Fish and Seafood Safety: Human Exposure to Toxic Metals from the Aquatic Environment and Fish in Central Asia
Abstract
:1. Introduction
2. Toxic Metals
3. Distribution of Toxic Metals in the Water of Rivers, Lakes, and Seas in Central Asia
4. Occurrence of Toxic Metals in Fish and Seafood in Central Asia
5. Intake of Fish and Seafood in Central Asia
Country | Fish Consumption, kg/year/capita | Notes | Reference |
---|---|---|---|
Kazakhstan | 3.68 | Data from 2021. Estimated for general population. Included total fish and seafood consumption. | [4] |
6.4 | Students at universities in all parts of Kazakhstan. Questionnaire data. Included total fish and seafood consumption. | [2] | |
27.4 | Males. North Central Kazakhstan, Temirtau district, regarded as highly polluted with Hg. Questionnaire data. Included mainly freshwater and demersal fish. | [68] | |
14.6 | Females. North Central Kazakhstan, Temirtau district, regarded as highly polluted with Hg. Questionnaire data. Included mainly freshwater and demersal fish. | [68] | |
37.6 | Fishermen. North Central Kazakhstan, Temirtau district, regarded as highly polluted with Hg. Questionnaire data. Included mainly freshwater and demersal fish. | [68] | |
17.9 | Non-fisherman. North Central Kazakhstan, Temirtau district, regarded as highly polluted with Hg. Questionnaire data. Included mainly freshwater and demersal fish. | [68] | |
4.5 | Children 9–10 years with normal weight. Almaty. The 24-h recall method. | [69] | |
3.1 | Children 9–10 years with obesity. Almaty. The 24-h recall method. | [69] | |
Uzbekistan | 3.86 | Estimated for general population. Included total fish and seafood consumption. | [4] |
1 | General population, Tashkent. | [61] | |
0.5 | General population, Khorezm. | [61] | |
Tajikistan | 0.63 | Estimated for general population. Included total fish and seafood consumption. | [4] |
Kyrgyzstan | 0.86 | Estimated for general population. Included total fish and seafood consumption. | [4] |
Turkmenistan | 2.51 | Estimated for general population. Included total fish and seafood consumption. | [4] |
3.28 | General population, Mary City | [71] |
6. Human Biomonitoring of Toxic Metals in Central Asia
7. Risk Assessment Based on Intake and Concentrations in Food
8. Challenges and Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghasemi Fard, S.; Wang, F.; Sinclair, A.J.; Elliott, G.; Turchini, G.M. How does high DHA fish oil affect health? A systematic review of evidence. Crit. Rev. Food Sci. Nutr. 2019, 59, 1684–1727. [Google Scholar] [CrossRef]
- Akhmetova, V.; Balji, Y.; Kandalina, Y.; Iskineyeva, A.; Mukhamejanova, A.; Baspakova, A.; Uzakov, Y.; Issayeva, K.; Zamaratskaia, G. Self-reported consumption frequency of meat and fish products among young adults in Kazakhstan. Nutr. Health 2022. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Zhen, L.; Xiao, Y. Changing Food Consumption and Nutrition Intake in Kazakhstan. Nutrients 2022, 14, 326. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. The Statistics Division of the FAO. Available online: https://www.fao.org/faostat/en/#data (accessed on 1 December 2023).
