Influence of ELA Blend on Cytokine Production in Stimulated and Unstimulated PBMCs
2.5. ELA Blend Improves Innate Antiviral Immune Response of Peripheral Blood Leukocytes (PBLs) Ex Vivo
3. Discussion
4. Materials and Methods
4.1. Human Study Protocol
4.2. Medications
4.3. Patient Diaries
4.4. Patient Samples Analysis
4.5. In Vitro Study
4.5.1. Isolation and Culture of Human Peripheral Blood Mononuclear Cells (PBMCs)
4.5.2. Isolation of Peripheral Blood Leukocytes (PBLs)
4.5.3. Viability Assessment
4.5.4. Vesicular Stomatitis Virus (ATTC VR-1238™, Rhabdoviridae)
4.5.5. Assessment of PBLs’ Resistance to VSV Infection
4.5.6. Cytokine Level Determination
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuen, E.; Gudis, D.A.; Rowan, N.R.; Nguyen, S.A.; Schlosser, R.J. Viral Infections of the Upper Airway in the Setting of COVID-19: A Primer for Rhinologists. Am. J. Rhinol. Allergy 2021, 35, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Babich, O.; Sukhikh, S.; Prosekov, A.; Asyakina, L.; Ivanova, S. Medicinal Plants to Strengthen Immunity during a Pandemic. Pharmaceuticals 2020, 13, 313. [Google Scholar] [CrossRef]
- Jamal, Q.M.S. Antiviral Potential of Plants against COVID-19 during Outbreaks—An Update. Int. J. Mol. Sci. 2022, 23, 13564. [Google Scholar] [CrossRef]
- Cohen, H.A.; Varsano, I.; Kahan, E.; Sarrell, E.M.; Uziel, Y. Effectiveness of an Herbal Preparation Containing Echinacea, Propolis, and Vitamin C in Preventing Respiratory Tract Infections in Children. Arch. Pediatr. Adolesc. Med. 2004, 158, 217. [Google Scholar] [CrossRef] [PubMed]
- Pourova, J.; Dias, P.; Pour, M.; Fialová, S.B.; Czigle, S.; Nagy, M.; Tóth, J.; Balázs, V.L.; Horváth, A.; Csikós, E.; et al. Proposed Mechanisms of Action of Herbal Drugs and Their Biologically Active Constituents in the Treatment of Coughs: An Overview. PeerJ 2023, 11, e16096. [Google Scholar] [CrossRef] [PubMed]
- Ochnik, M.; Franz, D.; Sobczyński, M.; Naporowski, P.; Banach, M.; Orzechowska, B.; Sochocka, M. Inhibition of Human Respiratory Influenza A Virus and Human Betacoronavirus-1 by the Blend of Double-Standardized Extracts of Aronia melanocarpa (Michx.) Elliot and Sambucus nigra L. Pharmaceuticals 2022, 15, 619. [Google Scholar] [CrossRef]
- Ho, G.T.; Bräunlich, M.; Austarheim, I.; Wangensteen, H.; Malterud, K.E.; Slimestad, R.; Barsett, H. Immunomodulating Activity of Aronia melanocarpa Polyphenols. Int. J. Mol. Sci. 2014, 15, 11626–11636. [Google Scholar] [CrossRef]
- Xu, J.; Mojsoska, B. The Immunomodulation Effect of Aronia Extract Lacks Association with Its Antioxidant Anthocyanins. J. Med. Food 2013, 16, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, J.I.; Lee, I.; Lee, S.; Hwang, M.-W.; Bae, J.-Y.; Heo, J.; Kim, D.; Han, S.-Z.; Park, M.-S. Aronia melanocarpa and Its Components Demonstrate Antiviral Activity against Influenza Viruses. Biochem. Biophys. Res. Commun. 2013, 440, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Ohgami, K.; Ilieva, I.; Shiratori, K.; Koyama, Y.; Jin, X.