Trace DNA Transfer in Co-Working Spaces: The Importance of Background DNA Analysis
Abstract
:1. Introduction
- The “baseline” prevalence and composition of bgDNA on the substrates involved in the transfer study: credit cards and personal office desks;
- Amount and quality of non-self DNA picked up and transferred by the hands during direct contact with objects while staying in shared spaces;
- Amount and quality of non-self DNA that, after deposition onto a desk surface, can be transferred to a credit card, through object-to-object contact.
2. Results
2.1. Part A—Statistical Re-Evaluation of the DNA Traces from the Realistic Transfer Scenarios
- A co-worker was included as an additional contributor (log10LRϕ > 1) in 18.2% of the traces (4 out of 22), meaning 2 out of 11 direct transfer traces (18.2%) and 2 out of 11 secondary transfer traces (18.2%). A log10LRϕ > 6 was observed in 13.6% of the traces (3 out of 22), meaning 1 out of 11 direct transfer samples (9.1%) and 2 out of 11 secondary transfer samples (18.2%);
- A partner was included as an additional contributor (log10LRϕ > 1) in 18.2% of the traces (4 out of 22), meaning 3 out of 11 direct transfer traces (27.3%) and 1 out of 11 secondary transfer traces (9.1%). A log10LRϕ > 6 was observed in 9.1% of the traces (2 out of 22), equally distributed between the two sample groups. In one trace (4.6% of the samples), the OC was the major contributor;
- In total, 91% of the samples contained unexplained, foreign alleles;
- Lastly, the amount of DNA (in ng) contributed by OC and unknown sources was regarded separately. There was no significant difference in OC’s contribution between the two transfer mechanisms (Student’s t-test, p-value = 0.34), nor was there a significant difference in the contribution from unknown sources (Student’s t-test, p-value = 0.07). However, there was a significant difference in the overall non-prevalent DNA (Student’s t-test, p-value = 0.035), which may indicate a combined effect of two factors.
2.2. Part B—Participant’s Credit Cards and Office Desks Control Samples
- Cards: partners and co-workers of the participants were identified as contributors (log10LRϕ > 1) to 25% of the samples (1 out of 4) and they showed a greater contribution to the trace than O. Only for the co-worker, log10LRϕ was greater than 6;
- Desks: a co-worker was included as a contributor to 25% of traces (3 out of 4) with log10LRϕ > 6;
- In total, 75% of the reference samples contained unexplained, foreign alleles.
2.3. Part C—Secondary or Higher Degree Transfer of Foreign DNA
- Direct manipulation: no additional contributor was identified in these traces. However, unexplained, foreign alleles were present in 81.25% of the traces (14 out of 16);
- Secondary transfer: unexplained, foreign alleles were present in 75% of the samples (three out of four). A co-worker was included as a contributor to 50% of the traces (two out of four) with a log10LRϕ greater than 6; however, the donor of the trace was the major contributor.
3. Discussion
3.1. Part A
3.2. Parts B and C
- Part of the background DNA of the items in question;
- Present on POI’s hands and then tranferred during the manipulation of the cards;
- Present on POI’s desk and then transferred during the rubbing of the cards on the desks.
- Direct deposition: non-self DNA accumulated during the workday on the participants’ hands and deposited through direct handling of credit cards;
- Secondary transfer: non-self DNA present on the participants’ hands, deposited onto their office desks during the workday, and subsequently transferred on credit cards rubbed on the desks.
