Autoimmune Autonomic Neuropathy: From Pathogenesis to Diagnosis
Abstract
:1. Introduction
2. Presence of Autoantibodies to gAChR and the Pathomechanism Causing Autonomic Dysfunction
3. Clinical Features of Peripheral Neuropathies Presenting with Autonomic Dysfunction
3.1. AAG
3.2. Acute Autonomic Sensory Neuropathy (AASN)
3.3. Guillain–Barré Syndrome (GBS)
3.4. Neurosarcoidosis
3.5. Paraneoplastic Neurological Syndrome
3.6. Neuropathy in Immunoglobulin Light-Chain (AL) Amyloidosis
3.7. Sjögren’s Syndrome and Other Autoimmune Rheumatic Diseases (ARDs)
3.8. Diabetic Neuropathy
3.9. Uremic Neuropathy
3.10. Transthyretin-Type Familial Amyloid Polyneuropathy (ATTR-FAP)
3.11. Charcot–Marie–Tooth (CMT) Disease and Other Hereditary Neuropathies
3.12. Neuropathy Associated with SARS-CoV-2 Infection
4. Clinical Basis of Peripheral Neuropathy Presenting with Dysautonomia
5. Evaluation and Testing When Diagnosing AAG
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Vernino, S.; Adamski, J.; Kryzer, T.J.; Fealey, R.D.; Lennon, V.A. Neuronal nicotinic ACh receptor antibody in subacute autonomic neuropathy and cancer-related syndromes. Neurology 1998, 50, 1806–1813. [Google Scholar] [CrossRef]
- Vernino, S.; Low, P.A.; Fealey, R.D.; Stewart, J.D.; Farrugia, G.; Lennon, V.A. Autoantibodies to ganglionic acetylcholine receptors in autoimmune autonomic neuropathies. N. Engl. J. Med. 2000, 343, 847–855. [Google Scholar] [CrossRef]
- Lennon, V.A.; Ermilov, L.G.; Szurszewski, J.H.; Vernino, S. Immunization with neuronal nicotinic acetylcholine receptor induces neurological autoimmune disease. J. Clin. Investig. 2003, 111, 907–913. [Google Scholar] [CrossRef]
- Vernino, S.; Low, P.A.; Lennon, V.A. Experimental autoimmune autonomic neuropathy. J. Neurophysiol. 2003, 90, 2053–2059. [Google Scholar] [CrossRef]
- Vernino, S.; Ermilov, L.G.; Sha, L.; Szurszewski, J.H.; Low, P.A.; Lennon, V.A. Passive transfer of autoimmune autonomic neuropathy to mice. J. Neurosci. 2004, 24, 7037–7042. [Google Scholar] [CrossRef]
- Wang, Z.; Low, P.A.; Jordan, J.; Freeman, R.; Gibbons, C.H.; Schroeder, C.; Sandroni, P.; Vernino, S. Autoimmune autonomic ganglionopathy: IgG effects on ganglionic acetylcholine receptor current. Neurology 2007, 68, 1917–1921. [Google Scholar] [CrossRef]
- Vernino, S.; Sandroni, P.; Singer, W.; Low, P.A. Invited Article: Autonomic ganglia: Target and novel therapeutic tool. Neurology 2008, 70, 1926–1932. [Google Scholar] [CrossRef]
- Vernino, S.; Hopkins, S.; Wang, Z. Autonomic ganglia, acetylcholine receptor antibodies, and autoimmune ganglionopathy. Auton. Neurosci. 2009, 146, 3–7. [Google Scholar] [CrossRef]
- Iodice, V.; Kimpinski, K.; Vernino, S.; Sandroni, P.; Fealey, R.D.; Low, P.A. Efficacy of immunotherapy in seropositive and seronegative putative autoimmune autonomic ganglionopathy. Neurology 2009, 72, 2002–2008. [Google Scholar] [CrossRef]
- Nakane, S.; Higuchi, O.; Koga, M.; Kanda, T.; Murata, K.; Suzuki, T.; Kurono, H.; Kunimoto, M.; Kaida, K.; Mukaino, A.; et al. Clinical features of autoimmune autonomic ganglionopathy and the detection of subunit-specific autoantibodies to the ganglionic acetylcholine receptor in Japanese patients. PLoS ONE 2015, 10, e0118312. [Google Scholar] [CrossRef]
- Nakane, S.; Mukaino, A.; Higuchi, O.; Yasuhiro, M.; Takamatsu, K.; Yamakawa, M.; Watari, M.; Tawara, N.; Nakahara, K.I.; Kawakami, A.; et al. A comprehensive analysis of the clinical characteristics and laboratory features in 179 patients with autoimmune autonomic ganglionopathy. J. Autoimmun. 2020, 108, 102403. [Google Scholar] [CrossRef] [PubMed]
- Yamakawa, M.; Nakane, S.; Ihara, E.; Tawara, N.; Ikeda, H.; Igarashi, Y.; Komohara, Y.; Takamatsu, K.; Ikeda, T.; Tomita, Y.; et al. A novel murine model of autoimmune dysautonomia by α3 nicotinic acetylcholine receptor immunization. Front. Neurosci. 2022, 16, 1006923. [Google Scholar] [CrossRef] [PubMed]
