Insights into the Effect of Charges on Hydrogen Bonds
Abstract
:1. Introduction
2. Results
2.1. Effect of the Charge on Hydrogen Bonds
2.1.1. Water and Ammonia
2.1.2. Other Systems
- The values of frequency, bond length, distance, and angle reported are the differences with respect to the hydrogen-bonded system without charge;
- Negative and positive values indicate decrease or increase with respect to the hydrogen-bonded system without charge, respectively;
- The energy difference reported is the difference of Case II with respect to Case I.
2.2. Nature of the Effect of the Charge on Hydrogen Bonds
2.2.1. Charge Transfer
2.2.2. Orbitals Involved in HB
2.3. Evaluation of the Charge Transfer
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.; et al. Definition of the Hydrogen Bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641. [Google Scholar] [CrossRef]
- McNaught, A.D.; Wilkinson, A. Compendium of Chemical Terminology, 2nd ed.; Blackwell Science: Oxford, UK, 1997. [Google Scholar]
- Brown, I.D. On the geometry of O–H⋯ O hydrogen bonds. Acta Cryst. 1976, A32, 24–31. [Google Scholar] [CrossRef]
- Herschlag, D.; Pinney, M.M. Hydrogen bonds: Simple after all? Biochemistry 2018, 57, 3338–3352. [Google Scholar] [CrossRef] [PubMed]
- Toepke, M.W.; Murphy, W.L. Dynamic Hydrogels. In Comprehensive Biomaterials; Paul, D., Ed.; Elsevier Ltd.: Alpharetta, GA, USA, 2011; pp. 577–594. [Google Scholar]
- Alkorta, I.; Rozas, I.; Elguero, J. Non-Conventional Hydrogen Bonds. Chem. Soc. Rev. 1998, 27, 163. [Google Scholar] [CrossRef]
- Głowacki, E.D.; Irimia-Vladu, M.; Bauer, S.; Sariciftci, N.S. Hydrogen-bonds in molecular solids–from biological systems to organic electronics. J. Mater. Chem. B 2013, 1, 3742–3753. [Google Scholar] [CrossRef]
- Su, Z.; Chen, J.; Stansby, J.; Jia, C.; Zhao, T.; Tang, J.; Zhao, C. Hydrogen-Bond Disrupting Electrolytes for Fast and Stable Proton Batteries. Nanomicro Lett. 2022, 18, 2201449. [Google Scholar] [CrossRef] [PubMed]
- van der Lubbe, S.C.C.; Zaccaria, F.; Sun, X.; Fonseca Guerra, C. Secondary electrostatic interaction model revised: Prediction comes mainly from measuring charge accumulation in hydrogen-bonded monomers. J. Am. Chem. Soc. 2019, 141, 4878–4885. [Google Scholar] [CrossRef]
- Van der Lubbe, S.C.; Fonseca Guerra, C. The nature of hydrogen bonds: A delineation of the role of different energy components on hydrogen bond strengths and lengths. Chem. Asian J. 2019, 14, 2760–2769. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, USA, 1960. [Google Scholar]
- Wang, B.; Jiang, W.; Dai, X.; Gao, Y.; Wang, Z.; Zhang, R.Q. Molecular orbital analysis of the hydrogen bonded water dimer. Sci. Rep. 2016, 6, 22099. [Google Scholar] [CrossRef]
- Kananenka, A.; Skinner, J.L. Unusually strong hydrogen bond cooperativity in particular (H2O) 20 clusters. Phys. Chem. Chem. Phys. 2020, 22, 18124–18131. [Google Scholar] [CrossRef]
- Masumian, E.; Boese, A. Intramolecular resonance-assisted hydrogen bonds: Insights from symmetry adapted perturbation theory. Chem. Phys. 2022, 557, 111474. [Google Scholar] [CrossRef]
- Horn, P.; Mao, Y.; Head-Gordon, M. Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals. Phys. Chem. Chem. Phys. 2016, 18, 23067–23079. [Google Scholar] [CrossRef] [PubMed]
- Cappa, C.D.; Smith, J.D.; Messer, B.M.; Cohen, R.C.; Saykally, R.J. Effects of cations on the hydrogen bond network of liquid water: New results from X-ray absorption spectroscopy of liquid microjets. J. Phys. Chem. B 2006, 110, 5301–5309. [Google Scholar] [CrossRef] [PubMed]