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Eur. J. Prev. Cardiol. 2022, 29, 5–115. [Google Scholar] [PubMed]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.-G.; Lin, Q.; Huang, H.-H.; Wang, L.-G.; Ning, J.-J.; Du, F.-Y. Heavy metals in fish tissues/stomach contents in four marine wild commercially valuable fish species from the western continental shelf of South China Sea. Mar. Pollut. Bull. 2017, 114, 1125–1129. [Google Scholar] [CrossRef] [PubMed]
- Heaven, S.; Ilyushchenko, M.A.; Tanton, T.W.; Ullrich, S.M.; Yanin, E.P. Mercury in the River Nura and its floodplain, Central Kazakhstan: I. River sediments and water. Sci. Total Environ. 2000, 260, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Rzymski, P.; Klimaszyk, P.; Niedzielski, P.; Marszelewski, W.; Borowiak, D.; Nowiński, K.; Baikenzheyeva, A.; Kurmanbayev, R.; Aladin, N. Pollution with trace elements and rare-earth metals in the lower course of Syr Darya River and Small Aral Sea, Kazakhstan. Chemosphere 2019, 234, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Tlenshieva, A.M.; Witeska, M.; Shalakhmetova, T.M. Genotoxic and histopathological effects of the Ili River (Kazakhstan) water pollution on the grass carp Ctenopharyngodon idella. Environ. Pollut. Bioavailab. 2022, 34, 297–307. [Google Scholar] [CrossRef]
- Zhan, S.; Wu, J.; Jin, M.; Zhang, H. Baseline determination, pollution source and ecological risk of heavy metals in surface sediments of the Amu Darya Basin, Central Asia. J. Geogr. Sci. 2022, 32, 2349–2364. [Google Scholar] [CrossRef]
- Goyanna, F.A.A.; Fernandes, M.B.; de Silva, G.B.; de Lacerda, L.D. Mercury in oceanic upper trophic level sharks and bony fishes-A systematic review. Environ. Pollut. 2023, 318, 120821. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.U.; Wang, C.; Li, Y.; Jin, X.; Yang, S.; Ding, L.; Feng, L.; Wang, B.; Li, P. Human biomonitoring of heavy metals exposure in different age- and gender-groups based on fish consumption patterns in typical coastal cities of China. Ecotoxicol. Environ. Saf. 2023, 262, 115316. [Google Scholar] [CrossRef] [PubMed]
- Kawser Ahmed, M.; Baki, M.A.; Kundu, G.K.; Saiful Islam, M.; Monirul Islam, M.; Muzammel Hossain, M. Human health risks from heavy metals in fish of Buriganga river, Bangladesh. SpringerPlus 2016, 5, 1697. [Google Scholar] [CrossRef] [PubMed]
- Vallius, H. Heavy metal concentrations in sediment cores from the northern Baltic Sea: Declines over the last two decades. Mar. Pollut. Bull. 2014, 79, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Tursumbayeva, M.; Muratuly, A.; Baimatova, N.; Karaca, F.; Kerimray, A. Cities of Central Asia: New hotspots of air pollution in the world. Atmos. Environ. 2023, 309, 119901. [Google Scholar] [CrossRef]
- Karthe, D.; Abdullaev, I.; Boldgiv, B.; Borchardt, D.; Chalov, S.; Jarsjö, J.; Li, L.; Nittrouer, J.A. Water in Central Asia: An integrated assessment for science-based management. Environ. Earth Sci. 2017, 76, 690. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Fang, G.; Li, Z.; Liu, Y. The growing water crisis in Central Asia and the driving forces behind it. J. Clean. Prod. 2022, 378, 134574. [Google Scholar] [CrossRef]
- Askarov, D.M.; Amrin, M.K.; Izekenova, A.K.; Beisenbinova, Z.B.; Dosmukhametov, A.T. Health Status and Quality of Life in the Population near Zhezkazgan Copper Smelter, Kazakhstan. J. Environ. Public Health 2023, 2023, 8477964. [Google Scholar] [CrossRef]
- Markabayeva, A.; Bauer, S.; Pivina, L.; Bjørklund, G.; Chirumbolo, S.; Kerimkulova, A.; Semenova, Y.; Belikhina, T. Increased prevalence of essential hypertension in areas previously exposed to fallout due to nuclear weapons testing at the Semipalatinsk Test Site, Kazakhstan. Environ. Res. 2018, 167, 129–135. [Google Scholar] [CrossRef]
- Sharov, P.; Dowling, R.; Gogishvili, M.; Jones, B.; Caravanos, J.; McCartor, A.; Kashdan, Z.; Fuller, R. The prevalence of toxic hotspots in former Soviet countries. Environ. Pollut. 2016, 211, 346–353. [Google Scholar] [CrossRef]