3.2.1. Direct Deposition
3.2.2. Secondary Transfer through Item-to-Item Contact
4. Materials and Methods
4.1. Part A—Statistical Re-Evaluation of the DNA Traces from the Realistic Transfer Scenarios
4.2. Part B—Participant’s Credit Cards and Office Desks Control Samples
4.3. Part C—Secondary or Higher Degree Transfer of Foreign DNA
4.4. Laboratory Processing
4.5. Sub-Source LR Calculations and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burrill, J.; Daniel, B.; Frascione, N. A Review of Trace “Touch DNA” Deposits: Variability Factors and an Exploration of Cellular Composition. Forensic Sci. Int. Genet. 2019, 39, 8–18. [Google Scholar] [CrossRef]
- Watkins, D.R.L.; Myers, D.; Xavier, H.E.; Marciano, M.A. Revisiting Single Cell Analysis in Forensic Science. Sci. Rep. 2021, 11, 7054. [Google Scholar] [CrossRef]
- Taroni, F.; Biedermann, A.; Vuille, J.; Morling, N. Whose DNA Is This? How Relevant a Question? (A Note for Forensic Scientists). Forensic Sci. Int. Genet. 2013, 7, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Champod, C. DNA Transfer: Informed Judgment or Mere Guesswork? Front. Genet. 2013, 4, 300. [Google Scholar] [CrossRef]
- Gill, P.; Hicks, T.; Butler, J.M.; Connolly, E.; Gusmão, L.; Kokshoorn, B.; Morling, N.; van Oorschot, R.A.; Parson, W.; Prinz, M.; et al. Butler DNA Commission of the International Society for Forensic Genetics: Assessing the Value of Forensic Biological Evidence—Guidelines Highlighting the Importance of Propositions. Part II: Evaluation of Biological Traces Considering Activity Level Propositions. Forensic Sci. Int. Genet. 2020, 44, 102186. [Google Scholar]
- Gosch, A.; Courts, C. On DNA Transfer: The Lack and Difficulty of Systematic Research and How to Do It Better. Forensic Sci. Int. Genet. 2019, 40, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.; Kokshoorn, B.; Biedermann, A. Evaluation of Forensic Genetics Findings given Activity Level Propositions: A Review. Forensic Sci. Int. Genet. 2018, 36, 34–49. [Google Scholar] [CrossRef] [PubMed]
- Schaapveld, T.E.M.; Opperman, S.L.; Harbison, S. Bayesian Networks for the Interpretation of Biological Evidence. WIREs Forensic Sci. 2019, 1, e1325. [Google Scholar] [CrossRef]
- Taylor, D.; Biedermann, A.; Hicks, T.; Champod, C. A Template for Constructing Bayesian Networks in Forensic Biology Cases When Considering Activity Level Propositions. Forensic Sci. Int. Genet. 2018, 33, 136–146. [Google Scholar] [CrossRef]
- Szkuta, B.; Ansell, R.; Boiso, L.; Connolly, E.; Kloosterman, A.D.; Kokshoorn, B.; McKenna, L.G.; Steensma, K.; van Oorschot, R.A.H. Assessment of the Transfer, Persistence, Prevalence and Recovery of DNA Traces from Clothing: An Inter-Laboratory Study on Worn Upper Garments. Forensic Sci. Int. Genet. 2019, 42, 56–68. [Google Scholar] [CrossRef]
- Kokshoorn, B.; Aarts, L.H.J.; Ansell, R.; Connolly, E.; Drotz, W.; Kloosterman, A.D.; McKenna, L.G.; Szkuta, B.; van Oorschot, R.A.H. Sharing Data on DNA Transfer, Persistence, Prevalence and Recovery: Arguments for Harmonization and Standardization. Forensic Sci. Int. Genet. 2018, 37, 260–269. [Google Scholar] [CrossRef] [PubMed]
- van Oorschot, R.A.H.; Meakin, G.E.; Kokshoorn, B.; Goray, M.; Szkuta, B. DNA Transfer in Forensic Science: Recent Progress towards Meeting Challenges. Genes 2021, 12, 1766. [Google Scholar] [CrossRef] [PubMed]
- Meakin, G.E.; Kokshoorn, B.; van Oorschot, R.A.H.; Szkuta, B. Evaluating Forensic DNA Evidence: Connecting the Dots. WIREs Forensic Sci. 2021, 3, e1404. [Google Scholar] [CrossRef]
- Sessa, F.; Pomara, C.; Esposito, M.; Grassi, P.; Cocimano, G.; Salerno, M. Indirect DNA Transfer and Forensic Implications: A Literature Review. Genes 2023, 14, 2153. [Google Scholar] [CrossRef]
- McKenna, L. Understanding DNA Results within the Case Context: Importance of the Alternative Proposition. Front Genet. 2013, 4, 242. [Google Scholar] [CrossRef]
- van Oorschot, R.A.H.; Szkuta, B.; Meakin, G.E.; Kokshoorn, B.; Goray, M. DNA Transfer in Forensic Science: A Review. Forensic Sci. Int. Genet. 2019, 38, 140–166. [Google Scholar] [CrossRef]