- Mayer, I.; Lukovits, I.; Radnai, T. Hydration of cations: H-bond shortening as an electrostatic effect. Chem. Phys. Lett. 1992, 188, 595–598. [Google Scholar] [CrossRef]
- Waluyo, I.; Huang, C.; Nordlund, D.; Bergmann, U.; Weiss, T.M.; Pettersson, L.G.; Nilsson, A. The structure of water in the hydration shell of cations from x-ray Raman and small angle x-ray scattering measurements. J. Chem. Phys. 2011, 134, 064513. [Google Scholar] [CrossRef] [PubMed]
- Rode, B.M.; Sagarik, K.P. The influence of small monovalent cations on neighboring N… H O hydrogen bonds. Chem. Phys. Lett. 1982, 88, 337–341. [Google Scholar] [CrossRef]
- Gurumendi, M.; López, F.; Borrero-González, L.J.; Terencio, T.; Caetano, M.; Reinoso, C.; González, G. Enhanced Chitosan Photoluminescence by Incorporation of Lithium Perchlorate. ACS Omega 2023, 8, 13763–13774. [Google Scholar] [CrossRef]
- Majerz, I. The influence of potassium cation on a strong OHO hydrogen bond. Org. Biomol. Chem. 2011, 9, 1466–1473. [Google Scholar] [CrossRef]
- Sagarik, K.P.; Rode, B.M. The influence of small monovalent cations on the hydrogen bonds of base pairs of DNA. Inorganica Chim. Acta 1983, 78, 81–86. [Google Scholar] [CrossRef]
- Stasyuk, O.A.; Sola, M.; Swart, M.; Fonseca Guerra, C.; Krygowski, T.M.; Szatylowicz, H. Effect of alkali metal cations on length and strength of hydrogen bonds in DNA base pairs. ChemPhysChem 2020, 21, 2112–2126. [Google Scholar] [CrossRef]
- Bartlett, R.J.; Stanton, J.F. Applications of Post-Hartree—Fock Methods: A Tutorial. Rev. Comput. Chem. 1994, 5, 65–169. [Google Scholar]
- Chang, R.; Overby, J. General Chemistry, 11th ed.; Random House: New York, NY, USA, 1986. [Google Scholar]
- Zhang, H.; Zhang, R.; Ding, F.; Shi, C.; Zhao, N. Hydrogen bonding regulation enables indanthrone as a stable and high-rate cathode for lithium-ion batteries. Energy Storage Mater. 2022, 51, 172–180. [Google Scholar] [CrossRef]
- Aroca, R.F. Basic principles of IR/Raman: Applications in small molecules structural elucidation. Structure Elucidation in Organic Chemistry. In The Search for the Right Tools; Cid., M., Bravo, J., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2015; pp. 145–172. [Google Scholar]
- Lampman, G.M.; Kriz, G.S.; Pavia, D.L.; Vyvyan, J.A. Introduction to Spectroscopy; Cengage Learning, Brooks/Cole: Boston, MA, USA, 2014. [Google Scholar]
- Compton, O.C.; Cranford, S.W.; Putz, K.W.; An, Z.; Brinson, L.C.; Buehler, M.J.; Nguyen, S.T. Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. ACS Nano 2012, 6, 2008–2019. [Google Scholar] [CrossRef]
- Popelier, P. Non-Covalent Interactions from a Quantum Chemical Topology Perspective. J. Mol. Model. 2022, 28, 276. [Google Scholar] [CrossRef] [PubMed]
- Sigfridsson, E.; Ryde, U. Comparison of Methods for Deriving Atomic Charges from the Electrostatic Potential and Moments. J. Comput. Chem. 1998, 19, 377–395. [Google Scholar] [CrossRef]
- Liu, X.; Turner, C.H. Computational Study of the Electrostatic Potential and Charges of Multivalent Ionic Liquid Molecules. J. Mol. Liq. 2021, 340, 117190. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 8, e1327. [Google Scholar] [CrossRef]
