A Mass Spectrometry-Based Proteome Study of Twin Pairs Discordant for Incident Acute Myocardial Infarction within Three Years after Blood Sampling Suggests Novel Biomarkers
Abstract
:1. Introduction
2. Results
2.1. Time to Acute Myocardial Infarction Diagnosis and Protein Levels in the 39 Twin Pairs
2.2. Association Analysis of Time-To-Diagnosis and the Proteome Data in the 39 Twin Pairs
- (a)
- ACTN1: alpha-actinin-1; ANK3: ankyrin-3; ANPEP: aminopeptidase N; APOC4: apolipoprotein C-IV; ART4: ecto-ADP-ribosyltransferase 4; C1RL: complement C1r subcomponent-like protein; CD5L: antigen-like CD5; CFL1: cofilin-1; CLTCL1: clathrin heavy chain 2; COL6A3: collagen alpha-3(VI) chain; FCGR3A: low-affinity immunoglobulin gamma Fc region receptor III-A; FN1: fibronectin; GPD1: glycerol-3-phosphate dehydrogenase [NAD(+)];GPLD1: phosphatidylinositol-glycan-specific phospholipase D; HABP2: hyaluronan-binding protein 2; HSPA5: endoplasmic reticulum chaperone BiP; IGHV3-15: immunoglobulin heavy variable 3-15; IGHV3-72: immunoglobulin heavy variable 3-72; IGKV1D-33: immunoglobulin kappa variable 1D-33; IGLL1: immunoglobulin lambda-like polypeptide 1; INPP4B: inositol polyphosphate 4-phosphatase type II; JCHAIN: immunoglobulin J chain; LCAT: phosphatidylcholine-sterol acyltransferase; LYZ: lysozyme C; MCAM: cell surface glycoprotein MUC18; MSN: moesin; NRCAM: neuronal cell adhesion molecule; PCOLCE: procollagen C-endopeptidase enhancer 1; PCYOX1: prenylcysteine oxidase 1; PIGR: polymeric immunoglobulin receptor; PIK3CB: phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform; PRX: periaxin; PTPN1: tyrosine-protein phosphatase non-receptor type 1; QSOX1: sulfhydryl oxidase 1; SELL: L-selectin; SERPINA10: protein Z-dependent protease inhibitor; SERPINF2: alpha-2-antiplasmin; STAT1: signal transducer and activator of transcription 1-alpha/beta; THBS4: thrombospondin-4; TLN1: talin-1; TPI1: isoform 2 of triosephosphate isomerase; VTN: vitronectin.
- (b)
- CFD: complement factor D; DDX19B: ATP-dependent RNA helicase DDX19B; FGD6: FYVE, RhoGEF, and PH domain-containing protein 6; GLIPR2: Golgi-associated plant pathogenesis-related protein 1; LBP: lipopolysaccharide-binding protein; LRRC17: leucine-rich repeat-containing protein 17; PCDH15: isoform 4 of Protocadherin-15; QTRT2: queuine tRNA-ribosyltransferase accessory subunit 2; SYMPK: symplekin; ZNF268: zinc finger protein 268.
- (c)
- IGLV1–40: immunoglobulin lambda variable 1–40; IGLV1–47: immunoglobulin lambda variable 1–47; IGLV2–23: immunoglobulin lambda variable 2–23; IGLV3–16: immunoglobulin lambda variable 3–16; IGLV6–57: immunoglobulin lambda variable 6–57.
2.3. Investigation of the Direction of Effect of the 57 Nominal Significant Proteins in the 12 Monozygotic Twin Pairs
2.4. Investigation of the Seven Proteins Passing Correction for Multiple Testing by Parallel Reaction Monitoring Mass Spectrometry
3. Discussion
4. Materials and Methods
4.1. The Study Population
4.2. Laboratory Analyses
4.3. Proteome Analyses
4.4. Survey Data
4.5. Preparation and Imputation of Proteome Data for Statistical Analysis
4.6. Statistical Analyses
4.7. Bioinformatic Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Burden of Disease 2019. Available online: https://www.healthdata.org/data-visualization/gbd-results (accessed on 16 December 2022).