-H.; Yoshida, K.; Kase, S.; Kitaichi, N.; Suzuki, Y.; Tanaka, T.; et al. Anti-Inflammatory Effects of Aronia Extract on Rat Endotoxin-Induced Uveitis. Investig. Ophthalmol. Vis. Sci. 2005, 46, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Appel, K.; Meiser, P.; Millán, E.; Collado, J.A.; Rose, T.; Gras, C.C.; Carle, R.; Muñoz, E. Chokeberry (Aronia melanocarpa (Michx.) Elliot) Concentrate Inhibits NF-κB and Synergizes with Selenium to Inhibit the Release of Pro-Inflammatory Mediators in Macrophages. Fitoterapia 2015, 105, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Caprioli, G.; Iannarelli, R.; Innocenti, M.; Bellumori, M.; Fiorini, D.; Sagratini, G.; Vittori, S.; Buccioni, M.; Santinelli, C.; Bramucci, M.; et al. Blue Honeysuckle Fruit (Lonicera caerulea L.) from Eastern Russia: Phenolic Composition, Nutritional Value, and Biological Activities of Its Polar Extracts. Food Funct. 2016, 7, 1892–1903. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yano, S.; Chen, J.; Hisanaga, A.; Sakao, K.; He, X.; He, J.; Hou, D.-X. Polyphenols from Lonicera caerulea L. Berry Inhibit LPS-Induced Inflammation through Dual Modulation of Inflammatory and Antioxidant Mediators. J. Agric. Food Chem. 2017, 65, 5133–5141. [Google Scholar] [CrossRef] [PubMed]
- Stimpel, M.; Proksch, A.; Wagner, H.; Lohmann-Matthes, M.L. Macrophage Activation and Induction of Macrophage Cytotoxicity by Purified Polysaccharide Fractions from the Plant Echinacea purpurea. Infect. Immun. 1984, 46, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Schoop, R.; Klein, P.; Suter, A.; Johnston, S.L. Echinacea in the Prevention of Induced Rhinovirus Colds: A Meta-Analysis. Clin. Ther. 2006, 28, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Goel, V.; Chang, C.; Slama, J.; Barton, R.; Bauer, R.; Gahler, R.; Basu, T.K. Echinacea Stimulates Macrophage Function in the Lung and Spleen of Normal Rats. J. Nutr. Biochem. 2002, 13, 487. [Google Scholar] [CrossRef] [PubMed]
- Zima, K.; Khaidakov, B.; Sochocka, M.; Ochnik, M.; Lemke, K.; Kowalczyk, P. Exploring the Potency of Polyphenol-Rich Blend from Lonicera caerulea var. Kamtschatica Sevast., Aronia melanocarpa, and Echinacea purpurea: Promising Anti-Inflammatory, Antioxidant, and Antiviral Properties. Heliyon 2024, 10, e35630. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Cunningham, R. Echinacea for the Prevention and Treatment of Upper Respiratory Tract Infections: A Systematic Review and Meta-Analysis. Complement. Ther. Med. 2019, 44, 18–26. [Google Scholar] [CrossRef]
- Crawford, C.; Brown, L.L.; Costello, R.B.; Deuster, P.A. Select Dietary Supplement Ingredients for Preserving and Protecting the Immune System in Healthy Individuals: A Systematic Review. Nutrients 2022, 14, 4604. [Google Scholar] [CrossRef]
- Radhakrishnan, A.; Spencer, S.; Yanamala, N.; Malepati, S. Evaluating the Efficacy and Safety of Ezc Pak, a 5-Day Combination Echinacea-Zinc-Vitamin C Dose Pack with or without Vitamin D, in the Management of Outpatient Upper Respiratory Infections. Infect. Drug Resist. 2023, 16, 2561–2572. [Google Scholar] [CrossRef] [PubMed]