- Semenova, Y.; Zhunussov, Y.; Pivina, L.; Abisheva, A.; Tinkov, A.; Belikhina, T.; Skalny, A.; Zhanaspayev, M.; Bulegenov, T.; Glushkova, N.; et al. Trace element biomonitoring in hair and blood of occupationally unexposed population residing in polluted areas of East Kazakhstan and Pavlodar regions. J. Trace Elem. Med. Biol. 2019, 56, 31–37. [Google Scholar] [CrossRef]
- Shaimardanova, B.; Korogod, N.; Bigaliyev, A.; Assylbekova, G. Heavy Metals Accumulation in Children Hair. Novosib. State Univ. Bulletin. Ser. Biol. Clin. Med. 2009, 8, 107–111. (In Russian) [Google Scholar]
- Buekers, J.; Baken, K.; Govarts, E.; Martin, L.R.; Vogel, N.; Kolossa-Gehring, M.; Šlejkovec, Z.; Falnoga, I.; Horvat, M.; Lignell, S.; et al. Human urinary arsenic species, associated exposure determinants and potential health risks assessed in the HBM4EU Aligned Studies. Int. J. Hyg. Environ. Health 2023, 248, 114115. [Google Scholar] [CrossRef] [PubMed]
- Vahter, M. Health Effects of Early Life Exposure to Arsenic. Basic Clin. Pharmacol. Toxicol. 2008, 102, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, D.K. Public health. Worldwide occurrences of arsenic in ground water. Science 2002, 296, 2143–2145. [Google Scholar] [CrossRef] [PubMed]
- Taylor, V.; Goodale, B.; Raab, A.; Schwerdtle, T.; Reimer, K.; Conklin, S.; Karagas, M.R.; Francesconi, K.A. Human exposure to organic arsenic species from seafood. Sci. Total Environ. 2017, 580, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Davidson, P.W.; Myers, G.J.; Weiss, B. Mercury exposure and child development outcomes. Pediatrics 2004, 113 (Suppl. S4), 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Zupo, V.; Graber, G.; Kamel, S.; Plichta, V.; Granitzer, S.; Gundacker, C.; Wittmann, K.J. Mercury accumulation in freshwater and marine fish from the wild and from aquaculture ponds. Environ. Pollut. 2019, 255, 112975. [Google Scholar] [CrossRef] [PubMed]
- Butler, E.C.V.; Harries, S.J.; McAllister, K.A.; Windsor, J.O.; Logan, M.; Crook, D.A.; Roberts, B.H.; Grubert, M.A.; Saunders, T.M. Influence of life history variation and habitat on mercury bioaccumulation in a high-order predatory fish in tropical Australia. Environ. Res. 2022, 212, 113152. [Google Scholar] [CrossRef]
- Barregard, L.; Bergström, G.; Fagerberg, B. Cadmium, type 2 diabetes, and kidney damage in a cohort of middle-aged women. Environ. Res. 2014, 135, 311–316. [Google Scholar] [CrossRef]
- Satarug, S.; Vesey, D.A.; Gobe, G.C. Current health risk assessment practice for dietary cadmium: Data from different countries. Food Chem. Toxicol. 2017, 106, 430–445. [Google Scholar] [CrossRef]
- Chen, S.-C.; Lin, H.-C.; Chen, W.-Y. Risks of consuming cadmium-contaminated shellfish under seawater acidification scenario: Estimates of PBPK and benchmark dose. Ecotoxicol. Environ. Saf. 2020, 201, 110763. [Google Scholar] [CrossRef]
- Sand, S.; Becker, W. Assessment of dietary cadmium exposure in Sweden and population health concern including scenario analysis. Food Chem. Toxicol. 2012, 50, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, D.C. Very low lead exposures and children’s neurodevelopment. Curr. Opin. Pediatr. 2008, 20, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Pastorelli, A.A.; Baldini, M.; Stacchini, P.; Baldini, G.; Morelli, S.; Sagratella, E.; Zaza, S.; Ciardullo, S. Human exposure to lead, cadmium and mercury through fish and seafood product consumption in Italy: A pilot evaluation. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 1913–1921. [Google Scholar] [CrossRef] [PubMed]
- Storelli, M.M.; Barone, G. Toxic metals (Hg, Pb, and Cd) in commercially important demersal fish from Mediterranean sea: Contamination levels and dietary exposure assessment. J. Food Sci. 2013, 78, T362–T366. [Google Scholar] [CrossRef]