- Xu, S.; Jiang, J.; Zhang, Y.; Chen, T.; Zhu, M.; Fang, C.; Mi, Y. Discovery of potential plasma protein biomarkers for acute myocardial infarction via proteomics. J. Thorac. Dis. 2019, 11, 3962–3972. [Google Scholar] [CrossRef]
- Mechanic, O.J.; Gavin, M.; Grossman, S.A. Acute Myocardial Infarction. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Falk, E.; Nakano, M.; Bentzon, J.F.; Finn, A.V.; Virmani, R. Update on acute coronary syndromes: The pathologists’ view. Eur. Heart J. 2013, 34, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Ugur, K.; Aydin, S.; Sahin, I.; Yardim, M. Biomarkers in acute myocardial infarction: Current perspectives. Vasc. Health Risk Manag. 2019, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lyngbakken, M.N.; Myhre, P.L.; Røsjø, H.; Omland, T. Novel biomarkers of cardiovascular disease: Applications in clinical practice. Crit. Rev. Clin. Lab. Sci. 2019, 56, 33–60. [Google Scholar] [CrossRef] [PubMed]
- Bhak, Y.; Jeon, Y.; Jeon, S.; Yoon, C.; Kim, M.; Blazyte, A.; Kim, Y.; Kang, Y.; Kim, C.; Lee, S.Y.; et al. Polygenic risk score validation using Korean genomes of 265 early-onset acute myocardial infarction patients and 636 healthy controls. PLoS ONE 2021, 16, e0246538. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, M.B.; Dzaye, O.; Bøtker, H.E.; Jensen, J.M.; Maeng, M.; Bentzon, J.F.; Kanstrup, H.; Sørensen, H.T.; Leipsic, J.; Blankstein, R.; et al. Low-Density Lipoprotein Cholesterol Is Predominantly Associated with Atherosclerotic Cardiovascular Disease Events in Patients with Evidence of Coronary Atherosclerosis: The Western Denmark Heart Registry. Multicent. Study Circ. 2023, 147, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Shaw, L.J.; Taylor, A.J.; O’Malley, P.G. Cost-effectiveness of new tests to diagnose and treat coronary heart disease. Curr. Treat. Options Cardiovasc. Med. 2005, 7, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Májek, P.; Reicheltová, Z.; Suttnar, J.; Malý, M.; Oravec, M.; Pečánková, K.; Dyr, J.E. Plasma proteome changes in cardiovascular disease patients: Novel isoforms of apolipoprotein A1. J. Transl. Med. 2011, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.; Serchi, T.; Wagner, D.R.; Gilson, G.; Planchon, S.; Renaut, J.; Hoffmann, L.; Bohn, T.; Devaux, Y. Proteomic analysis of plasma samples from patients with acute myocardial infarction identifies haptoglobin as a potential prognostic biomarker. J. Proteom. 2011, 75, 229–236. [Google Scholar] [CrossRef]
- Palstrøm, N.B.; Matthiesen, R.; Rasmussen, L.M.; Beck, H.C. Recent Developments in Clinical Plasma Proteomics-Applied to Cardiovascular Research. Biomedicines 2022, 10, 162. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, L.; Xie, Y.; Tan, Y.; Chang, C.; Qiu, X.; Li, X. Characterization of differentially expressed plasma proteins in patients with acute myocardial infarction. J. Proteom. 2020, 227, 103923. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, H.; Huang, T. Quantitative proteomics reveal three potential biomarkers for risk assessment of acute myocardial infarction. Bioengineered 2022, 13, 4939–4950. [Google Scholar] [CrossRef] [PubMed]
- Tirdea, C.; Hostiuc, S.; Moldovan, H.; Scafa-Udriste, A. Identification of Risk Genes Associated with Myocardial Infarction-Big Data Analysis and Literature Review. Int. J. Mol. Sci. 2022, 23, 15008. [Google Scholar] [CrossRef]
- Sun, B.B.; Maranville, J.C.; Peters, J.E.; Stacey, D.; Staley, J.R.; Blackshaw, J.; Burgess, S.; Jiang, T.; Paige, E.; Surendran, P.; et al. Genomic atlas of the human plasma proteome. Nature 2018, 558, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Ferkingstad, E.; Sulem, P.; Atlason, B.A.; Sveinbjornsson, G.; Magnusson, M.I.; Styrmisdottir, E.L.; Gunnarsdottir, K.; Helgason, A.; Oddsson, A.; Halldorsson, B.V.; et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 2021, 53, 1712–1721. [Google Scholar] [CrossRef]
- Tan, Q.; Li, W.; Vandin, F. Disease-Concordant Twins Empower Genetic Association Studies. Ann. Hum. Genet. 2017, 81, 20–26. [Google Scholar] [CrossRef]