- Szkuta, B.; Reither, J.; Conlan, X.; van Oorschot, R.A.H. The Presence of Background DNA on Common Entry Points to Homes. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 784–786. [Google Scholar] [CrossRef]
- Wickenheiser, R.A. Trace DNA: A Review, Discussion of Theory, and Application of the Transfer of Trace Quantities of DNA through Skin Contact. J. Forensic Sci. 2002, 47, 442–450. [Google Scholar] [CrossRef]
- Rutty, G.N.; Hopwood, A.; Tucker, V. The Effectiveness of Protective Clothing in the Reduction of Potential DNA Contamination of the Scene of Crime. Int. J. Leg. Med. 2003, 117, 170–174. [Google Scholar] [CrossRef]
- Milstone, L.M. Epidermal Desquamation. J. Dermatol. Sci. 2004, 36, 131–140. [Google Scholar] [CrossRef]
- Port, N.J.; Bowyer, V.L.; Graham, E.A.M.; Batuwangala, M.S.; Rutty, G.N. How Long Does It Take a Static Speaking Individual to Contaminate the Immediate Environment? Forensic Sci. Med. Pathol. 2006, 2, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Puliatti, L.; Handt, O.; Taylor, D. The Level of DNA an Individual Transfers to Untouched Items in Their Immediate Surroundings. Forensic Sci. Int. Genet. 2021, 54, 102561. [Google Scholar] [CrossRef] [PubMed]
- Szkuta, B.; Ballantyne, K.N.; Kokshoorn, B.; van Oorschot, R.A.H. Transfer and Persistence of Non-Self DNA on Hands over Time: Using Empirical Data to Evaluate DNA Evidence given Activity Level Propositions. Forensic Sci. Int. Genet. 2018, 33, 84–97. [Google Scholar] [CrossRef]
- Fantinato, C.; Gill, P.; Fonneløp, A.E. Detection of Human DNA in the Air. Forensic Sci. Int. Genet. Suppl. Ser. 2022, 8, 282–284. [Google Scholar] [CrossRef]
- Fantinato, C.; Fonneløp, A.E.; Bleka, Ø.; Vigeland, M.D.; Gill, P. The Invisible Witness: Air and Dust as DNA Evidence of Human Occupancy in Indoor Premises. Sci. Rep. 2023, 13, 19059. [Google Scholar] [CrossRef] [PubMed]
- Toothman, M.H.; Kester, K.M.; Champagne, J.; Cruz, T.D.; Street, W.S.; Brown, B.L. Characterization of Human DNA in Environmental Samples. Forensic Sci. Int. 2008, 178, 7–15. [Google Scholar] [CrossRef]
- Fonneløp, A.E.; Johannessen, H.; Gill, P. Persistence and Secondary Transfer of DNA from Previous Users of Equipment. Forensic Sci. Int. Genet. Suppl. Ser. 2015, 5, e191–e192. [Google Scholar] [CrossRef]
- Taylor, D.; Abarno, D.; Rowe, E.; Rask-Nielsen, L. Observations of DNA Transfer within an Operational Forensic Biology Laboratory. Forensic Sci. Int. Genet. 2016, 23, 33–49. [Google Scholar] [CrossRef]
- Mercer, C.; Taylor, D.; Henry, J.; Linacre, A. DNA Accumulation and Transfer within an Operational Forensic Exhibit Storeroom. Forensic Sci. Int. Genet. 2023, 62, 102799. [Google Scholar] [CrossRef]
- Samie, L.; Hicks, T.; Castella, V.; Taroni, F. Stabbing Simulations and DNA Transfer. Forensic Sci. Int. Genet. 2016, 22, 73–80. [Google Scholar] [CrossRef]
- Meakin, G.E.; Butcher, E.V.; van Oorschot, R.A.H.; Morgan, R.M. Trace DNA Evidence Dynamics: An Investigation into the Deposition and Persistence of Directly- and Indirectly-Transferred DNA on Regularly-Used Knives. Forensic Sci. Int. Genet. 2017, 29, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Goray, M.; van Oorschot, R.A.H. The Complexities of DNA Transfer during a Social Setting. Leg. Med. 2015, 17, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Fonneløp, A.E.; Ramse, M.; Egeland, T.; Gill, P. The Implications of Shedder Status and Background DNA on Direct and Secondary Transfer in an Attack Scenario. Forensic Sci. Int. Genet. 2017, 29, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Buckingham, A.K.; Harvey, M.L.; van Oorschot, R.A.H. The Origin of Unknown Source DNA from Touched Objects. Forensic Sci. Int. Genet. 2016, 25, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Szkuta, B.; Ballantyne, K.N.; van Oorschot, R.A.H. Transfer and Persistence of DNA on the Hands and the Influence of Activities Performed. Forensic Sci. Int. Genet. 2017, 28, 10–20. [Google Scholar] [CrossRef] [PubMed]