- Urriola, N.; Spies, J.M.; Blazek, K.; Lang, B.; Adelstein, S. A flow cytometric assay to detect functional ganglionic acetylcholine receptor antibodies by immunomodulation in autoimmune autonomic ganglionopathy. Front. Immunol. 2021, 12, 705292. [Google Scholar] [CrossRef] [PubMed]
- Karagiorgou, K.; Dandoulaki, M.; Mantegazza, R.; Andreetta, F.; Furlan, R.; Lindstrom, J.; Zisimopoulou, P.; Chroni, E.; Kokotis, P.; Anagnostou, E.; et al. Novel cell-based assay for alpha-3 nicotinic receptor antibodies detects antibodies exclusively in autoimmune autonomic ganglionopathy. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1162. [Google Scholar] [CrossRef] [PubMed]
- Koike, H.; Watanabe, H.; Sobue, G. The spectrum of immune-mediated autonomic neuropathies: Insights from the clinicopathological features. J. Neurol. Neurosurg. Psychiatry 2013, 84, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Urriola, N.; Lang, B.; Adelstein, S. Evaluation of commercially available antibodies and fluorescent conotoxins for the detection of surface ganglionic acetylcholine receptor on the neuroblastoma cell line, IMR-32 by flow cytometry. J. Immunol. Methods 2021, 498, 113124. [Google Scholar] [CrossRef] [PubMed]
- Pechlivanidou, M.; Ninou, E.; Karagiorgou, K.; Tsantila, A.; Mantegazza, R.; Francesca, A.; Furlan, R.; Dudeck, L.; Steiner, J.; Tzartos, J.; et al. Autoimmunity to neuronal nicotinic acetylcholine receptors. Pharmacol. Res. 2023, 192, 106790. [Google Scholar] [CrossRef]
- Conti-Fine, B.M.; Milani, M.; Kaminski, H.J. Myasthenia gravis: Past, present, and future. J. Clin. Investig. 2006, 116, 2843–2854. [Google Scholar] [CrossRef]
- Hinson, S.R.; Romero, M.F.; Popescu, B.F.; Lucchinetti, C.F.; Fryer, J.P.; Wolburg, H.; Fallier-Becker, P.; Noell, S.; Lennon, V.A. Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc. Natl. Acad. Sci. USA 2012, 109, 1245–1250. [Google Scholar] [CrossRef]
- Watari, M.; Nakane, S.; Mukaino, A.; Nakajima, M.; Mori, Y.; Maeda, Y.; Masuda, T.; Takamatsu, K.; Kouzaki, Y.; Higuchi, O.; et al. Autoimmune postural orthostatic tachycardia syndrome. Ann. Clin. Transl. Neurol. 2018, 5, 486–492. [Google Scholar] [CrossRef]
- Li, H.; Yu, X.; Liles, C.; Khan, M.; Vanderlinde-Wood, M.; Galloway, A.; Zillner, C.; Benbrook, A.; Reim, S.; Collier, D.; et al. Autoimmune basis for postural tachycardia syndrome. J. Am. Heart Assoc. 2014, 3, e000755. [Google Scholar] [CrossRef]
- Fedorowski, A.; Li, H.; Yu, X.; Koelsch, K.A.; Harris, V.M.; Liles, C.; Murphy, T.A.; Quadri, S.M.S.; Scofield, R.H.; Sutton, R.; et al. Antiadrenergic autoimmunity in postural tachycardia syndrome. Europace 2017, 19, 1211–1219. [Google Scholar] [CrossRef]
- Dwivedi, S.N.; Kalaria, T.; Buch, H. Thyroid autoantibodies. J. Clin. Pathol. 2023, 76, 19–28. [Google Scholar] [CrossRef]
- Makita, N.; Ando, T.; Sato, J.; Manaka, K.; Mitani, K.; Kikuchi, Y.; Niwa, T.; Ootaki, M.; Takeba, Y.; Matsumoto, N.; et al. Cinacalcet corrects biased allosteric modulation of CaSR by AHH autoantibody. JCI Insight. 2019, 4, e126449. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E.E. The clinical approach to autonomic failure in neurological disorders. Nat. Rev. Neurol. 2014, 10, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Yamakawa, M.; Watari, M.; Torii, K.I.; Kuki, I.; Miharu, M.; Kawazu, M.; Mukaino, A.; Higuchi, O.; Maeda, Y.; Ikeda, T.; et al. gAChR antibodies in children and adolescents with acquired autoimmune dysautonomia in Japan. Ann. Clin. Transl. Neurol. 2021, 8, 790–799. [Google Scholar] [CrossRef]