- Weigend, F.; Kohn, A.; Hattig, C. Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J. Chem. Phys. 2002, 116, 3175. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Prascher, B.P.; Woon, D.E.; Peterson, K.A.; Dunning, T.H.; Wilson, A.K. Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg. Theor. Chem. Acc. 2011, 128, 69–82. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Hellweg, A.; Hattig, C.; Hofener, S.; Klopper, W. Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theor. Chem. Acc. 2007, 117, 587. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Accurate Coulomb-fitting basis sets for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys 2005, 7, 3297. [Google Scholar] [CrossRef] [PubMed]
- Haettig, C. Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr. Phys. Chem. Chem. Phys. 2005, 7, 59. [Google Scholar] [CrossRef]
- Tian, L.; Feiwu, C. Comparison of Computational Methods for Atomic Charges. Acta Phys. Chim. Sin. 2012, 28, 1–18. [Google Scholar] [CrossRef]
- Tian, L.; Feiwu, C. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar]
- Nikolaienko, T.; Bulavin, L. Localized orbitals for optimal decomposition of molecular properties. Int. J. Quantum Chem. 2019, 119, e25798. [Google Scholar] [CrossRef]
- Nikolaienko, T.; Bulavin, L.; Hovorun, D. JANPA: An open source cross-platform implementation of the Natural Population Analysis on the Java platform. Comp. Theor. Chem. 2014, 1050, 15–22. [Google Scholar] [CrossRef]
System | Case I | Case II | Energy Difference (kJ/mol) | |||||
---|---|---|---|---|---|---|---|---|
Frequency (cm−1) | a Y-H Length (Å) | a Y-Y″ Distance (Å) | Angle (°) | Frequency (cm−1) | a Y-H length (Å) | a Y-Y″ Distance (Å) | ||
Water | −518.5 | 0.026 | −0.207 | 16.6 | 159.3 | −0.007 | 0.898 | 53 |
Ammonia | −432.27 | 0.029 | −0.261 | 8.1 | 141.69 | −0.003 | 0.807 | 93.7 |
Methylamine | −395.6 | 0.015 | −0.172 | 4.6 | 27.6 | 0.074 | 0.826 | 89.6 |
Methanol | −548.92 | 0.031 | −0.246 | 11.6 | 146.27 | −0.005 | 0.837 | 59.5 |
Ethanol | −565.02 | 0.025 | −0.205 | 12.5 | 154.28 | −0.011 | 0.870 | 65.4 |
Phenol | −531.18 | 0.028 | −0.233 | 4.7 | 139.21 | −0.006 | 0.752 | 32.2 |
Ethylene glycol | −538.9 | 0.028 | −0.227 | 10.7 | 118.6 | −0.006 | 0.445 | 75 |
4-nitrophenol | −513.7 | 0.026 | −0.224 | 13.3 | 122.2 | −0.006 | 0.537 | 57 |
4-(Phenyldiazenyl)phenol | −353.7 | 0.018 | −0.121 | −2.7 | 149.5 | −0.007 | 0.670 | 70,8 |
b 4-Hydroxybutanoic acid | −845.34 | 0.044 | −0.385 | 37.8 | 43.34 | 0.002 | 0.039 | 66 |
b 2-Hydroxybenzaldehyde | −1190.5 | 0.077 | −0.192 | 9.6 | 412.6 | −0.02 | 0.143 | 64.9 |
b Hydroxyaniline | −609.8 | 0.036 | −0.157 | 12 | 153.9 | −0.008 | −0.005 | 62.7 |
Cyclohexanol | −505.60 | 0.026 | −0.257 | 0.9 | 165.83 | −0.008 | 0.771 | 74.3 |
b Propylene glycol | −270.41 | 0.012 | −0.194 | 11 | 42.27 | −0.001 | 0.34 | −24.1 |
Cyclopropanol | −485.39 | 0.032 | −0.280 | 5.8 | 146.14 | −0.007 | 0.807 | 65.2 |
b 1,2-Benzenediol | −103.34 | 0.006 | −0.067 | 0.5 | 29.49 | −0.002 | −0.101 | 64.3 |
Butanol | −506.55 | 0.036 | −0.285 | 1.8 | 167.48 | −0.007 | 0.79 | 71.8 |
Phenylmethanamine | −361.76 | 0.014 | −0.194 | 2.3 | 20.70 | −0.004 | 0.73 | 94.1 |
Ethylamine | −379.46 | 0.024 | −0.227 | 11.7 | 36.60 | −0.001 | 0.769 | 94.4 |
System | Hydrogen Bond | Case I | Case II |
---|---|---|---|
Water | 0.1424 | 0.0527 | 0.0003 |
Ammonia | 0.1684 | 0.0560 | 0.0003 |
Methylamine | 0.1465 | 0.0262 | 0.0031 |
Methanol | 0.0596 | 0.0625 | 0.0001 |
Ethanol | 0.1119 | 0.0763 | 0.0134 |
Phenol | 0.0739 | −0.0159 | 0.0213 |
Ethylene glycol | 0.0397 | 0.0656 | 0.0314 |