- van den Berge, M.; Ozcanhan, G.; Zijlstra, S.; Lindenbergh, A.; Sijen, T. Prevalence of Human Cell Material: DNA and RNA Profiling of Public and Private Objects and after Activity Scenarios. Forensic Sci. Int. Genet. 2016, 21, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Zacher, M.; van Oorschot, R.A.H.; Handt, O.; Goray, M. DNA Transfer in an Office Space Visited by an Intruder after Resumed Use by the Owner. Forensic Sci. Int. Genet. Suppl. Ser. 2022, 8, 311–313. [Google Scholar] [CrossRef]
- van Oorschot, R.A.H.; McColl, D.L.; Alderton, J.E.; Harvey, M.L.; Mitchell, R.J.; Szkuta, B. Activities between Activities of Focus—Relevant When Assessing DNA Transfer Probabilities. Forensic Sci. Int. Genet. Suppl. Ser. 2015, 5, e75–e77. [Google Scholar] [CrossRef]
- Gosch, A.; Euteneuer, J.; Preuß-Wössner, J.; Courts, C. DNA Transfer to Firearms in Alternative Realistic Handling Scenarios. Forensic Sci. Int. Genet. 2020, 48, 102355. [Google Scholar] [CrossRef]
- Fonneløp, A.E.; Faria, S.; Shanthan, G.; Gill, P. Who Packed the Drugs? Application of Bayesian Networks to Address Questions of DNA Transfer, Persistence, and Recovery from Plastic Bags and Tape. Genes 2021, 13, 18. [Google Scholar] [CrossRef]
- Mayuoni-Kirshenbaum, L.; Waiskopf, O.; Finkelstein, N.; Pasternak, Z. How Did the DNA of a Suspect Get to the Crime Scene? A Practical Study in DNA Transfer during Lock-Picking. Aust. J. Forensic Sci. 2022, 54, 15–25. [Google Scholar] [CrossRef]
- Magee, A.M.; Breathnach, M.; Doak, S.; Thornton, F.; Noone, C.; McKenna, L.G. Wearer and Non-Wearer DNA on the Collars and Cuffs of Upper Garments of Worn Clothing. Forensic Sci. Int. Genet. 2018, 34, 152–161. [Google Scholar] [CrossRef]
- Reither, J.B.; Gray, E.; Durdle, A.; Conlan, X.A.; van Oorschot, R.A.H.; Szkuta, B. Investigation into the Prevalence of Background DNA on Flooring within Houses and Its Transfer to a Contacting Surface. Forensic Sci. Int. 2021, 318, 110563. [Google Scholar] [CrossRef]
- Reither, J.B.; van Oorschot, R.A.H.; Durdle, A.; Szkuta, B. DNA Transfer to Placed, Stored, and Handled Drug Packaging and Knives in Houses. Forensic Sci. Int. Genet. 2023, 65, 102888. [Google Scholar] [CrossRef] [PubMed]
- Henry, L.; Zieger, M. Self- and Non-Self-DNA on Hands and Sleeve Cuffs. Int. J. Leg. Med 2023. Advance online publication. [Google Scholar] [CrossRef] [PubMed]
- Willis, S.; Kenna, L.M.; Dermott, S.M.; O’ Donnell’s, G. ENFSI Guideline for Evaluative Reporting in Forensic Science—Strengthening the Evaluation of Forensic Results across Europe (STEOFRAE); European Network of Forensic Science Institutes: Wiesbaden, Germany, 2015. [Google Scholar]
- Onofri, M.; Altomare, C.; Severini, S.; Tommolini, F.; Lancia, M.; Carlini, L.; Gambelunghe, C.; Carnevali, E. Direct and Secondary Transfer of Touch DNA on a Credit Card: Evidence Evaluation Given Activity Level Propositions and Application of Bayesian Networks. Genes 2023, 14, 996. [Google Scholar] [CrossRef]
- van Oorschot, R.A.H.; Glavich, G.; Mitchell, R.J. Persistence of DNA Deposited by the Original User on Objects after Subsequent Use by a Second Person. Forensic Sci. Int. Genet. 2014, 8, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, V.; Mitchell, R.; Ballantyne, K.; van Oorschot, R.A.H. Following the Transfer of DNA: How Does the Presence of Background DNA Affect the Transfer and Detection of a Target Source of DNA? Forensic Sci. Int. Genet. 2015, 19, 68–75. [Google Scholar] [CrossRef]
- Atkinson, K.; Arsenault, H.; Taylor, C.; Volgin, L.; Millman, J. Transfer and Persistence of DNA on Items Routinely Encountered in Forensic Casework Following Habitual and Short-Duration One-Time Use. Forensic Sci. Int. Genet. 2022, 60, 102737. [Google Scholar] [CrossRef]
- Ruan, T.; Barash, M.; Gunn, P.; Bruce, D. Investigation of DNA Transfer onto Clothing during Regular Daily Activities. Int. J. Leg. Med. 2018, 132, 1035–1042. [Google Scholar] [CrossRef]
- Graham, E.A.M.; Rutty, G.N. Investigation into “Normal” Background DNA on Adult Necks: Implications for DNA Profiling of Manual Strangulation Victims. J. Forensic Sci. 2008, 53, 1074–1082. [Google Scholar] [CrossRef]