- Graham, N.A.; Pueppke, S.G.; Uderbayev, T. The Current Status and Future of Central Asia’s Fish and Fisheries: Confronting a Wicked Problem. Water 2017, 9, 701. [Google Scholar] [CrossRef]
- Karthe, D. Environmental Changes in Central and East Asian Drylands and their Effects on Major River-Lake Systems. Quat. Int. 2018, 475, 91–100. [Google Scholar] [CrossRef]
- Ataniyazova, O.A.; Baumann, R.A.; Liem, A.K.D.; Mukhopadhyay, U.A.; Vogelaar, E.F.; Boersma, E.R. Levels of certain metals, organochlorine pesticides and dioxins in cord blood, maternal blood, human milk and some commonly used nutrients in the surroundings of the Aral Sea (Karakalpakstan, Republic of Uzbekistan). Acta Paediatr. 2001, 90, 801–808. [Google Scholar] [CrossRef]
- Kaneko, K.; Chiba, M.; Hashizume, M.; Kunii, O.; Sasaki, S.; Shimoda, T.; Yamashiro, Y.; Caypil, W.; Dauletbaev, D. Renal tubular dysfunction in children living in the Aral Sea Region. Arch. Dis. Child. 2003, 88, 966–968. [Google Scholar] [CrossRef]
- Turdybekova, Y.G.; Kopobayeva, I.L.; Kultanov, B.Z. Comparative Assessment of Women’s Reproductive Health in the Areas Bordering With the Aral Sea Region. Open Access Maced. J. Med. Sci. 2017, 5, 261–265. [Google Scholar] [CrossRef]
- Zetterström, R. Child health and environmental pollution in the Aral Sea region in Kazakhstan. Acta Paediatr. 1999, 88, 49–54. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017; Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 2 December 2023).
- Allen, D.S.; Kolok, A.S.; Snow, D.D.; Satybaldiyev, B.; Uralbekov, B.; Nystrom, G.S.; Thornton Hampton, L.M.; Bartelt-Hunt, S.L.; Sellin Jeffries, M.K. Predicted aquatic and human health risks associated with the presence of metals in the Syr Darya and Shardara Reservoir, Kazakhstan. Sci. Total Environ. 2023, 859, 159827. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, L.; Abuduwaili, J.; Ge, Y.; Issanova, G.; Saparov, G. Distribution Characteristics and Assessment of Heavy Metals in the Surface Water of the Syr Darya River, Kazakhstan. Pol. J. Environ. Stud. 2020, 29, 979–988. [Google Scholar] [CrossRef]
- Satybaldiyev, B.; Ismailov, B.; Nurpeisov, N.; Kenges, K.; Snow, D.D.; Malakar, A.; Uralbekov, B. Evaluation of dissolved and acid-leachable trace element concentrations in relation to practical water quality standards in the Syr Darya, Aral Sea Basin, South Kazakhstan. Chemosphere 2023, 313, 137465. [Google Scholar] [CrossRef]
- Lind, O.C.; Stegnar, P.; Tolongutov, B.; Rosseland, B.O.; Strømman, G.; Uralbekov, B.; Usubalieva, A.; Solomatina, A.; Gwynn, J.P.; Lespukh, E.; et al. Environmental impact assessment of radionuclide and metal contamination at the former U site at Kadji Sai, Kyrgyzstan. J. Environ. Radioact. 2013, 123, 37–49. [Google Scholar] [CrossRef]
- Turdiyeva, K.; Lee, W. Comparative analysis and human health risk assessment of contamination with heavy metals of Central Asian rivers. Heliyon 2023, 9, e17112. [Google Scholar] [CrossRef] [PubMed]
- Shinetova, L.; Akparova, A.; Bekeyeva, S. The Relationship between Cytokine Profile and Hypertension among the Mercury-Exposed Residents of Temirtau Region in Central Kazakhstan. Iran. J. Public Health 2020, 49, 1502–1509. [Google Scholar] [CrossRef]
- Idrissova, G.Z.; Akhmedenov, K.M.; Sergeeva, I.V.; Ponomareva, A.L.; Sergeeva, E.S. Monitoring studies of the ecological state of springs in the Aktobe Region in Western Kazakhstan. J. Pharm. Sci. Res. 2017, 9, 1122–1127. [Google Scholar]
- Idrissova, G.Z.; Sergeeva, I.V.; Ponomareva, A.L.; Sergeeva, E.S.; Shevchenko, E.N. Assessment of the Ecological Status of Springs in Western Kazakhstan on the Basis of Their Hydrochemical and Microbiological Parameters. Biol. Bull. 2020, 47, 1318–1326. [Google Scholar] [CrossRef]
- “On Food Safety” (TR CU 021/2011), Adopted by the Decision of the Commission of the Customs Union Dated 9 December 2011 No. 880. Available online: https://adilet.zan.kz/rus/docs/H11T0000880 (accessed on 20 November 2023).