- Kuki, I.; Kawawaki, H.; Okazaki, S.; Hattori, Y.; Horino, A.; Higuchi, O.; Nakane, S. Autoimmune autonomic ganglionopathy in a pediatric patient presenting with acute encephalitis. Brain Dev. 2016, 38, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, N.; Takahashi, S.; Inaba, T.; Takamiya, M.; Kageyama, Y.; Morimoto, M.; Takahashi, Y.; Nishimura, H.; Nakane, S.; Abe, K. A case of seropositive autoimmune autonomic ganglionopathy with diffuse esophageal spasm. J. Clin. Neurosci. 2017, 39, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Nakane, S.; Mukaino, A.; Maeda, Y.; Higuchi, O.; Matsuo, H.; Ando, Y. Extra-autonomic manifestations in autoimmune autonomic ganglionopathy: A Japanese survey. J. Neurol. Neurosurg. Psychiatry 2017, 88, 367–368. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Ishii, Y. A Japanese case of autoimmune autonomic ganglionopathy (AAG) and a review of AAG cases in Japan. Auton. Neurosci. 2009, 146, 26–28. [Google Scholar] [CrossRef]
- Baker, S.K.; Morillo, C.; Vernino, S. Autoimmune autonomic ganglionopathy with late-onset encephalopathy. Auton. Neurosci. 2009, 146, 29–32. [Google Scholar] [CrossRef]
- Gibbons, C.H.; Centi, J.; Vernino, S.; Freeman, R. Autoimmune autonomic ganglionopathy with reversible cognitive impairment. Arch. Neurol. 2012, 69, 461–466. [Google Scholar]
- Fukuda, M.; Morimoto, T.; Matsuda, H.; Nagao, H.; Wakamoto, H.; Ohnishi, A. A case of acute idiopathic pandysautonomia with SIADH. No Hattatsu 1995, 27, 41–46. [Google Scholar]
- Mukaino, A.; Nakane, S.; Higuchi, O.; Nakamura, H.; Miyagi, T.; Shiroma, K.; Tokashiki, T.; Fuseya, Y.; Ochi, K.; Umeda, M.; et al. Insights from the ganglionic acetylcholine receptor autoantibodies in patients with Sjögren’s syndrome. Mod. Rheumatol. 2016, 26, 708–715. [Google Scholar] [CrossRef]
- Maeda, Y.; Nakane, S.; Higuchi, O.; Nakamura, H.; Komori, A.; Migita, K.; Mukaino, A.; Umeda, M.; Ichinose, K.; Tamai, M.; et al. Ganglionic acetylcholine receptor autoantibodies in patients with autoimmune diseases including primary biliary cirrhosis. Mod. Rheumatol. 2017, 27, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Koike, H.; Atsuta, N.; Adachi, H.; Iijima, M.; Katsuno, M.; Yasuda, T.; Fukada, Y.; Yasui, K.; Nakashima, K.; Horiuchi, M.; et al. Clinicopathological features of acute autonomic and sensory neuropathy. Brain 2010, 133, 2881–2896. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Motegi, T.; Yuasa, T.; Atsumi, T.; Miyatake, T. Acute autonomic and sensory neuropathy associated with galactorrhea-amenorrhea syndrome and intractable anorexia. Rinsho Shinkeigaku 1989, 29, 1265–1271. [Google Scholar]
- Adachi, H.; Mukai, E.; Okuda, S.; Kawada, T. A severe case of acute autonomic and sensory neuropathy. Rinsho Shinkeigaku 1998, 38, 663–668. [Google Scholar] [PubMed]
- Van Doorn, P.A.; Ruts, L.; Jacobs, B.C. Clinical features, pathogenesis, and treatment of Guillain-Barré syndrome. Lancet Neurol. 2008, 7, 939–950. [Google Scholar] [CrossRef]
- Zaeem, Z.; Siddiqi, Z.A.; Zochodne, D.W. Autonomic involvement in Guillain-Barré syndrome: An update. Clin. Auton. Res. 2019, 29, 289–299. [Google Scholar] [CrossRef]
- Chakraborty, T.; Kramer, C.L.; Wijdicks, E.F.M.; Rabinstein, A.A. Dysautonomia in Guillain-Barré Syndrome: Prevalence, Clinical Spectrum, and Outcomes. Neurocrit. Care 2020, 32, 113–120. [Google Scholar] [CrossRef]
- Bazán-Rodríguez, L.; Ruiz-Avalos, J.A.; de Saráchaga, A.J.; Martinez-Jimenez, E.; López-Hernández, J.C.; Vargas-Cañas, S. Dysautonomia and related outcomes in Guillain-Barre syndrome. Auton. Neurosci. 2023, 245, 103070. [Google Scholar] [CrossRef]
- Ropper, A.H.; Wijdicks, E.F.M.; Truax, B.T. Clinical features of the typical syndrome. In Guillain–Barré Syndrome; FA Davis: Philadelphia, PA, USA, 1991; pp. 73–105. [Google Scholar]
- Rzepiński, Ł.; Doneddu, P.E.; Cutellè, C.; Zawadka-Kunikowska, M.; Nobile-Orazio, E. Autonomic nervous system involvement in chronic inflammatory demyelinating polyradiculoneuropathy: A literature review. Neurol. Sci. 2023, 44, 3071–3082. [Google Scholar] [CrossRef]