- Reither, J.B.; van Oorschot, R.A.H.; Szkuta, B. DNA Transfer between Worn Clothing and Flooring Surfaces with Known Histories of Use. Forensic Sci. Int. Genet. 2022, 61, 102765. [Google Scholar] [CrossRef] [PubMed]
- Lowe, A.; Murray, C.; Whitaker, J.; Tully, G.; Gill, P. The Propensity of Individuals to Deposit DNA and Secondary Transfer of Low Level DNA from Individuals to Inert Surfaces. Forensic Sci. Int. 2002, 129, 25–34. [Google Scholar] [CrossRef]
- Phipps, M.; Petricevic, S. The Tendency of Individuals to Transfer DNA to Handled Items. Forensic Sci. Int. 2007, 168, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Kanokwongnuwut, P.; Martin, B.; Kirkbride, K.P.; Linacre, A. Shedding Light on Shedders. Forensic Sci. Int. Genet. 2018, 36, 20–25. [Google Scholar] [CrossRef]
- Tan, J.; Lee, J.Y.; Lee, L.Y.C.; Aw, Z.Q.; Chew, M.H.; Ishak, N.I.B.; Lee, Y.S.; Mugni, M.A.; Syn, C.K.C. Shedder Status: Does It Really Exist? Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 360–362. [Google Scholar] [CrossRef]
- Goray, M.; van Oorschot, R.A.H. Shedder Status: Exploring Means of Determination. Sci. Justice 2021, 61, 391–400. [Google Scholar] [CrossRef]
- Schwender, M.; Bamberg, M.; Dierig, L.; Kunz, S.N.; Wiegand, P. The Diversity of Shedder Tests and a Novel Factor That Affects DNA Transfer. Int. J. Leg. Med 2021, 135, 1267–1280. [Google Scholar] [CrossRef]
- Jansson, L.; Swensson, M.; Gifvars, E.; Hedell, R.; Forsberg, C.; Ansell, R.; Hedman, J. Individual Shedder Status and the Origin of Touch DNA. Forensic Sci. Int. Genet. 2022, 56, 102626. [Google Scholar] [CrossRef]
- Goray, M.; Fowler, S.; Szkuta, B.; van Oorschot, R.A.H. Shedder Status—An Analysis of Self and Non-Self DNA in Multiple Handprints Deposited by the Same Individuals over Time. Forensic Sci. Int. Genet. 2016, 23, 190–196. [Google Scholar] [CrossRef]
- Fonneløp, A.E.; Egeland, T.; Gill, P. Secondary and Subsequent DNA Transfer during Criminal Investigation. Forensic Sci. Int. Genet. 2015, 17, 155–162. [Google Scholar] [CrossRef]
- Farmen, R.K.; Jaghø, R.; Cortez, P.; Frøyland, E.S. Assessment of Individual Shedder Status and Implication for Secondary DNA Transfer. Forensic Sci. Int. Genet. Suppl. Ser. 2008, 1, 415–417. [Google Scholar] [CrossRef]
- Johannessen, H.; Gill, P.; Roseth, A.; Fonneløp, A.E. Determination of Shedder Status: A Comparison of Two Methods Involving Cell Counting in Fingerprints and the DNA Analysis of Handheld Tubes. Forensic Sci. Int. Genet. 2021, 53, 102541. [Google Scholar] [CrossRef]
- Lee, L.Y.C.; Tan, J.; Lee, Y.S.; Syn, C.K.-C. Shedder Status—An Analysis over Time and Assessment of Various Contributing Factors. J. Forensic Sci. 2023, 68, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.; Pogemiller, J.; Joslin, J.; Gulick, M.; Pritchard, J. Identification through Typing of DNA Recovered from Touch Transfer Evidence: Parameters Affecting Yield of Recovered Human DNA. J. Forensic Identif. 2008, 58, 33–41. [Google Scholar]
- Reither, J.B.; Taylor, D.; Szkuta, B.; van Oorschot, R.A.H. Exploring How the LR of a POI in a Target Sample Is Impacted by Awareness of the Profile of the Background Derived from an Area Adjacent to the Target Sample. Forensic Sci. Int. Genet. 2023, 65, 102868. [Google Scholar] [CrossRef] [PubMed]
- Reither, J.B.; Taylor, D.; Szkuta, B.; van Oorschot, R.A.H. Determining the Number and Size of Background Samples Derived from an Area Adjacent to the Target Sample That Provide the Greatest Support for a POI in a Target Sample. Forensic Sci. Int. Genet. 2024, 68, 102977. [Google Scholar] [CrossRef] [PubMed]
- Goray, M.; Kokshoorn, B.; Steensma, K.; Szkuta, B.; van Oorschot, R.A.H. DNA Detection of a Temporary and Original User of an Office Space. Forensic Sci. Int. Genet. 2020, 44, 102203. [Google Scholar] [CrossRef] [PubMed]
- Romero-García, C.; Rosell-Herrera, R.; Revilla, C.J.; Baeza-Richer, C.; Gomes, C.; Palomo-Díez, S.; Arroyo-Pardo, E.; López-Parra, A.M. Effect of the Activity in Secondary Transfer of DNA Profiles. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 578–579. [Google Scholar] [CrossRef]