4-nitrophenol | 0.0294 | −0.0384 | 0.0066 |
4-(Phenyldiazenyl)phenol | 0.0336 | 0.0228 | 0.0058 |
Cyclohexanol | 0.0448 | 0.0610 | 0.0205 |
Cyclopropanol | 0.0573 | 0.0583 | 0.0029 |
Butanol | 0.0446 | 0.0398 | 0.0007 |
Phenylmethanamine | 0.0811 | −0.0527 | 0.0026 |
Ethylamine | 0.0119 | 0.0129 | 0.0007 |
System | Case | * Y | H | * Y″ |
---|---|---|---|---|
4-Hydroxybutanoic acid | Hydrogen bond | −0.455178 | 0.317549 | −0.328793 |
Case I | −0.693745 | 0.391354 | −0.358354 | |
Case II | −0.39869 | 0.230582 | −0.339584 | |
2-Hydroxybenzaldehyde | Hydrogen bond | −0.366896 | 0.341047 | −0.356051 |
Case I | −0.580469 | 0.373013 | −0.351110 | |
Case II | −0.340888 | 0.300074 | −0.439170 | |
Hydroxyaniline | Hydrogen bond | −0.422056 | 0.310226 | −0.504710 |
Case I | −0.643747 | 0.364912 | −0.576466 | |
Case II | −0.561430 | 0.366445 | −0.741082 | |
Propylene glycol | Hydrogen bond | −0.4704 | 0.30660 | −0.4785 |
Case I | −0.6702 | 0.3737 | −0.4886 | |
Case II | −0.6171 | 0.3713 | −0.4043 | |
1,2-Benzenediol | Hydrogen bond | −0.4040 | 0.3257 | −0.4559 |
Case I | −0.6352 | 0.3811 | −0.4560 | |
Case II | −0.5858 | 0.3613 | −0.5858 |
Level of Theory | HB | Case I | |||
---|---|---|---|---|---|
Donor | Acceptor | Donor | Acceptor | Cation | |
CC-SDT | −0.0409 | 0.0410 | 0.1803 | 0.1124 | 0.7072 |
MP2 | −0.0426 | 0.0426 | 0.1824 | 0.1152 | 0.7023 |
CAS | −0.0355 | 0.0355 | 0.1756 | 0.0924 | 0.7321 |
HF | −0.0297 | 0.0298 | 0.1600 | 0.0898 | 0.7502 |
DFT | −0.0496 | 0.0495 | 0.2129 | 0.1268 | 0.6604 |
System | Löwdin | Mulliken | CHELPG | AIM | NBO |
---|---|---|---|---|---|
Water | −0.0564 | −0.0897 | 0.0171 | 0.0236 | 0.0707 |
Ammonia | −0.0917 | −0.1124 | 0.0073 | 0.0350 | 0.0677 |
Methylamine | −0.129 | −0.1203 | 0.0381 | 0.0147 | 0.0442 |
Methanol | −0.0454 | 0.0029 | 0.0307 | 0.0293 | 0.0772 |
Ethanol | −0.0888 | −0.0356 | 0.0010 | 0.0212 | 0.0670 |
Phenol | −0.119 | −0.0898 | −0.0257 | 0.0258 | 0.0670 |
Ethylene glycol | −0.0465 | 0.0259 | 0.0918 | 0.0387 | 0.0843 |
4-nitrophenol | −0.068 | −0.0678 | 0.0554 | 0.0432 | 0.0790 |
4-(Phenyldiazenyl)phenol | −0.1423 | −0.0108 | 0.0071 | 0.0156 | 0.0404 |
Benzylamine | −0.2855 | −0.1339 | −0.064 | 0.038 | 0.0146 |
Cyclohexanol | −0.1064 | 0.0162 | −0.1360 | 0.026 | 0.0688 |
Butanol | −0.1341 | −0.0048 | 0.0096 | 0.0179 | 0.0553 |
Cyclopropanol | −0.1052 | 0.0010 | 0.0162 | 0.0271 | 0.0657 |
Ethylamine | −0.1160 | 0.0009 | 0.1139 | 0.038 | 0.0616 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chimarro-Contreras, A.; Lopez-Revelo, Y.; Cardenas-Gamboa, J.; Terencio, T. Insights into the Effect of Charges on Hydrogen Bonds. Int. J. Mol. Sci. 2024, 25, 1613. https://doi.org/10.3390/ijms25031613
Chimarro-Contreras A, Lopez-Revelo Y, Cardenas-Gamboa J, Terencio T. Insights into the Effect of Charges on Hydrogen Bonds. International Journal of Molecular Sciences. 2024; 25(3):1613. https://doi.org/10.3390/ijms25031613
Chicago/Turabian StyleChimarro-Contreras, Andrea, Yomaira Lopez-Revelo, Jorge Cardenas-Gamboa, and Thibault Terencio. 2024. "Insights into the Effect of Charges on Hydrogen Bonds" International Journal of Molecular Sciences 25, no. 3: 1613. https://doi.org/10.3390/ijms25031613
APA StyleChimarro-Contreras, A., Lopez-Revelo, Y., Cardenas-Gamboa, J., & Terencio, T. (2024). Insights into the Effect of Charges on Hydrogen Bonds. International Journal of Molecular Sciences, 25(3), 1613. https://doi.org/10.3390/ijms25031613