- Stamboulis, E.; Katsaros, N.; Koutsis, G.; Iakovidou, H.; Giannakopoulou, A.; Simintzi, I. Clinical and subclinical autonomic dysfunction in chronic inflammatory demyelinating polyradiculoneuropathy. Muscle Nerve 2006, 33, 78–84. [Google Scholar] [CrossRef]
- Figueroa, J.J.; Dyck, P.J.; Laughlin, R.S.; Mercado, J.A.; Massie, R.; Sandroni, P.; Dyck, P.J.; Low, P.A. Autonomic dysfunction in chronic inflammatory demyelinating polyradiculoneuropathy. Neurology 2012, 78, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Kidd, D.P. Neurosarcoidosis: Clinical manifestations, investigation and treatment. Pract. Neurol. 2020, 20, 199–212. [Google Scholar] [CrossRef]
- Bradshaw, M.J.; Pawate, S.; Koth, L.L.; Cho, T.A.; Gelfand, J.M. Neurosarcoidosis: Pathophysiology, diagnosis, and treatment. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1084. [Google Scholar] [CrossRef]
- Tavee, J.O.; Karwa, K.; Ahmed, Z.; Thompson, N.; Parambil, J.; Culver, D.A. Sarcoidosis-associated small fiber neuropathy in a large cohort: Clinical aspects and response to IVIG and anti-TNF alpha treatment. Respir. Med. 2017, 126, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Oishi, M.; Mukaino, A.; Kunii, M.; Saito, A.; Arita, Y.; Koike, H.; Higuchi, O.; Maeda, Y.; Abiru, N.; Yamaguchi, N.; et al. Association between neurosarcoidosis with autonomic dysfunction and anti-ganglionic acetylcholine receptor antibodies. J. Neurol. 2021, 268, 4265–4279. [Google Scholar] [CrossRef] [PubMed]
- Binks, S.; Uy, C.; Honnorat, J.; Irani, S.R. Paraneoplastic neurological syndromes: A practical approach to diagnosis and management. Pract. Neurol. 2022, 22, 19–31. [Google Scholar] [CrossRef]
- Lorusso, L.; Hart, I.K.; Ferrari, D.; Ngonga, G.K.; Gasparetto, C.; Ricevuti, G. Autonomic paraneoplastic neurological syndromes. Autoimmun. Rev. 2007, 6, 162–168. [Google Scholar] [CrossRef]
- Shimazaki, C.; Hata, H.; Iida, S.; Ueda, M.; Katoh, N.; Sekijima, Y.; Ikeda, S.; Yazaki, M.; Fukushima, W.; Ando, Y. Nationwide Survey of 741 Patients with Systemic Amyloid Light-chain Amyloidosis in Japan. Intern. Med. 2018, 57, 181–187. [Google Scholar] [CrossRef]
- Maule, S.; Quadri, R.; Mirante, D.; Pellerito, R.A.; Marucco, E.; Marinone, C.; Vergani, D.; Chiandussi, L.; Zanone, M.M. Autonomic nervous dysfunction in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA): Possible pathogenic role of autoantibodies to autonomic nervous structures. Clin. Exp. Immunol. 1997, 110, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Naclerio, C.; Iengo, R.; D’Angelo, S.; Cuomo, G.; Valentini, G. Cardiac autonomic dysfunction precedes the development of fibrosis in patients with systemic sclerosis. Rheumatology 2002, 41, 586–588. [Google Scholar] [CrossRef] [PubMed]
- Newton, J.L.; Frith, J.; Powell, D.; Hackett, K.; Wilton, K.; Bowman, S.; Price, E.; Pease, C.; Andrews, J.; Emery, P.; et al. Autonomic symptoms are common and are associated with overall symptom burden and disease activity in primary Sjogren’s syndrome. Ann. Rheum. Dis. 2012, 71, 1973–1979. [Google Scholar] [CrossRef]
- Mandl, T.; Wollmer, P.; Manthorpe, R.; Jacobsson, L.T. Autonomic and orthostatic dysfunction in primary Sjögren’s syndrome. J. Rheumatol. 2007, 34, 1869–1874. [Google Scholar]
- Davies, K.; Ng, W.F. Autonomic nervous system dysfunction in primary Sjögren’s syndrome. Front. Immunol. 2021, 12, 702505. [Google Scholar] [CrossRef] [PubMed]
- Mravec, B. Autonomic dysfunction in autoimmune diseases: Consequence or cause? Lupus 2007, 16, 767–768. [Google Scholar] [CrossRef]
- Stojanovich, L.; Milovanovich, B.; de Luka, S.R.; Popovich-Kuzmanovich, D.; Bisenich, V.; Djukanovich, B.; Randjelovich, T.; Krotin, M. Cardiovascular autonomic dysfunction in systemic lupus, rheumatoid arthritis, primary Sjögren syndrome and other autoimmune diseases. Lupus 2007, 16, 181–185. [Google Scholar] [CrossRef]
- Stojanovich, L. Autonomic dysfunction in autoimmune rheumatic disease. Autoimmun. Rev. 2009, 8, 569–572. [Google Scholar] [CrossRef]