- Oleiwi, A.A.; Morris, M.R.; Schmerer, W.M.; Sutton, R. The Relative DNA-Shedding Propensity of the Palm and Finger Surfaces. Sci. Justice 2015, 55, 329–334. [Google Scholar] [CrossRef]
- Walsh, P.S.; Erlich, H.A.; Higuchi, R. Preferential PCR Amplification of Alleles: Mechanisms and Solutions. Genome Res. 1992, 1, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Calafell, F. The Probability Distribution of the Number of Loci Indicating Exclusion in a Core Set of STR Markers. Int. J. Leg. Med. 2000, 114, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Oldoni, F.; Castella, V.; Hall, D. Shedding Light on the Relative DNA Contribution of Two Persons Handling the Same Object. Forensic Sci. Int. Genet. 2016, 24, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Breathnach, M.; Williams, L.; McKenna, L.; Moore, E. Probability of Detection of DNA Deposited by Habitual Wearer and/or the Second Individual Who Touched the Garment. Forensic Sci. Int. Genet. 2016, 20, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Farash, K.; Hanson, E.K.; Ballantyne, J. Single Source DNA Profile Recovery from Single Cells Isolated from Skin and Fabric from Touch DNA Mixtures in Mock Physical Assaults. Sci. Justice 2018, 58, 191–199. [Google Scholar] [CrossRef]
- Genetisti Forensi Italiani Ge.F.I. Recommendations for Personal Identification Analysis by Forensic Laboratories 2018. Available online: https://www.gefi-isfg.org/temp/GeFI%20guidelines-ONLINEdef.pdf (accessed on 17 December 2023).
- Bleka, Ø.; Storvik, G.; Gill, P. EuroForMix: An Open Source Software Based on a Continuous Model to Evaluate STR DNA Profiles from a Mixture of Contributors with Artefacts. Forensic Sci. Int. Genet. 2016, 21, 35–44. [Google Scholar] [CrossRef]
- Bleka, Ø. EFMex, A Tool for Calculating Exhaustive Propositions Using EuroForMix. 2023. Available online: https://github.com/oyvble/EFMex (accessed on 17 December 2023).
- Hicks, T.; Kerr, Z.; Pugh, S.; Bright, J.-A.; Curran, J.; Taylor, D.; Buckleton, J. Comparing Multiple POI to DNA Mixtures. Forensic Sci. Int. Genet. 2021, 52, 102481. [Google Scholar] [CrossRef]
- Slooten, K. The Comparison of DNA Mixture Profiles with Multiple Persons of Interest. Forensic Sci. Int. Genet. 2022, 56, 102592. [Google Scholar] [CrossRef]
- Tozzo, P.; Mazzobel, E.; Marcante, B.; Delicati, A.; Caenazzo, L. Touch DNA Sampling Methods: Efficacy Evaluation and Systematic Review. Int. J. Mol. Sci. 2022, 23, 15541. [Google Scholar] [CrossRef] [PubMed]
- Hartless, S.; Walton-Williams, L.; Williams, G. Critical Evaluation of Touch DNA Recovery Methods for Forensic Purposes. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 379–380. [Google Scholar] [CrossRef]
- Comte, J.; Baechler, S.; Gervaix, J.; Lock, E.; Milon, M.-P.; Delémont, O.; Castella, V. Touch DNA Collection—Performance of Four Different Swabs. Forensic Sci. Int. Genet. 2019, 43, 102113. [Google Scholar] [CrossRef] [PubMed]
- Verdon, T.J.; Mitchell, R.J.; van Oorschot, R.A.H. Evaluation of Tapelifting as a Collection Method for Touch DNA. Forensic Sci. Int. Genet. 2014, 8, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Hansson, O.; Finnebraaten, M.; Heitmann, I.K.; Ramse, M.; Bouzga, M. Trace DNA Collection—Performance of Minitape and Three Different Swabs. Forensic Sci. Int. Genet. Suppl. Ser. 2009, 2, 189–190. [Google Scholar] [CrossRef]
- Pääbo, S. Amplifying Ancient DNA. In PCR Protocols: A Guide to Methods and Applications; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
- Ewing, M.M.; Thompson, J.M.; McLaren, R.S.; Purpero, V.M.; Thomas, K.J.; Dobrowski, P.A.; DeGroot, G.A.; Romsos, E.L.; Storts, D.R. Human DNA Quantification and Sample Quality Assessment: Developmental Validation of the PowerQuant® System. Forensic Sci. Int. Genet. 2016, 23, 166–177. [Google Scholar] [CrossRef]
- Promega PowerQuant® System—Technical Manual. Available online: https://ita.promega.com/-/media/files/resources/protocols/technical-manuals/tmd/powerquant-system-technical-manual.pdf?rev=eed77410b69d43a2b0ea03fc78c7b69c&sc_lang=en (accessed on 17 December 2023).