- Izzo, A.A.; Hoon-Kim, S.; Radhakrishnan, R.; Williamson, E. A Critical Approach to Evaluating Clinical Efficacy, Adverse Events, and Drug Interactions of Herbal Remedies. Phytother. Res. 2016, 30, 691–700. [Google Scholar] [CrossRef]
- Turner, R.B.; Riker, D.K.; Gangemi, J.D. Ineffectiveness of Echinacea for Prevention of Experimental Rhinovirus Colds. Antimicrob. Agents Chemother. 2000, 44, 1708–1709. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.; Anderson, L.A.; Gibbons, S.; Phillipson, J.D. Echinacea Species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): A Review of Their Chemistry, Pharmacology, and Clinical Properties. J. Pharm. Pharmacol. 2005, 57, 929–954. [Google Scholar] [CrossRef] [PubMed]
- Sonoda, K.; Aoi, W.; Iwata, T.; Li, Y. Anthocyanin-Rich Aronia melanocarpa Extract Improves Body Temperature Maintenance in Healthy Women with a Cold Constitution. Springerplus 2013, 2, 626. [Google Scholar] [CrossRef] [PubMed]
- Chamberlin, M.L.; Peach, J.T.; Wilson, S.M.G.; Miller, Z.T.; Bothner, B.; Walk, S.T.; Yeoman, C.J.; Miles, M.P. Polyphenol-Rich Aronia melanocarpa Fruit Beneficially Impact Cholesterol, Glucose, and Serum and Gut Metabolites: A Randomized Clinical Trial. Foods 2024, 13, 2768. [Google Scholar] [CrossRef]
- Handeland, M.; Grude, N.; Torp, T.; Slimestad, R. Black Chokeberry Juice (Aronia melanocarpa) Reduces Incidences of Urinary Tract Infection among Nursing Home Residents in the Long Term: A Pilot Study. Nutr. Res. 2014, 34, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Gołba, M.; Sokół-Łętowska, A.; Kucharska, A.Z. Health Properties and Composition of Honeysuckle Berry (Lonicera caerulea L.): An Update on Recent Studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef] [PubMed]
- Bernini, R.; Velotti, F. Natural Polyphenols as Immunomodulators to Rescue Immune Response Homeostasis: Quercetin as a Research Model Against Severe COVID-19. Molecules 2021, 26, 5803. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, H.; Feehan, J.; Apostolopoulos, V.; Platat, C.; Al Dhaheri, A.S.; Ali, H.I.; Ismail, L.C.; Bosevski, M.; Stojanovska, L. Immunomodulatory Effects of Dietary Polyphenols. Nutrients 2021, 13, 728. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.C.; Teuber, S.S. Ellagic Acid and Polyphenolics Present in Walnut Kernels Inhibit In Vitro Human Peripheral Blood Mononuclear Cell Proliferation and Alter Cytokine Production. Ann. N. Y. Acad. Sci. 2010, 1190, 86–96. [Google Scholar] [CrossRef]
- Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and Its Anti-Allergic Immune Response. Molecules 2016, 21, 623. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Won, Y.S.; Yang, X.; Kumazoe, M.; Yamashita, S.; Hara, A.; Takagaki, A.; Goto, K.; Nanjo, F.; Tachibana, H. Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4(+) T Cell and Natural Killer Cell Activities. J. Agric. Food Chem. 2016, 64, 3591–3597. [Google Scholar] [CrossRef] [PubMed]