- Sumida, T.; Tsuboi, H.; Iizuka, M.; Asashima, H.; Matsumoto, I. Anti-M3 muscarinic acetylcholine receptor antibodies in patients with Sjögren’s syndrome. Mod. Rheumatol. 2013, 23, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Imamura, M.; Mukaino, A.; Takamatsu, K.; Tsuboi, H.; Higuchi, O.; Nakamura, H.; Abe, S.; Ando, Y.; Matsuo, H.; Nakamura, T.; et al. Ganglionic acetylcholine receptor antibodies and autonomic dysfunction in autoimmune rheumatic diseases. Int. J. Mol. Sci. 2020, 21, 1332. [Google Scholar] [CrossRef]
- Dawson, L.; Tobin, A.; Smith, P.; Gordon, T. Antimuscarinic antibodies in Sjögren’s syndrome: Where are we, and where are we going? Arthritis Rheum. 2005, 52, 2984–2995. [Google Scholar] [CrossRef] [PubMed]
- Vinik, A.I.; Maser, R.E.; Mitchell, B.D.; Freeman, R. Diabetic autonomic neuropathy. Diabetes Care 2003, 26, 1553–1579. [Google Scholar] [CrossRef]
- Freeman, R. Autonomic peripheral neuropathy. Lancet 2005, 365, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Freeman, R. Diabetic autonomic neuropathy. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 126, pp. 63–79. [Google Scholar]
- Schönauer, M.; Thomas, A.; Morbach, S.; Niebauer, J.; Schönauer, U.; Thiele, H. Cardiac autonomic diabetic neuropathy. Diab. Vasc. Dis. Res. 2008, 5, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Agashe, S.; Petak, S. Cardiac Autonomic Neuropathy in Diabetes Mellitus. Methodist. Debakey Cardiovasc. J. 2018, 14, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.S.H. Detecting and treating the protean manifestations of diabetic autonomic neuropathy. Diabetes Obes. Metab. 2023, 25, 1162–1173. [Google Scholar] [CrossRef]
- Bharucha, A.E.; Locke, G.R.; Murray, J.A. Gastrointestinal Manifestations of Diabetes. In Diabetes in America, 3rd ed.; Chapter 27; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2018. [Google Scholar]
- Marathe, C.S.; Jones, K.L.; Wu, T.; Rayner, C.K.; Horowitz, M. Gastrointestinal autonomic neuropathy in diabetes. Auton. Neurosci. 2020, 229, 102718. [Google Scholar] [CrossRef]
- Vita, G.; Messina, C.; Savica, V.; Bellinghieri, G. Uraemic autonomic neuropathy. J. Auton. Nerv. Syst. 1990, 30, S179–S184. [Google Scholar] [CrossRef]
- Nowicki, M.; Zwiech, R.; Dryja, P.; Sobański, W. Autonomic neuropathy in hemodialysis patients: Questionnaires versus clinical tests. Clin. Exp. Nephrol. 2009, 13, 152–155. [Google Scholar] [CrossRef]
- Vita, G.; Bellinghieri, G.; Trusso, A.; Costantino, G.; Santoro, D.; Monteleone, F.; Messina, C.; Savica, V. Uremic autonomic neuropathy studied by spectral analysis of heart rate. Kidney Int. 1999, 56, 232–237. [Google Scholar] [CrossRef]
- Calvo, C.; Maule, S.; Mecca, F.; Quadri, R.; Martina, G.; Cavallo Perin, P. The influence of autonomic neuropathy on hypotension during hemodialysis. Clin. Auton. Res. 2002, 12, 84–87. [Google Scholar] [CrossRef]
- Hara, M.; Yamada, S.; Nakamura, Y.; Oka, H.; Kamimura, T.; Nakane, S.; Tsuruya, K.; Harada, A. Autoimmune autonomic ganglionopathy manifesting as acute-onset orthostatic hypotension in a patient undergoing peritoneal dialysis. CEN Case Rep. 2016, 5, 5–10. [Google Scholar] [CrossRef]
- Sekijima, Y.; Ueda, M.; Koike, H.; Misawa, S.; Ishii, T.; Ando, Y. Diagnosis and management of transthyretin familial amyloid polyneuropathy in Japan: Red-flag symptom clusters and treatment algorithm. Orphanet J. Rare Dis. 2018, 13, 6. [Google Scholar] [CrossRef]
- Ueda, M.; Ando, Y. Recent advances in transthyretin amyloidosis therapy. Transl. Neurodegener. 2014, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Koike, H.; Misu, K.; Ikeda, S.; Ando, Y.; Nakazato, M.; Ando, E.; Yamamoto, M.; Hattori, N.; Sobue, G.; Study Group for Hereditary Neuropathy in Japan. Type I (transthyretin Met30) familial amyloid polyneuropathy in Japan: Early- vs late-onset form. Arch. Neurol. 2002, 59, 1771–1776. [Google Scholar] [CrossRef]