- McLaren, R.S.; Bourdeau-Heller, J.; Patel, J.; Thompson, J.M.; Pagram, J.; Loake, T.; Beesley, D.; Pirttimaa, M.; Hill, C.R.; Duewer, D.L.; et al. Developmental Validation of the PowerPlex® ESI 16/17 Fast and PowerPlex® ESX 16/17 Fast Systems. Forensic Sci. Int. Genet. 2014, 13, 195–205. [Google Scholar] [CrossRef]
- Promega PowerPlex® ESX 17 Fast System for Use on the Applied Biosystems® Genetic Analyzers—Technical Manual. Available online: https://www.promega.com/-/media/files/resources/protocols/technical-manuals/tmd/powerplex-esx-17-fast-system-protocol.pdf?rev=5d0f2d6d3e4f4c828caddaf26a0a76d5&sc_lang=en (accessed on 17 December 2023).
Trace | NoC | O | POI | OC | log10LRϕ(OC) | OC Contribution | Profile Completeness OC | Unknown Alleles | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Conv. (MLE) | Cons. | Ex. | Mix. Prop. | ng | AllAlleles | Unique Alleles | ||||||
D2 | 4 | Part. A | Part. B | Part. C | 8.13 | 6.38 | 8.1 | 0.25 | 0.53 | 0.84 | 0.73 | 2 |
D4 | 4 | Part. A | Part. B | Husb. A | 5.8 | 4.01 | 5.13 | 0.21 | 0.22 | 0.84 | 0.58 | 10 |
D6 | 4 | Part. A | Part. B | Part. C | 4.64 | 2.55 | 4.3 | 0.14 | 0.31 | 0.94 | 0.87 | 11 |
D8 | 4 | Part. A | Part. C | Husb. A | 5.78 | 4 | 5.72 | 0.29 | 0.27 | 0.63 | 0.50 | 8 |
D9 | 4 | Part. A | Part. B | Husb. A | 7.32 | 5.61 | 7.24 | 0.10 | 0.23 | 0.91 | 0.75 | 8 |
S3 | 3 | Part. D | Part. C | Part. B | 18.26 | 16.62 | 18.26 | 0.26 | 0.27 | 0.97 | 0.95 | 1 |
S4 | 4 | Part. C | Part. D | Part. B | 7.92 | 5.9 | 7.89 | 0.15 | 0.23 | 0.88 | 0.79 | 9 |
S8 | 4 | Part. A | Part. B | Husb. A | 18.79 | 16.82 | 18.79 | 0.50 | 0.34 | 1 | 1 | 12 |
Trace | Quantity (ng/30 μL) | NoC | O | OC | log10LRϕ(OC) | Mixture Proportions | Relative Contributions (ng) | OC Unique Alleles | Profile Completeness OC | Unknown Alleles | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Conv. (MLE) | Cons. | Ex. | O | OC | Unk | O | OC | Unk | All Alleles | Unique Alleles | |||||||
Card A | 1.56 | 3 | Part. A | Part. B | 7.57 | 5.57 | 6.49 | 0.28 | 0.39 | - | 0.44 | 0.61 | - | 22 | 0.75 | 0.55 | 5 |
Husb. A | 3.3 | 1.26 | 2.22 | 0.33 | 0.51 | 12 | 0.72 | 0.42 | |||||||||
Card B | 0.95 | 3 | Part. B | - | - | - | - | 0.85 | - | 0.14 | 0.80 | - | 0.13 | - | - | - | 4 |
Card C | 12.95 | 3 | Part. C | - | - | - | - | 0.82 | - | 0.18 | 10.62 | - | 2.33 | - | - | - | 7 |
Card D | 3.84 | 2 | Part. D | - | - | - | - | 0.95 | - | 0.05 | 3.65 | - | 0.19 | - | - | - | 0 |
Desk A | 11.93 | 3 | Part. A | - | - | - | - | 0.97 | - | 0.04 | 11.57 | - | 0.48 | - | - | - | 2 |
Desk B | 1.79 | 3 | Part. B | Part. C | 12.51 | 10.71 | 15.89 | 0.67 | 0.28 | 0.05 | 1.20 | 0.50 | 0.09 | 23 | 0.91 | 0.78 | 4 |
Desk C | 3.83 | 2 | Part. C | - | - | - | - | 0.95 | - | 0.05 | 3.64 | - | 0.19 | - | - | - | 1 |
Desk D | 8.99 | 2 | Part. D | - | - | - | - | 0.98 | - | 0.02 | 8.81 | - | 0.18 | - | - | - | 0 |
Trace | Quantity (ng/30 μL) | NoC | O | OC | log10LRϕ(OC) | Mixture Proportions | Relative Contributions (ng) | OC Unique Alleles | Profile Completeness OC | Unknown Alleles | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Conv. (MLE) | Cons. | Ex. | O | OC | Unk | O | OC | Unk | All Alleles | Unique Alleles | |||||||