- Exon, J.H.; Magnuson, B.A.; South, E.H.; Hendrix, K. Dietary Quercetin, Immune Functions, and Colonic Carcinogenesis in Rats. Immunopharmacol. Immunotoxicol. 1998, 20, 173–190. [Google Scholar] [CrossRef]
- Bub, A.; Watzl, B.; Blockhaus, M.; Briviba, K.; Liegibel, U.; Müller, H.; Pool-Zobel, B.L.; Rechkemmer, G. Fruit Juice Consumption Modulates Antioxidative Status, Immune Status, and DNA Damage. J. Nutr. Biochem. 2003, 14, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Orzechowska, B.; Antoszków, Z.; Błach-Olszewska, Z. Individual Differentiation of Innate Antiviral Immunity in Humans: The Role of Endogenous Interferons and Tumor Necrosis Factor in the Immunity of Leukocytes. Arch. Immunol. Ther. Exp. 2003, 51, 51–60. [Google Scholar]
- Malmgaard, L. Induction and Regulation of IFNs During Viral Infections. J. Interferon Cytokine Res. 2004, 24, 439–454. [Google Scholar] [CrossRef]
- Pang, X.; Wang, Z.; Zhai, N.; Zhang, Q.; Song, H.; Zhang, Y.; Li, T.; Li, H.; Su, L.; Niu, J.; et al. IL-10 Plays a Central Regulatory Role in the Cytokines Induced by Hepatitis C Virus Core Protein and Polyinosinic Acid:Polycytodylic Acid. Int. Immunopharmacol. 2016, 38, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Arena, A.; Bisignano, C.; Stassi, G.; Filocamo, A.; Mandalari, G. Almond Skin Inhibits HSV-2 Replication in Peripheral Blood Mononuclear Cells by Modulating the Cytokine Network. Molecules 2015, 20, 8816–8822. [Google Scholar] [CrossRef]
- Arena, A.; Bisignano, C.; Stassi, G.; Mandalari, G.; Wickham, M.S.J.; Bisignano, G. Immunomodulatory and Antiviral Activity of Almond Skins. Immunol. Lett. 2010, 132, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Signer, J.; Jonsdottir, H.R.; Albrich, W.C.; Strasser, M.; Züst, R.; Ryter, S.; Ackermann-Gäumann, R.; Lenz, N.; Siegrist, D.; Suter, A.; et al. In Vitro Virucidal Activity of Echinaforce®, an Echinacea purpurea Preparation, Against Coronaviruses, Including Common Cold Coronavirus 229E and SARS-CoV-2. Virol. J. 2020, 17, 136. [Google Scholar] [CrossRef]
Parameter | Placebo/Syrup | Capsules | p 1 | |
---|---|---|---|---|
Patients, n | 30 | 31 | ||
Sex, n | Women | 19 | 21 | 0.791 |
Men | 11 | 10 | ||
Age, median (IQR) | 59 (19) | 59 (12) | 0.125 | |
Women | 48 (21) | 60 (12.5) | 0.005 | |
Men | 63 (12) | 55 (24) | 0.355 | |
Reported colds/URTIs per patient during last 3 months before study, median (IQR) | 5 (3) | 4 (3) | 0.585 | |
Comorbidities, n | Any comorbidity | 22 | 22 | >0.999 |
Hypertension | 8 | 9 | >0.999 | |
Diabetes | 2 | 2 | >0.999 | |
Allergic diseases | 2 | 1 | >0.999 | |
Concomitant medications, n | 22 | 22 | >0.999 |
Number of Patients | p 1 | ||
---|---|---|---|
Capsules | Placebo | ||
reporting at least three out of four symptoms at the same time (runny nose, cough, fever, difficulty breathing) during the observation period (D1–D120) | 2 | 8 | 0.044 |