- Palma, J.A.; Gonzalez-Duarte, A.; Kaufmann, H. Orthostatic hypotension in hereditary transthyretin amyloidosis: Epidemiology, diagnosis and management. Clin. Auton. Res. 2019, 29 (Suppl. 1), 33–44. [Google Scholar] [CrossRef]
- Chao, C.C.; Huang, C.M.; Chiang, H.H.; Luo, K.R.; Kan, H.W.; Yang, N.C.; Chiang, H.; Lin, W.M.; Lai, S.M.; Lee, M.J.; et al. Sudomotor innervation in transthyretin amyloid neuropathy: Pathology and functional correlates. Ann. Neurol. 2015, 78, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Gendre, T.; Planté-Bordeneuve, V. Strategies to improve the quality of life in patients with hereditary transthyretin amyloidosis (hATTR) and autonomic neuropathy. Clin. Auton. Res. 2019, 29 (Suppl. 1), 25–31. [Google Scholar] [CrossRef]
- Obici, L.; Suhr, O.B. Diagnosis and treatment of gastrointestinal dysfunction in hereditary TTR amyloidosis. Clin. Auton. Res. 2019, 29 (Suppl. 1), 55–63. [Google Scholar] [CrossRef]
- Pareyson, D.; Marchesi, C. Diagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol. 2009, 8, 654–667. [Google Scholar] [CrossRef]
- Auer-Grumbach, M.; Mauko, B.; Auer-Grumbach, P.; Pieber, T.R. Molecular genetics of hereditary sensory neuropathies. Neuromol. Med. 2006, 8, 147–158. [Google Scholar] [CrossRef]
- Verhoeven, K.; Timmerman, V.; Mauko, B.; Pieber, T.R.; De Jonghe, P.; Auer-Grumbach, M. Recent advances in hereditary sensory and autonomic neuropathies. Curr. Opin. Neurol. 2006, 19, 474–480. [Google Scholar] [CrossRef]
- Haga, N.; Kubota, M.; Miwa, Z.; Japanese Research Group on Congenital Insensitivity to Pain. Hereditary sensory and autonomic neuropathy types IV and V in Japan. Pediatr. Int. 2015, 57, 30–36. [Google Scholar] [CrossRef]
- Schwartzlow, C.; Kazamel, M. Hereditary Sensory and Autonomic Neuropathies: Adding More to the Classification. Curr. Neurol. Neurosci. Rep. 2019, 19, 52. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Kawamura, N.; Tateishi, T.; Doi, H.; Ohyagi, Y.; Kira, J. Predominant parasympathetic involvement in a patient with Charcot-Marie-Tooth disease caused by the MPZ Thr124Met mutation. Rinsho Shinkeigaku 2009, 49, 582–585. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, N.; Noto, Y.; Kitani-Morii, F.; Hamano, A.; Kasai, T.; Shiga, K.; Mizuta, I.; Niwa, F.; Nakagawa, M.; Mizuno, T. Parasympathetic Dominant Autonomic Dysfunction in Charcot-Marie-Tooth Disease Type 2J with the MPZ Thr124Met Mutation. Intern. Med. 2015, 54, 1919–1922. [Google Scholar] [CrossRef] [PubMed]
- Stojkovic, T.; de Seze, J.; Dubourg, O.; Arne-Bes, M.C.; Tardieu, S.; Hache, J.C.; Vermersch, P. Autonomic and respiratory dysfunction in Charcot-Marie-Tooth disease due to Thr124Met mutation in the myelin protein zero gene. Clin. Neurophysiol. 2003, 114, 1609–1614. [Google Scholar] [CrossRef] [PubMed]
- Rotthier, A.; Baets, J.; Timmerman, V.; Janssens, K. Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat. Rev. Neurol. 2012, 8, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Auer-Grumbach, M. Hereditary sensory and autonomic neuropathies. Handb. Clin. Neurol. 2013, 115, 893–906. [Google Scholar]
- Yuan, J.H.; Hashiguchi, A.; Yoshimura, A.; Sakai, N.; Takahashi, M.P.; Ueda, T.; Taniguchi, A.; Okamoto, S.; Kanazawa, N.; Yamamoto, Y. WNK1/HSN2 founder mutation in patients with hereditary sensory and autonomic neuropathy: A Japanese cohort study. Clin. Genet. 2017, 92, 659–663. [Google Scholar] [CrossRef]
- Axelrod, F.B.; Gold-von Simson, G. Hereditary sensory and autonomic neuropathies: Types II, III, and IV. Orphanet J. Rare Dis. 2007, 2, 39. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Jimeno-Almazán, A.; Pallarés, J.G.; Buendía-Romero, Á.; Martínez-Cava, A.; Franco-López, F.; Sánchez-Alcaraz Martínez, B.J.; Bernal-Morel, E.; Courel-Ibáñez, J. Post-COVID-19 Syndrome and the Potential Benefits of Exercise. Int. J. Environ. Res. Public Health 2021, 18, 5329. [Google Scholar] [CrossRef]
