The Facile Synthesis and Application of Mesoporous Silica Nanoparticles with a Vinyl Functional Group for Plastic Recycling
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Materials
3.2. Vinyl-Functionalized Mesoporous Silica Nanoparticles (V-MS)
3.3. Manufacturing Method of Polyethylene Compound
3.4. Characterization of Vinyl-Functionalized Mesoporous Silica Nanoparticles
3.5. Characterization of Polyethylene Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, F.; Zhao, Y.; Wang, D.; Yan, M.; Zhang, J.; Zhang, P.; Ding, T.; Chen, L.; Chen, C. Current technologies for plastic waste treatment: A review. J. Clean. Prod. 2021, 282, 124523. [Google Scholar] [CrossRef]
- Thiounn, T.; Smith, R.C. Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci. 2020, 58, 1347. [Google Scholar] [CrossRef]
- Zheng, K.; Wu, Y.; Hu, Z.; Wang, S.; Jiao, X.; Zhu, J.; Sun, Y.; Xie, Y. Progress and perspective for conversion of plastic wastes into valuable chemicals. Chem. Soc. Rev. 2023, 52, 8. [Google Scholar] [CrossRef]
- Maitlo, G.; Ali, I.; Maitlo, H.A.; Ali, S.; Unar, I.N.; Ahmad, M.B.; Bhutto, D.K.; Karmani, R.K.; Naich, S.R.; Sajjad, R.U.; et al. Plastic Waste Recycling, Applications, and Future Prospects for a Sustainable Environment. Sustainability 2022, 14, 11637. [Google Scholar] [CrossRef]
- Lim, J.; Anh, Y.; Kim, J. Optimal sorting and recycling of plastic waste as a renewable energy resource considering economic feasibility and environmental pollution. Process Saf. Environ. Prot. 2023, 169, 685. [Google Scholar] [CrossRef]
- Hidalgo-Crespo, J.; Soto, M.; Amaya-Rivas, J.L.; Santos-Mendez, M. Carbon and water footprint for the recycling process of expanded polystyrene (EPS) post-consumer waste. Procedia CIRP 2022, 105, 452. [Google Scholar] [CrossRef]
- Abdy, C.; Zhang, Y.; Wang, J.; Yang, Y.; Artamendi, I.; Allen, B. Pyrolysis of polyolefin plastic waste and potential applications in asphalt road construction: A technical review. Resour. Conserv. Recycl. 2022, 180, 106213. [Google Scholar] [CrossRef]
- Yuan, H.; Li, C.; Shan, R.; Zhang, J.; Wu, Y.; Chen, Y. Recent developments on the zeolites catalyzed polyolefin plastics pyrolysis. Fuel Process. Technol. 2022, 238, 107531. [Google Scholar] [CrossRef]
- Priyananda, P.; Nguyen, D.; Huynh, V.; Hawkett, B.S. Decohesion of a polyolefin overlay from a substrate high density polyethylene layer by impact induced stress waves. Waste Manag. 2023, 171, 393. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, B.; Yan, X.; Bai, Y.; Gao, J.; Li, X.; Xie, Q.; Yang, T.; Li, Y. Copyrolysis of Waste Cartons and Polyolefin Plastics under Microwave Heating and Characterization of the Products. ACS Omega 2023, 8, 7331. [Google Scholar] [CrossRef]
- Dziadowiec, D.; Matykiewicz, D.; Szostak, M.; Andrzejewski, J. Overview of the Cast Polyolefin Film Extrusion Technology for Multi-Layer Packaging Applications. Mater. 2023, 16, 1071. [Google Scholar] [CrossRef] [PubMed]