- Skipperud, L.; Strømman, G.; Yunusov, M.; Stegnar, P.; Uralbekov, B.; Tilloboev, H.; Zjazjev, G.; Heier, L.S.; Rosseland, B.O.; Salbu, B. Environmental impact assessment of radionuclide and metal contamination at the former U sites Taboshar and Digmai, Tajikistan. J. Environ. Radioact. 2013, 123, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, S.M.; Ilyushchenko, M.A.; Tanton, T.W.; Uskov, G.A. Mercury contamination in the vicinity of a derelict chlor-alkali plant: Part II: Contamination of the aquatic and terrestrial food chain and potential risks to the local population. Sci. Total Environ. 2007, 381, 290–306. [Google Scholar] [CrossRef] [PubMed]
- Guney, M.; Akimzhanova, Z.; Kumisbek, A.; Beisova, K.; Kismelyeva, S.; Satayeva, A.; Inglezakis, V.; Karaca, F. Mercury (Hg) Contaminated Sites in Kazakhstan: Review of Current Cases and Site Remediation Responses. Int. J. Environ. Res. Public Health 2020, 17, 8936. [Google Scholar] [CrossRef] [PubMed]
- Kaliyeva, A.A.; Ermienko, A.V. On the Issue of Bioindication of Pollution of Water Bodies by the Example of Crucian Carp (C arassius auratus gibelio). Interexpo Geo-Sib. 2014, 4, 93–99. (In Russian) [Google Scholar]
- Aubakirova, G.; Adilbekov, Z.; Inirbayev, A.; Zhamanova, A.; Akhmetov, A. Assessment of the hydrochemical regime and safety of fish in water bodies of Karaganda region, Kazakhstan. Pak. J. Zool. 2021, 53, 27–31. [Google Scholar] [CrossRef]
- Nurgaliyev, B.E.; Zhumabayev, A.K.; Kushmukhanov, Z.; Kadralieva, B.T.; Ussenov, Z.T.; Inirbayev, A.K. Studies of fish and fish products for the presence of heavy metal salt and radionuclides in water bodies of the West Kazakhstan region. Her. Sci. S. Seifullin Kazakh Agro Tech. Res. Univ. Vet. Sci. 2023, 1, 27–34. [Google Scholar] [CrossRef]
- Adilbekov, Z.S.; Aubakirova, G.A.; Asylbek, A. Quality and safety of fish of selected water bodies of the North Kazakhstan region. Her. Sci. S. Seifullin Agro Tech. Res. Univ. 2021, 2, 61–69. (In Russian) [Google Scholar]
- Karimov, B.; Bekchanova, M.; Tartari, G.; Vignati, D. Monitoring and ecotoxicological estimation of mercury pollution levels of human and aquatic ecosystems components in the Republic of Uzbekistan. Probl. Biogeochem. Geochem. Ecol. 2012, 3, 77–83. [Google Scholar]
- Usubalieva, A.M.; Kojobekova, K.K. Assessment of the safety of fish inhabiting water bodies of the Kyrgyz Republic. Probl. Mod. Sci. Educ. 2017, 1, 23–25. (In Russian) [Google Scholar]
- Schwerin, M.; Schonfeld, S.; Drozdovitch, V.; Akimzhanov, K.; Aldyngurov, D.; Bouville, A.; Land, C.; Luckyanov, N.; Mabuchi, K.; Semenova, Y.; et al. The utility of focus group interviews to capture dietary consumption data in the distant past: Dairy consumption in Kazakhstan villages 50 years ago. J. Dev. Orig. Health Dis. 2010, 1, 192–202. [Google Scholar] [CrossRef]
- Petrlik, J.; Šír, M.; Honzajkova, Z.; Bell, L. Contaminated Sites and Their Management. Case Studies: Kazakhstan and Armenia; Jindrich Petrlik, J., Ed.; Arnika-Toxics and Waste Programme, EcoMuseum, CINEST: Prague, Czech Republic, 2015. [Google Scholar]