- Tsai, P.-C.; Bell, J.T. Power and sample size estimation for epigenome-wide association scans to detect differential DNA methylation. Int. J. Epidemiol. 2015, 44, 1429–1441. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Christiansen, L.; Hjelmborg, J.; Baumbach, J.; Tan, Q. On the power of epigenome-wide association studies using a disease-discordant twin design. Bioinformatics 2018, 34, 4073–4078. [Google Scholar] [CrossRef]
- Pedersen, D.A.; Larsen, L.A.; Nygaard, M.; Mengel-From, J.; McGue, M.; Dalgård, C.; Hvidberg, L.; Hjelmborg, J.; Skytthe, A.; Holm, N.V.; et al. The Danish Twin Registry: An Updated Overview. Twin Res. Hum. Genet. 2019, 23, 499–507. [Google Scholar] [CrossRef]
- Eichler, K.; Puhan, M.A.; Steurer, J.; Bachmann, L.M. Prediction of first coronary events with the Framingham score: A systematic review. Am. Heart J. 2007, 153, 722–731.e8. [Google Scholar] [CrossRef]
- Middelberg, R.P.S.; Ferreira, M.A.R.; Henders, A.K.; Heath, A.C.; Madden, P.A.F.; Montgomery, G.W.; Martin, N.G.; Whitfield, J.B. Genetic variants in LPL, OASL and TOMM40/APOE-C1-C2-C4 genes are associated with multiple cardiovascular-related traits. BMC Med. Genet. 2011, 12, 123. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Ruan, J.; Chen, Y.; Yan, Z.; Shi, K.; Li, X.; Yang, P.; Meng, F. Investigation of Specific Proteins Related to Different Types of Coronary Atherosclerosis. Front. Cardiovasc. Med. 2021, 8, 758035. [Google Scholar] [CrossRef] [PubMed]
- Deleon-Pennell, K.Y.; Ero, O.K.; Ma, Y.; Iyer, R.P.; Flynn, E.R.; Espinoza, I.; Musani, S.K.; Vasan, R.S.; Hall, M.E.; Fox, E.R.; et al. Glycoproteomic Profiling Provides Candidate Myocardial Infarction Predictors of Later Progression to Heart Failure. ACS Omega 2019, 4, 1272–1280. [Google Scholar] [CrossRef]
- Plubell, D.L.; Fenton, A.M.; Rosario, S.; Bergstrom, P.; Wilmarth, P.A.; Clark, W.M.; Zakai, N.A.; Quinn, J.F.; Minnier, J.; Alkayed, N.J.; et al. High-Density Lipoprotein Carries Markers That Track with Recovery From Stroke. Circ. Res. 2020, 127, 1274–1287. [Google Scholar] [CrossRef]
- Regent Lee, R.; Fischer, R.; Charles, P.D.; Adlam, D.; Valli, A.; Di Gleria, K.; Kharbanda, R.K.; Choudhury, R.P.; Antoniades, C.; Kessler, B.M.; et al. A novel workflow combining plaque imaging, plaque and plasma proteomics identifies biomarkers of human coronary atherosclerotic plaque disruption. Clin. Proteom. 2017, 14, 22. [Google Scholar] [CrossRef]
- Trevillyan, J.M.; Moser, C.; Currier, J.S.; Sallam, T. Immune Biomarkers in the Prediction of Future Myocardial Infarctions in People with Human Immunodeficiency Virus. Clin. Infect. Dis. 2020, 70, 1764–1767. [Google Scholar] [CrossRef]
- Kalinskaya, A.; Vorobyeva, D.; Rusakovich, G.; Maryukhnich, E.; Anisimova, A.; Dukhin, O.; Elizarova, A.; Ivanova, O.; Bugrova, A.; Brzhozovskiy, A.; et al. Targeted Blood Plasma Proteomics and Hemostasis Assessment of Post COVID-19 Patients with Acute Myocardial Infarction. Int. J. Mol. Sci. 2023, 24, 6523. [Google Scholar] [CrossRef]
- Wang, C.; Li, H.; Fu, P.; Zhang, S.; Xiu, R. Serum C-reactive protein and circulating endothelial cells in patients with acute myocardial infarction. Clin. Hemorheol. Microcirc. 2005, 32, 287–296. [Google Scholar]
- Petr Kubena, P.; Arrigo, M.; Parenica, J.; Gayat, E.; Sadoune, M.; Ganovska, E.; Pavlusova, M.; Littnerova, S.; Spinar, J.; Mebazaa, A. Plasma Levels of Soluble CD146 Reflect the Severity of Pulmonary Congestion Better Than Brain Natriuretic Peptide in Acute Coronary Syndrome. Ann. Lab. Med. 2016, 36, 300–305. [Google Scholar] [CrossRef]
- Makin, A.J.; Blann, A.D.; Chung, N.A.Y.; Silverman, S.H.; Lip, G.Y.H. Assessment of endothelial damage in atherosclerotic vascular disease by quantification of circulating endothelial cells. Relationship with von Willebrand factor and tissue factor. Clin. Trial Eur. Heart J. 2004, 25, 371–376. [Google Scholar] [CrossRef]