- Tyuftin, A.A.; Pecorini, F.; Zanardi, E.; Kerry, J.P. Parameters Affecting the Water Vapour Permeability of Gelatin Films as Evaluated by the Infrared Detecting Method ASTM F1249. Sustainability 2022, 14, 9018. [Google Scholar] [CrossRef]
- Gaikwad, K.K.; Lee, S.M.; Lee, J.S.; Lee, Y.S. Development of antimicrobial polyolefin films containing lauroyl arginate and their use in the packaging of strawberries. J. Food Meas. Charact. 2017, 11, 1706. [Google Scholar] [CrossRef]
- Stanley, J.; John, A.; Cresnar, K.P.; Zemljic, L.F.; Lambropoulou, D.A.; Bikiaris, D.N. Active Agents Incorporated in Polymeric Substrates to Enhance Antibacterial and Antioxidant Properties in Food Packaging Applications. Macromol 2023, 3, 1–27. [Google Scholar] [CrossRef]
- Velásquez, E.; Dicastillo, C.L.; Vidal, C.P.; Copello, G.; Reyes, C.; Gurada, A.; Galotto, M.J. Feasibility of Valorization of Post-Consumer Recycled Flexible Polypropylene by Adding Fumed Nanosilica for Its Potential Use in Food Packaging toward Sustainability. Polymers 2023, 15, 1081. [Google Scholar] [CrossRef] [PubMed]
- Luna, M.S.; Filippone, G. Effects of nanoparticles on the morphology of immiscible polymer blends—Challenges and opportunities. Eur. Polym. J. 2016, 79, 198. [Google Scholar] [CrossRef]
- Garofalo, E.; Di Maio, L.; Scarfato, P.; Di Gregorio, F.; Incarnato, L. Reactive compatibilization and melt compounding with nanosilicates of post-consumer flexible plastic packagings. Polym. Degrad. Stab. 2018, 152, 52. [Google Scholar] [CrossRef]
- Stu¨rzel, M.; Kurek, A.; Anselm, M.; Halbach, T.; Mülhaupt, R. Polyolefin Nanocomposites and Hybrid Catalysts. Adv. Polym. Sci. 2013, 258, 279. [Google Scholar]
- Wang, X.-L.; Sun, Y.-Y.; Xiao, Y.; Chen, X.-X.; Huang, X.-C.; Zhou, H.-L. Facile Solution-Refluxing Synthesis and Photocatalytic Dye Degradation of a Dynamic Covalent Organic Framework. Molecules 2022, 27, 8002. [Google Scholar] [CrossRef]
- Ahmadi, M.; Hanifpour, A.; Ghiassinejad, S.; van Ruymbeke, E. Polyolefins Vitrimers: Design Principles and Applications. Chem. Mater. 2022, 34, 10249. [Google Scholar] [CrossRef]
- Ghosh, A. Performance modifying techniques for recycled thermoplastics. Resour. Conserv. Recycl. 2021, 175, 105887. [Google Scholar] [CrossRef]
- Collar, E.P.; García-Martínez, J.M. On Chemical Modified Polyolefins by Grafting of Polar Monomers: A Survey Based on Recent Patents Literature. Recent Pat. Mater. Sci. 2010, 3, 76. [Google Scholar] [CrossRef]
- Mangaraj, D. Role of Compatibilization in Recycling Rubber Waste by Blending with Plastics. Rubber Chem. Technol. 2005, 78, 536. [Google Scholar] [CrossRef]
- Hees, T.; Zhong, F.; Stürzel, M.; Mülhaupt, R. Tailoring Hydrocarbon Polymers and All-Hydrocarbon Composites for Circular Economy. Macromol. Rapid Commun. 2018, 40, 1800608. [Google Scholar] [CrossRef] [PubMed]