- Crane, M.; Babut, M. Environmental quality standards for water framework directive priority substances: Challenges and opportunities. Integr. Environ. Assess. Manag. 2007, 3, 290–296. [Google Scholar] [CrossRef]
- Khaitov, A.H.; Gafurov, A.; van Anrooy, R.; Hasan, M.R.; Bueno, P.B.; Yerli, S.V. Fisheries and Aquaculture in Tajikistan: Review and Policy Framework; No. 1030/3; FAO Fisheries and Aquaculture Circular: Ankara, Turkey, 2013; 90p. [Google Scholar]
- Barth-Jaeggi, T.; Zandberg, L.; Bahruddinov, M.; Kiefer, S.; Rahmarulloev, S.; Wyss, K. Nutritional status of Tajik children and women: Transition towards a double burden of malnutrition. Matern. Child Nutr. 2020, 16, e12886. [Google Scholar] [CrossRef]
- Hsiao, H.-W.; Ullrich, S.M.; Tanton, T.W. Burdens of mercury in residents of Temirtau, Kazakhstan: I: Hair mercury concentrations and factors of elevated hair mercury levels. Sci. Total Environ. 2011, 409, 2272–2280. [Google Scholar] [CrossRef]
- Sharmanov, T.S.; Salkhanova, A.B.; Datkhabayeva, G.K. A comparative analysis of actual nutrition of children aged 9–10 years. Vopr. Pitan. 2018, 87, 28–41. (In Russian) [Google Scholar] [PubMed]
- York, R.; Gossard, M.H. Cross-national meat and fish consumption: Exploring the effects of modernization and ecological context. Ecol. Econ. 2004, 48, 293–302. [Google Scholar] [CrossRef]
- Aydin, A.; Bashimov, G. Determination of Fish Consumption Habits of Consumers: Case Study of Mary City, Turkmenistan. Mar. Sci. Technol. Bull. 2020, 9, 118–124. [Google Scholar] [CrossRef]
- Kawabata, M.; Berardo, A.; Mattei, P.; de Pee, S. Food security and nutrition challenges in Tajikistan: Opportunities for a systems approach. Food Policy 2020, 96, 101872. [Google Scholar] [CrossRef]
- Drozdovitch, V.; Schonfeld, S.; Akimzhanov, K.; Aldyngurov, D.; Land, C.E.; Luckyanov, N.; Mabuchi, K.; Potischman, N.; Schwerin, M.J.; Semenova, Y.; et al. Behavior and food consumption pattern of the population exposed in 1949–1962 to fallout from Semipalatinsk nuclear test site in Kazakhstan. Radiat. Environ. Biophys. 2011, 50, 91–103. [Google Scholar] [CrossRef]
- Erdinger, L.; Eckl, P.; Ingel, F.; Khussainova, S.; Utegenova, E.; Mann, V.; Gabrio, T. The Aral Sea disaster—Human biomonitoring of Hg, As, HCB, DDE, and PCBs in children living in Aralsk and Akchi, Kazakhstan. Int. J. Hyg. Environ. Health 2004, 207, 541–547. [Google Scholar] [CrossRef]