fever during treatment (D1–D60) | 1 | 4 | 0.187 |
fever after treatment (D61–D120) | 1 | 5 | 0.104 |
sore throat/hoarseness/scratching in the throat during treatment (D1–D60) | 8 | 16 | 0.038 |
sore throat/hoarseness/scratching in the throat after treatment (D61–D120) | 7 | 8 | 0.337 |
cough during treatment (D1–D60) | 3 | 8 | 0.099 |
cough after treatment (D61–D120) | 3 | 9 | 0.058 |
runny nose/nasal congestion/sneezing during treatment (D1–D60) | 8 | 13 | 0.159 |
runny nose/nasal congestion/sneezing after treatment (D61–D120) | 9 | 9 | 0.576 |
Sample | Parameter | Group | D0 | D60 | D0 vs. D60 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Me | IQR | p 1 | Me | IQR | p 1 | p 2 | Median of Diff. | CI | |||
serum | CRP [mg/L] | CAPSULES | 1.2 | 2.4 | 0.25 | 1.7 | 9.1 | 0.17 | 0.010 | 0.43 | 0.08 to 1.03 |
PLACEBO | 0.7 | 1.7 | 0.9 | 2.1 | 0.080 | 0.25 | 0.00 to 0.74 | ||||
SOD [units/mL] | CAPSULES | 39.5 | 10.8 | 0.824 | 43.3 | 11.5 | 0.303 | 0.219 | 4.7 | −5.5 to 9.5 | |
PLACEBO | 40.9 | 13.7 | 42.5 | 9.5 | 0.711 | −1.7 | −6.7 to 6.2 | ||||
supernatant from PBMCs stimulated with R848 | IFN-α [pg/mL] | CAPSULES | 69.8 | 91.8 | 0.384 | 110.0 | 104.5 | 0.407 | 0.070 | 17.5 | −3.6 to 61.2 |
PLACEBO | 94.6 | 83.7 | 111.8 | 144.0 | 0.070 | 33.8 | −9.3 to 88.1 | ||||
supernatant from PBMCs stimulated with PHA-L | IL-6 [pg/mL] | CAPSULES | 570.5 | 852.4 | 0.738 | 484.4 | 655.8 | 0.501 | 0.256 | −74.7 | −421.0 to 185.3 |
PLACEBO | 498.0 | 364.2 | 403.7 | 539.9 | 0.584 | −102.6 | −146.4 to 127.8 | ||||
IL-1β [pg/mL] | CAPSULES | 10.5 | 15.8 | 0.199 | 20.3 | 36.9 | 0.755 | 0.027 | 7.6 | 0.5 to 26.8 | |
PLACEBO | 12.1 | 6.1 | 16.9 | 35.7 | 0.231 | 0.9 | −3.5 to 31.6 | ||||
TNF-α [pg/mL] | CAPSULES | 190.9 | 250.2 | 0.901 | 203.2 | 289.1 | 0.889 | 0.468 | 43.6 | −55.1 to 86.7 | |
PLACEBO | 183.0 | 306.7 | 219.8 | 168.5 | 0.612 | 10.55 | −122.2 to 79.5 |
Sample | Parameter | Group | D120 | D180 | D120 vs. D180 | ||||
---|---|---|---|---|---|---|---|---|---|
Me | IQR | Me | IQR | p 1 | Median of Diff. | CI | |||
serum | CRP [mg/L] | SYRUP | 0.9 | 2.0 | 0.6 | 1.7 | 0.983 | 0.02 | −0.22 to 0.15 |
SOD [units/mL] | SYRUP | 100.8 | 13.0 | 99.3 | 8.9 | 0.070 | −2.6 | −7.9 to 1.9 | |
supernatant from PBMCs stimulated with R848 | IFN-α [pg/mL] | SYRUP | 168.0 | 168.5 | 117.4 | 145.2 | 0.221 | −9.4 | −40.5 to 20.9 |
supernatant from PBMCs stimulated with PHA-L | IL-6 [pg/mL] | SYRUP | 335.9 | 323.1 | 534.7 | 319.0 | 0.001 | 161.1 | 36.6 to 295.3 |
IL-1β [pg/mL] | SYRUP | 13.7 | 11.4 | 11.4 | 10.5 | 0.387 | 0.05 | −5.2 to 7.6 | |
TNF-α [pg/mL] | SYRUP | 115.1 | 152.7 | 194.1 | 108.9 | 0.003 | 72 | 28.9 to 98 |
IFN-γ [pg/mL] | IL-1β [pg/mL] | IL-2 [pg/mL] | IL-6 [pg/mL] | TNF-α [pg/mL] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Me | IQR | p 1 | Me | IQR | p1 | Me | IQR | p 1 | Me | IQR | p 1 | Me | IQR | p 1 | |
control | bdl | bdl | bdl | bdl | 35.6 | 20.6 | |||||||||
ELA [10 μg/mL] | 125.5 | 40.4 | >0.999 | 20.9 | 24.0 | >0.999 | 36.6 | 84.5 | 0.267 | 45.2 | 38.7 | 0.267 | 81.5 | 20.6 | 0.267 |