Direct A.1 | 1.56 | 4 | Part. A | - | - | - | - | 0.75 | - | 0.25 | 1.17 | - | 0.39 | - | - | - | 11 |
Direct A.2 | 0.432 | 2 | - | - | - | - | 0.56 | - | 0.44 | 0.24 | - | 0.19 | - | - | - | 6 | |
Direct A.3 | 1.32 | 2 | - | - | - | - | 0.71 | - | 0.29 | 0.93 | - | 0.39 | - | - | - | 11 | |
Direct A.4 | 0.246 | 1 | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | 2 | |
Direct B.1 | 6.54 | 2 | Part. B | - | - | - | - | 0.95 | - | 0.05 | 6.21 | - | 0.33 | - | - | - | 3 |
Direct B.2 | 6.618 | 2 | - | - | - | - | 0.92 | - | 0.08 | 6.10 | - | 0.52 | - | - | - | 11 | |
Direct B.3 | 5.52 | 2 | - | - | - | - | 0.88 | - | 0.12 | 4.86 | - | 0.66 | - | - | - | 12 | |
Direct B.4 | 2.556 | 2 | - | - | - | - | 0.89 | - | 0.11 | 2.27 | - | 0.29 | - | - | - | 5 | |
Direct C.1 | 23.022 | 2 | Part. C | - | - | - | - | 0.94 | - | 0.06 | 21.64 | - | 1.38 | - | - | - | 3 |
Direct C.2 | 9.678 | 2 | - | - | - | - | 0.91 | - | 0.09 | 8.77 | - | 0.09 | - | - | - | 8 | |
Direct C.3 | 16.95 | 2 | - | - | - | - | 0.94 | - | 0.06 | 16.00 | - | 0.95 | - | - | - | 2 | |
Direct C.4 | 14.91 | 2 | - | - | - | - | 0.94 | - | 0.06 | 14.08 | - | 0.83 | - | - | - | 0 | |
Direct D.1 | 1.482 | 3 | Part. D | - | - | - | - | 0.91 | - | 0.09 | 1.35 | - | 0.13 | - | - | - | 0 |
Direct D.2 | 4.614 | 2 | - | - | - | - | 0.93 | - | 0.07 | 4.29 | - | 0.33 | - | - | - | 5 | |
Direct D.3 | 4.842 | 2 | - | - | - | - | 0.96 | - | 0.04 | 4.66 | - | 0.18 | - | - | - | 2 | |
Direct D.4 | 0.882 | 2 | - | - | - | - | 0.70 | - | 0.30 | 0.61 | - | 0.27 | - | - | - | 6 | |
Secondary A | 0.18 | 1 | Part. A | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | n.c. | 0 |
Secondary B | 0.528 | 3 | Part. B | Part. D | 8.78 | 6.48 | 8.82 | 0.67 | 0.21 | 0.11 | 0.36 | 0.11 | 0.06 | 25 | 0.28 | 0.24 | 1 |
Secondary C | 2.922 | 3 | Part. C | Part. D | 6.77 | 5.035 | 6.77 | 0.87 | 0.08 | 0.05 | 2.54 | 0.23 | 0.15 | 22 | 0.63 | 0.45 | 4 |
Secondary D | 5.226 | 3 | Part. D | - | - | - | - | 0.93 | - | 0.07 | 4.85 | - | 0.38 | - | - | - | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onofri, M.; Tommolini, F.; Severini, S.; Gambelunghe, C.; Lancia, M.; Carlini, L.; Carnevali, E. Trace DNA Transfer in Co-Working Spaces: The Importance of Background DNA Analysis. Int. J. Mol. Sci. 2024, 25, 2207. https://doi.org/10.3390/ijms25042207
Onofri M, Tommolini F, Severini S, Gambelunghe C, Lancia M, Carlini L, Carnevali E. Trace DNA Transfer in Co-Working Spaces: The Importance of Background DNA Analysis. International Journal of Molecular Sciences. 2024; 25(4):2207. https://doi.org/10.3390/ijms25042207
Chicago/Turabian StyleOnofri, Martina, Federica Tommolini, Simona Severini, Cristiana Gambelunghe, Massimo Lancia, Luigi Carlini, and Eugenia Carnevali. 2024. "Trace DNA Transfer in Co-Working Spaces: The Importance of Background DNA Analysis" International Journal of Molecular Sciences 25, no. 4: 2207. https://doi.org/10.3390/ijms25042207
APA StyleOnofri, M., Tommolini, F., Severini, S., Gambelunghe, C., Lancia, M., Carlini, L., & Carnevali, E. (2024). Trace DNA Transfer in Co-Working Spaces: The Importance of Background DNA Analysis. International Journal of Molecular Sciences, 25(4), 2207. https://doi.org/10.3390/ijms25042207