- Chen, G.; Chen, X.; Yan, C.; Wu, X.; Zeng, G. Surveying mercury levels in hair, blood and urine of under 7-year old children from a coastal city in China. Int. J. Environ. Res. Public Health 2014, 11, 12029–12041. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, A.; Kim, S.K.; Moon, H.-B.; Park, J.; Choi, K.; Kim, S. Lead and mercury levels in repeatedly collected urine samples of young children: A longitudinal biomonitoring study. Environ. Res. 2020, 189, 109901. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, M.L.; Vitali, M.; Marconi, E.; Martellucci, S.; Mattei, V.; Canepari, S.; Protano, C. Urinary Mercury Levels and Predictors of Exposure among a Group of Italian Children. Int. J. Environ. Res. Public Health 2020, 17, 9225. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.E.; Trachtenberg, F.L.; Barregard, L.; Bellinger, D.; McKinlay, S. Scalp hair and urine mercury content of children in the Northeast United States: The New England Children’s Amalgam Trial. Environ. Res. 2008, 107, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Schulz, C.; Wilhelm, M.; Heudorf, U.; Kolossa-Gehring, M. Update of the reference and HBM values derived by the German Human Biomonitoring Commission. Int. J. Hyg. Environ. Health 2011, 215, 26–35. [Google Scholar] [CrossRef]
- Brázdová, Z.D.; Pomerleau, J.; Fiala, J.; Vorlová, L.; Müllerová, D. Heavy metals in hair samples: A pilot study of anaemic children in Kazakhstan, Kyrgyzstan and Uzbekistan. Cent. Eur. J. Public Health 2014, 22, 273–276. [Google Scholar] [CrossRef]
- Hegazy, A.A.; Zaher, M.M.; Abd El-Hafez, M.A.; Morsy, A.A.; Saleh, R.A. Relation between anemia and blood levels of lead, copper, zinc and iron among children. BMC Res. Notes 2010, 3, 133. [Google Scholar] [CrossRef]
- Jain, N.B.; Laden, F.; Guller, U.; Shankar, A.; Kazani, S.; Garshick, E. Relation between blood lead levels and childhood anemia in India. Am. J. Epidemiol. 2005, 161, 968–973. [Google Scholar] [CrossRef]
Toxic Metal | Fish Type | Maximum Permissible Concentration |
---|---|---|
Arsenic, mg/kg | Freshwater fish | 1 |
Saltwater fish | 5 | |
Mercury, mg/kg | Freshwater non-predatory fish | 0.3 |
Freshwater predatory fish | 0.6 | |
Tuna, swordfish, and beluga—all types of products, including dried products | 1 | |
Cadmium, mg/kg | All types of fish products and meat of marine mammals, including dried | 0.2 |
Lead, mg/kg | All types of fish products (except for tuna, swordfish, and beluga) and meat of marine mammals, including dried products | 1 |
Tuna, swordfish, and beluga—all types of products, including dried products | 2 |
Country | Location | Sample Type | Arsenic, mg/kg | Mercury, mg/kg | Cadmium, mg/kg | Lead, mg/kg | Reference |
---|---|---|---|---|---|---|---|
Kazakhstan | Dam in Bukharzhyrau District, 43°59′53.268″ N 76°35′42.324″ E | Fish: crucian carp (Carassius carassius), tench (Tinca tinca), perch (Perca fluviatilis), roach (Rutilus rutilus), carp (Cyprinus carpio) | Below LOD | 0.0003 ± 0.001 | 0.0023 ± 0.002 | 0.0017 ± 0.000 | [58] |
Lake Toksumak (Osakarovsky district), 29°16′52.7124″ N 74°20′56.4468″ E | Fish: crucian carp, tench, perch, roach, carp | 0.0022 ± 0.002 | 0.0005 ± 0.000 | 0.0018 ± 0.001 | 0.0019 ± 0.001 | [58] | |
Dam DSU-58 (Nurinsky district), 54°9′19.476″ N 37°34′27.516″ E | Fish: crucian carp, tench, perch, roach, carp | 0.0022 ± 0.000 | 0.0005 ± 0.001 | 0.0026 ± 0.002 | 0.0031 ± 0.000 | [58] | |