- Pimentel, V.; Luchsinger, V.W.; Carvalho, G.L.; Alcará, A.M.; Esper, N.B.; Marinowic, D.; Zanirati, G.; da Costa, J.C. Guillain-Barré syndrome associated with COVID-19, A systematic review. Brain Behav. Immun. Health 2023, 28, 100578. [Google Scholar] [CrossRef] [PubMed]
- Oaklander, A.L.; Mills, A.J.; Kelley, M.; Toran, L.S.; Smith, B.; Dalakas, M.C.; Nath, A. Peripheral neuropathy evaluations of patients with prolonged long COVID. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1146. [Google Scholar] [CrossRef] [PubMed]
- Saif, D.S.; Ibrahem, R.A.; Eltabl, M.A. Prevalence of peripheral neuropathy and myopathy in patients post-COVID-19 infection. Int. J. Rheum. Dis. 2022, 25, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Abrams, R.M.C.; Simpson, D.M.; Navis, A.; Jette, N.; Zhou, L.; Shin, S.C. Small fiber neuropathy associated with SARS-CoV-2 infection. Muscle Nerve 2022, 65, 440–443. [Google Scholar] [CrossRef]
- Finsterer, J. Small fiber neuropathy underlying dysautonomia in COVID-19 and in post-SARS-CoV-2 vaccination and long-COVID syndromes. Muscle Nerve 2022, 65, E31–E32. [Google Scholar] [CrossRef] [PubMed]
- Shouman, K.; Vanichkachorn, G.; Cheshire, W.P.; Suarez, M.D.; Shelly, S.; Lamotte, G.J.; Sandroni, P.; Benarroch, E.E.; Berini, S.E.; Cutsforth-Gregory, J.K.; et al. Autonomic dysfunction following COVID-19 infection: An early experience. Clin. Auton. Res. 2021, 31, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Buoite Stella, A.; Furlanis, G.; Frezza, N.A.; Valentinotti, R.; Ajcevic, M.; Manganotti, P. Autonomic dysfunction in post-COVID patients with and without neurological symptoms: A prospective multidomain observational study. J. Neurol. 2022, 269, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Reis Carneiro, D.; Rocha, I.; Habek, M.; Helbok, R.; Sellner, J.; Struhal, W.; Wenning, G.; Fanciulli, A. Clinical presentation and management strategies of cardiovascular autonomic dysfunction following a COVID-19 infection—A systematic review. Eur. J. Neurol. 2023, 30, 1528–1539. [Google Scholar] [CrossRef] [PubMed]
- Blitshteyn, S.; Whitelaw, S. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: A case series of 20 patients. Immunol. Res. 2021, 69, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Torre, F.; Mínguez-Olaondo, A.; López-Bravo, A.; Tijero, B.; Grozeva, V.; Walcker, M.; Azkune-Galparsoro, H.; López de Munain, A.; Alcaide, A.B.; Quiroga, J.; et al. Dysautonomia in COVID-19 patients: A narrative review on clinical course, diagnostic and therapeutic strategies. Front. Neurol. 2022, 13, 886609. [Google Scholar] [CrossRef] [PubMed]
- Jammoul, M.; Naddour, J.; Madi, A.; Reslan, M.A.; Hatoum, F.; Zeineddine, J.; Abou-Kheir, W.; Lawand, N. Investigating the possible mechanisms of autonomic dysfunction post-COVID-19. Auton. Neurosci. 2023, 245, 103071. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.R.; Arnold, A.C.; Barboi, A.; Claydon, V.E.; Limberg, J.K.; Lucci, V.M.; Numan, M.; Peltier, A.; Snapper, H.; Vernino, S.; et al. Long-COVID postural tachycardia syndrome: An American Autonomic Society statement. Clin. Auton. Res. 2021, 31, 365–368. [Google Scholar] [CrossRef]
- Bisaccia, G.; Ricci, F.; Recce, V.; Serio, A.; Iannetti, G.; Chahal, A.A.; Ståhlberg, M.; Khanji, M.Y.; Fedorowski, A.; Gallina, S. Post-acute sequelae of COVID-19 and cardiovascular autonomic dysfunction: What do we know? J. Cardiovasc. Dev. Dis. 2021, 8, 156. [Google Scholar] [CrossRef]
- Zanin, A.; Amah, G.; Chakroun, S.; Testard, P.; Faucher, A.; Le, T.Y.V.; Slama, D.; Le Baut, V.; Lozeron, P.; Salmon, D.; et al. Parasympathetic autonomic dysfunction is more often evidenced than sympathetic autonomic dysfunction in fluctuating and polymorphic symptoms of “long-COVID” patients. Sci. Rep. 2023, 13, 8251. [Google Scholar] [CrossRef]