ELA [150 μg/mL] | 1500.0 | 1438.0 | 0.020 | 122.3 | 98.7 | 0.004 | 144.3 | 127.9 | <0.001 | 239.4 | 320.6 | <0.001 | 3209.0 | 1219.0 | <0.001 |
IFN-α [pg/mL] | IFN-γ [pg/mL] | IL-1β [pg/mL] | IL-2 [pg/mL] | IL-6 [pg/mL] | TNF-α [pg/mL] | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Me | IQR | p 1 | Me | IQR | p 1 | Me | IQR | p 1 | Me | IQR | p 1 | Me | IQR | p 1 | Me | IQR | p 1 | ||
0 | PHA-L [5 μg/mL] | bdl | 304.6 | 196.2 | bdl | 540.0 | 567.8 | 458.4 | 309.7 | 1272.0 | 633 | ||||||||
ELA [10 μg/mL] | bdl | 257.1 | 189.0 | 0.423 | bdl | >0.999 | 168.2 | 237.7 | 0.635 | 295.3 | 277.6 | >0.999 | 683.4 | 741.9 | 0.160 | ||||
ELA [150 μg/mL] | bdl | 134.7 | 102.0 | 0.008 | 3221.0 | 810.0 | 0.005 | 48.5 | 59.7 | 0.012 | 374.3 | 235.5 | >0.999 | 1751.0 | 1971.0 | 0.635 | |||
0 | R848 [1 μg/mL] | 17.95 | 76.3 | 3724.0 | 2352.0 | 1042 | 343.5 | 45.2 | 130.2 | 3941.0 | 791.0 | 7364.0 | 2456.0 | ||||||
ELA [10 μg/mL] | 89.8 | 214.8 | 0.012 | 3814.0 | 2696.0 | 0.907 | 835.2 | 416.7 | 0.635 | 32.6 | 54.8 | >0.999 | 2982.0 | 782.0 | 0.160 | 6019.0 | 2566.0 | 0.907 | |
ELA [150 μg/mL] | 40.35 | 63.3 | >0.999 | 5032.0 | 3160.0 | 0.267 | 203.5 | 129.5 | <0.001 | 118.8 | 93.2 | 0.025 | 525.5 | 594.8 | <0.001 | 4979.0 | 951.0 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zima, K.; Sochocka, M.; Ochnik, M.; Khaidakov, B.; Lemke, K.; Kowalczyk, P. Therapeutic Potential of a Natural Blend of Aronia melancarpa, Lonicera caerulea, and Echinacea purpurea Extracts in Treating Upper Respiratory Tract Infections: Preliminary Clinical and In Vitro Immunomodulatory Insights. Int. J. Mol. Sci. 2024, 25, 13436. https://doi.org/10.3390/ijms252413436
Zima K, Sochocka M, Ochnik M, Khaidakov B, Lemke K, Kowalczyk P. Therapeutic Potential of a Natural Blend of Aronia melancarpa, Lonicera caerulea, and Echinacea purpurea Extracts in Treating Upper Respiratory Tract Infections: Preliminary Clinical and In Vitro Immunomodulatory Insights. International Journal of Molecular Sciences. 2024; 25(24):13436. https://doi.org/10.3390/ijms252413436
Chicago/Turabian StyleZima, Katarzyna, Marta Sochocka, Michał Ochnik, Barbara Khaidakov, Krzysztof Lemke, and Paulina Kowalczyk. 2024. "Therapeutic Potential of a Natural Blend of Aronia melancarpa, Lonicera caerulea, and Echinacea purpurea Extracts in Treating Upper Respiratory Tract Infections: Preliminary Clinical and In Vitro Immunomodulatory Insights" International Journal of Molecular Sciences 25, no. 24: 13436. https://doi.org/10.3390/ijms252413436
APA StyleZima, K., Sochocka, M., Ochnik, M., Khaidakov, B., Lemke, K., & Kowalczyk, P. (2024). Therapeutic Potential of a Natural Blend of Aronia melancarpa, Lonicera caerulea, and Echinacea purpurea Extracts in Treating Upper Respiratory Tract Infections: Preliminary Clinical and In Vitro Immunomodulatory Insights. International Journal of Molecular Sciences, 25(24), 13436. https://doi.org/10.3390/ijms252413436