Fish nursery of «Livkino» (Uralsk region), 51°22′23.733″ N 51°4′6.25″ E | Fish (no information on species) | 0.245 (mean value) | 0.25 (mean value) | [59] | |||
Lake Lastochka (North Kazakhstan) | Fish (no information on species) | 0.0132 ± 0.002 | 0.0026 ± 0.0001 | 0.0027 ± 0.0002 | 0.0027 ± 0.0001 | [60] | |
Lake Kak (North Kazakhstan) | Fish (no information on species) | 0.0027 ± 0.0001 | 0.00206 ± 0.0001 | 0.0012 ± 0.0001 | 0.0046 ± 0.0002 | [60] | |
Lake Tastemirovka (North Kazakhstan) | Fish (no information on species) | 0.0130 ± 0.0001 | Below LOD | 0.0076 ± 0.00001 | 0.0042 ± 0.0002 | [60] | |
Uzbekistan | Eastern Arnasay Lake System | Common carp (Cyprinus carpio) | 0.029 (mean value) | [61] | |||
Lake Tuzkan, 40°39′43″N 67°31′30″ E | Fish: Pike perch (Sander lucioperca), aral shemaya (Alburnus aralensis), roach (Rutilus rutilus), vostrobryushka (Hemiculter lucidus) | 0.065–0.138 (range) | [61] | ||||
Fish farm Khorezm, 41°20′ N 61°0′ E | Silver carp (Hypophthalmichthys molitrix) | 0.07 (mean value) | [61] | ||||
Tajikistan | Pit Lake, Taboshar, 40°34′12.6″ N 69°38.505′ E | Goldfish (Carassius auratus) | 0.01 ± 0.01 | [54] | |||
Kairakkum reservoir, 40°16′37.27″ N 69°48′58.02″ E | Pike perch (Sander lucioperca) | 0.13 (one sample) | [54] | ||||
Kairakkum reservoir | Eurasian carp (not specified) | 0.01 ± 0.007 | [54] | ||||
Kyrgyzstan | Issyk-Kul Lake, 42°29′59.99″ N 77°29′59.99″ E | Issyk-Kul Chebachok (Leuciscus bergi) | 0.26 ± 0.1 | 0.062 ± 0.02 | 0.00091 ± 0.0002 | 0.022 ± 0.02 | [48] |
Issyk-Kul Lake | Pike perch (Perca schrenkii) | 0.71 ± 0.4 | 0.066 ± 0.02 | [48] | |||
Issyk-Kul Lake | Rainbow trout (Oncorhynchus mykiss) | 0.92 ± 0.3 | 0.026 ± 0.003 | [48] | |||
Chui region, 42°29′59.99″ N 74°29′59.99″ E | Silver carp and common carp | 0.078–0.083 | 0.025–0.03 | 0.060–0.068 | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuzzhassarova, G.; Azarbayjani, F.; Zamaratskaia, G. Fish and Seafood Safety: Human Exposure to Toxic Metals from the Aquatic Environment and Fish in Central Asia. Int. J. Mol. Sci. 2024, 25, 1590. https://doi.org/10.3390/ijms25031590
Zhuzzhassarova G, Azarbayjani F, Zamaratskaia G. Fish and Seafood Safety: Human Exposure to Toxic Metals from the Aquatic Environment and Fish in Central Asia. International Journal of Molecular Sciences. 2024; 25(3):1590. https://doi.org/10.3390/ijms25031590
Chicago/Turabian StyleZhuzzhassarova, Gulnur, Faranak Azarbayjani, and Galia Zamaratskaia. 2024. "Fish and Seafood Safety: Human Exposure to Toxic Metals from the Aquatic Environment and Fish in Central Asia" International Journal of Molecular Sciences 25, no. 3: 1590. https://doi.org/10.3390/ijms25031590
APA StyleZhuzzhassarova, G., Azarbayjani, F., & Zamaratskaia, G. (2024). Fish and Seafood Safety: Human Exposure to Toxic Metals from the Aquatic Environment and Fish in Central Asia. International Journal of Molecular Sciences, 25(3), 1590. https://doi.org/10.3390/ijms25031590