- Lima, M.; Siokas, V.; Aloizou, A.M.; Liampas, I.; Mentis, A.A.; Tsouris, Z.; Papadimitriou, A.; Mitsias, P.D.; Tsatsakis, A.; Bogdanos, D.P.; et al. Unraveling the possible routes of SARS-COV-2 invasion into the central nervous system. Curr. Treat. Options Neurol. 2020, 22, 37. [Google Scholar] [CrossRef]
- Wallukat, G.; Hohberger, B.; Wenzel, K.; Fürst, J.; Schulze-Rothe, S.; Wallukat, A.; Hönicke, A.S.; Müller, J. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J. Transl. Autoimmun. 2021, 4, 100100. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Marques, O.; Halpert, G.; Schimke, L.F.; Ostrinski, Y.; Vojdani, A.; Baiocchi, G.C.; Freire, P.P.; Filgueiras, I.S.; Zyskind, I.; Lattin, M.T.; et al. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat. Commun. 2022, 13, 1220. [Google Scholar] [CrossRef]
- Dotan, A.; David, P.; Arnheim, D.; Shoenfeld, Y. The autonomic aspects of the post-COVID19 syndrome. Autoimmun. Rev. 2022, 21, 103071. [Google Scholar] [CrossRef] [PubMed]
- Akbari, A.; Hadizadeh, A.; Islampanah, M.; Salavati Nik, E.; Atkin, S.L.; Sahebkar, A. COVID-19, G protein-coupled receptor, and renin-angiotensin system autoantibodies: Systematic review and meta-analysis. Autoimmun. Rev. 2023, 22, 103402. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Johansson, A.; Jonsson, J.; Schiöth, H.B. Dissecting the molecular mechanisms surrounding post-COVID-19 syndrome and neurological features. Int. J. Mol. Sci. 2022, 23, 4275. [Google Scholar] [CrossRef]
- Dani, M.; Dirksen, A.; Taraborrelli, P.; Torocastro, M.; Panagopoulos, D.; Sutton, R.; Lim, P.B. Autonomic dysfunction in ‘long COVID’: Rationale, physiology and management strategies. Clin. Med. 2021, 21, e63–e67. [Google Scholar] [CrossRef]
- Papadopoulou, M.; Bakola, E.; Papapostolou, A.; Stefanou, M.I.; Gaga, M.; Zouvelou, V.; Michopoulos, I.; Tsivgoulis, G. Autonomic dysfunction in long-COVID syndrome: A neurophysiological and neurosonology study. J. Neurol. 2022, 269, 4611–4612. [Google Scholar] [CrossRef]
- Ruts, L.; van Koningsveld, R.; van Doorn, P.A. Distinguishing acute-onset CIDP from Guillain-Barré syndrome with treatment related fluctuations. Neurology 2005, 65, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Sletten, D.M.; Suarez, G.A.; Low, P.A.; Mandrekar, J.; Singer, W. COMPASS 31, a refined and abbreviated Composite Autonomic Symptom Score. Mayo Clin. Proc. 2012, 87, 1196–1201. [Google Scholar] [CrossRef]
- Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 2018, 379, 11–21. [Google Scholar] [CrossRef]
- Kimpinski, K.; Iodice, V.; Sandroni, P.; Fealey, R.D.; Vernino, S.; Low, P.A. Sudomotor dysfunction in autoimmune autonomic ganglionopathy. Neurology 2009, 73, 1501–1506. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.S.; Holmes, C.; Imrich, R. Clinical laboratory evaluation of autoimmune autonomic ganglionopathy: Preliminary observations. Auton. Neurosci. 2009, 146, 18–21. [Google Scholar] [CrossRef] [PubMed]
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakane, S.; Koike, H.; Hayashi, T.; Nakatsuji, Y. Autoimmune Autonomic Neuropathy: From Pathogenesis to Diagnosis. Int. J. Mol. Sci. 2024, 25, 2296. https://doi.org/10.3390/ijms25042296
Nakane S, Koike H, Hayashi T, Nakatsuji Y. Autoimmune Autonomic Neuropathy: From Pathogenesis to Diagnosis. International Journal of Molecular Sciences. 2024; 25(4):2296. https://doi.org/10.3390/ijms25042296
Chicago/Turabian StyleNakane, Shunya, Haruki Koike, Tomohiro Hayashi, and Yuji Nakatsuji. 2024. "Autoimmune Autonomic Neuropathy: From Pathogenesis to Diagnosis" International Journal of Molecular Sciences 25, no. 4: 2296. https://doi.org/10.3390/ijms25042296
APA StyleNakane, S., Koike, H., Hayashi, T., & Nakatsuji, Y. (2024). Autoimmune Autonomic Neuropathy: From Pathogenesis to Diagnosis. International Journal of Molecular Sciences, 25(4), 2296. https://doi.org/10.3390/ijms25042296