- Stürzel, M.; Mihan, S.; Mülhaupt, R. From Multisite Polymerization Catalysis to Sustainable Materials and All-Polyolefin Composites. Chem. Rev. 2016, 116, 1398. [Google Scholar] [CrossRef]
- Arandes, J.M.; Ereña, J.; Azkoiti, M.J.; Olazar, M.; Bilbao, J. Thermal recycling of polystyrene and polystyrene-butadiene dissolved in a light cycle oil. J. Anal. Appl. Pyrolysis. 2003, 70, 747. [Google Scholar] [CrossRef]
- Choudhury, A.; Adhikari, B. Dynamic vulcanization of recycled milk pouches (LDPE–LLDPE) and EPDM blends using dicumyl peroxide. Polym. Int. 2007, 56, 1213. [Google Scholar] [CrossRef]
- Kang, M.; Lee, J.-T.; Kim, M.-K.; Byun, M.; Bae, J.Y. Facile Synthesis of Mesoporous Silica at Room Temperature for CO2 Adsorption. Micromachines 2023, 24, 4208. [Google Scholar] [CrossRef]
- Kang, M.; Lee, J.-T.; Bae, J.Y. Facile Mesoporous Hollow Silica Synthesis for Formaldehyde Adsorption. Int. J. Mol. Sci. 2023, 24, 4208. [Google Scholar] [CrossRef]
- Parez-Quintanila, D.; del Hierro, I.; Fajardo, M.; Sierra, I. Mesoporous silica functionalized with 2-mercaptopyridine: Synthesis, characterization and employment for Hg(II) adsorption. Microporous Mesoporous Mater. 2006, 24, 58. [Google Scholar] [CrossRef]
- Gottuso, A.; Armetta, F.; Nardo, V.M.; Parrino, F.; Saladino, M.L. Functionalization of mesoporous silica nanoparticles through one-pot co-condensation in w/o emulsion. Microporous Mesoporous Mater. 2022, 335, 111833. [Google Scholar] [CrossRef]
- Bae, J.Y.; Jang, S.G. Characteristics of CO2 Capture by Tetraethylenepentamine Modified Mesoporous Silica Morphology. J. Nanosci. Nanotechnol. 2019, 19, 6291. [Google Scholar] [CrossRef]
- Bae, J.Y.; Jang, S.G. Preparation and Characterization of Amine-Functionalized Mesoporous Hollow Silica for CO2 Capture. J. Nanosci. Nanotechnol. 2020, 20, 7070. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zheng, K.; Tian, X.; Hu, K.; Wnag, R.; Liu, C.; Li, Y.; Cui, P. Double Glass Transitions and Interfacial Immobilized Layer in in-Situ-Synthesized Poly(vinyl alcohol)/Silica Nanocomposites. Macromolecules 2010, 43, 1076. [Google Scholar] [CrossRef]
- Laguna-Gutierrez, E.; Saiz-Arroyo, C.; Velasco, J.I.; Rodriguez-Perez, M.A. Low Density Polyethylene/Silica Nanocomposite Foams. Relationship between Chemical Composition, Particle Dispersion, Cellular Structure and Physical Properties. Eur. Polym. J. 2016, 81, 173. [Google Scholar] [CrossRef]
- Seavey, K.C.; Liu, Y.A.; Khare, N.P. Quantifying Relationships among the Molecular Weight Distribution, Non-Newtonian Shear Viscosity, and Melt Index for Linear Polymers. Ind. Eng. Chem. Res. 2003, 42, 5354. [Google Scholar] [CrossRef]
- Osman, M.A.; Rupp, J.E.P.; Suter, U.W. Tensile properties of polyethylene-layered silicate nanocomposites. Polymer 2005, 46, 1653. [Google Scholar] [CrossRef]
- Ahankari, S.S.; Kar, K.K. Processing of styrene butadiene rubber–carbon black nanocomposites with gradation of crosslink density: Static and dynamic mechanical characterization. Mater. Sci. Eng. A 2008, 491, 454. [Google Scholar] [CrossRef]
Sodium Silicate (mL) | VTMS (mL) | |
---|---|---|
V00-MS | 40 | 0 |
V05-MS | 35 | 5 |
V10-MS | 30 | 10 |
V15-MS | 25 | 15 |
BET (m2/g) | Pore Size (nm) | Pore Volume (cc/g) | |
---|---|---|---|
V00-MS | 1263 | 3.826 | 0.387 |
V05-MS | 1139 | 3.486 | 0.463 |
V10-MS | 1012 | 3.168 | 0.513 |
V15-MS | 883 | 3.817 | 0.626 |
Sample | Melt Index (g/10 min) | Tensile Strength (kg/cm2) | Elongation (%) | Elastic Modulus (kg/mm2) | Flexural Strength (kg/cm2) | Flexural Modulus (kg/mm2) |
---|---|---|---|---|---|---|
STD PE_A rePE_A 100phr V05-MS 0 phr * | 2.6 ±0.5 | 97.1 ±9.7 | 113.6 ±11.3 | 15.3 ±1.5 | 48.5 ±4.8 | 14.0 ±1.4 |
V05-MS_PE_A #1 rePE_A 100phr V05-MS 1 phr | 2.3 ±0.5 | 100.5 ±10.0 | 101.8 ±10.1 | 15.7 ±1.5 | 50.1 ±5.0 | 13.9 ±1.3 |
V05-MS_PE_A #2 rePE_A 100 phr V05-MS 2 phr | 1.3 ±0.5 | 113.1 ±11.3 | 84.1 ±8.4 | 9.7 ±0.9 | 65.8 ±6.5 | 7.2 ±0.7 |
V05-MS_PE_A #3 rePE_A 100 phr V05-MS 3 phr | 0.6 ±0.5 | 124.9 ±12.4 | 70.2 ±7.0 | 5.4 ±0.5 | 77.4 ±7.7 | 3.3 ±0.3 |
Sample | Melt Index (g/10 min) | Tensile Strength (kg/cm2) | Elongation (%) | Elastic Modulus (kg/mm2) | Flexural Strength (kg/cm2) | Flexural Modulus (kg/mm2) |
---|---|---|---|---|---|---|
STD PE_A rePE_A 100phr V05-MS 0 phr * | 2.6 ±0.5 | 97.1 ±9.7 | 113.6 ±11.3 | 15.3 ±1.5 | 48.5 ±4.8 | 14.0 ±1.4 |
V00-MS_PE_A rePE_A 100phr V00-MS 1 phr | 2.5 ±0.5 | 101.1 ±8.6 | 90.6 ±8.0 | 14.4 ±0.6 | 41.8 ±4.1 | 10.6 ±0.8 |
V05-MS_PE_A rePE_A 100phr V05-MS 1 phr | 2.3 ±0.5 | 100.5 ±10.0 | 101.8 ±10.1 | 15.7 ±1.5 | 50.1 ±5.0 | 13.9 ±1.3 |
V10-MS_PE_A rePE_A 100phr V10-MS 1 phr | 2.4 ±0.5 | 109.5 ±10.2 | 121.4 ±12.1 | 20.5 ±2.0 | 65.6 ±6.5 | 16.0 ±1.6 |
V15-MS_PE_A rePE_A 100phr V15-MS 1 phr | 2.3 ±0.5 | 102.1 ±10.2 | 103.3 ±10.3 | 17.7 ±1.7 | 60.2 ±6.0 | 11.0 ±1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-t.; Kang, M.; Bae, J.Y. The Facile Synthesis and Application of Mesoporous Silica Nanoparticles with a Vinyl Functional Group for Plastic Recycling. Int. J. Mol. Sci. 2024, 25, 2295. https://doi.org/10.3390/ijms25042295
Lee J-t, Kang M, Bae JY. The Facile Synthesis and Application of Mesoporous Silica Nanoparticles with a Vinyl Functional Group for Plastic Recycling. International Journal of Molecular Sciences. 2024; 25(4):2295. https://doi.org/10.3390/ijms25042295
Chicago/Turabian StyleLee, Jong-tak, Misun Kang, and Jae Young Bae. 2024. "The Facile Synthesis and Application of Mesoporous Silica Nanoparticles with a Vinyl Functional Group for Plastic Recycling" International Journal of Molecular Sciences 25, no. 4: 2295. https://doi.org/10.3390/ijms25042295
APA StyleLee, J. -t., Kang, M., & Bae, J. Y. (2024). The Facile Synthesis and Application of Mesoporous Silica Nanoparticles with a Vinyl Functional Group for Plastic Recycling. International Journal of Molecular Sciences, 25(4), 2295. https://doi.org/10.3390/ijms25042295