- Lau, E.S.; Paniagua, S.M.; Zarbafian, S.; Hoffman, U.; Long, M.T.; Hwang, S.-J.; Courchesne, P.; Yao, C.; Ma, J.; Larson, M.G.; et al. Cardiovascular Biomarkers of Obesity and Overlap with Cardiometabolic Dysfunction. J. Am. Heart Assoc. 2021, 10, e020215. [Google Scholar] [CrossRef]
- Yang Hu, Y.; Qiu, S.; Cheng, L. Integration of Multiple-Omics Data to Analyze the Population-Specific Differences for Coronary Artery Disease. Comput. Math. Methods Med. 2021, 2021, 7036592. [Google Scholar] [CrossRef]
- Timmers, P.R.H.J.; Wilson, J.F.; Joshi, P.K.; Deelen, J. Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. Nat. Commun. 2020, 11, 3570. [Google Scholar] [CrossRef]
- Liao, J.; Chen, Z.; He, Q.; Liu, Y.; Wang, J. Differential gene expression analysis and network construction of recurrent cardiovascular events. Mol. Med. Rep. 2016, 13, 1746–1764. [Google Scholar] [CrossRef] [PubMed]
- Muller, O.; Delrue, L.; Hamilos, M.; Vercauteren, S.; Ntalianis, A.; Trana, C.; Mangiacapra, F.; Dierickx, K.; De Bruyne, B.; Wijns, W.; et al. Transcriptional fingerprint of human whole blood at the site of coronary occlusion in acute myocardial infarction. Eurointervention 2011, 7, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Orem, C.; Celik, S.; Orem, A.; Calapoğlu, M.; Erdöl, C. Increased plasma fibronectin levels in patients with acute myocardial infarction complicated with left ventricular thrombus. Thromb. Res. 2002, 105, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Laudat, A.; Ano-Monfils, N.; Haddad, A.; Pileire, B. Plasma fibronectin kinetics during uncomplicated acute myocardial infarction. West Indian Med. J. 1996, 45, 28–30. [Google Scholar] [PubMed]
- Xie, Y.; Wang, Y.; Zhao, L.; Wang, F.; Fang, J. Identification of potential biomarkers and immune cell infiltration in acute myocardial infarction (AMI) using bioinformatics strategy. Bioengineered 2021, 12, 2890–2905. [Google Scholar] [CrossRef] [PubMed]
- Maguire, P.B.; Parsons, M.E.; Szklanna, P.B.; Zdanyte, M.; Münzer, P.; Chatterjee, M.; Wynne, K.; Rath, D.; Comer, S.P.; Hayden, M.; et al. Comparative Platelet Releasate Proteomic Profiling of Acute Coronary Syndrome versus Stable Coronary Artery Disease. Front. Cardiovasc. Med. 2020, 7, 101. [Google Scholar] [CrossRef]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies with the special contribution of the European Association of Preventive Cardiology (EAPC). Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Soerensen, M.; Debrabant, B.; Halekoh, U.; Møller, J.E.; Hassager, C.; Frydland, M.; Hjelmborg, J.; Beck, H.C.; Rasmussen, L.M. Does diabetes modify the effect of heparin on plasma proteins?—A proteomic search for plasma protein biomarkers for diabetes-related endothelial dysfunction. J. Diabetes Complicat. 2021, 35, 107906. [Google Scholar] [CrossRef] [PubMed]
- Beck, H.C.; Jensen, L.O.; Gils, C.; Ilondo, A.M.M.; Frydland, M.; Hassager, C.; Møller-Helgestad, O.K.; Møller, J.E.; Rasmussen, L.M. Proteomic discovery and validation of the confounding effect of heparin administration on the analysis of candidate cardiovascular biomarkers. Clin. Chem. 2018, 64, 1474–1484. [Google Scholar] [CrossRef] [PubMed]
- Palstrøm, N.B.; Overgaard, M.; Licht, P.; Beck, H.C. Identification of Highly Sensitive Pleural Effusion Protein Biomarkers for Malignant Pleural Mesothelioma by Affinity-Based Quantitative Proteomics. Cancers 2023, 15, 641. [Google Scholar] [CrossRef] [PubMed]
- Hodge, K.; Have, S.T.; Hutton, L.; Lamond, A.I. Cleaning up the masses: Exclusion lists to reduce contamination with HPLC-MS/MS. J. Proteom. 2013, 88, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, L.; Frederiksen, H.; Schousboe, K.; Skytthe, A.; von Wurmb-Schwark, N.; Christensen, K.; Kyvik, K. Age- and sex-differences in the validity of questionnaire-based zygosity in twins. Twin Res. 2003, 6, 275–278. [Google Scholar] [CrossRef]
- van der Wal, W.M.; Geskus, R.B. ipw: An R Package for Inverse Probability Weighting. J. Stat. Softw. 2011, 43, 1–23. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
Phenotype | Descriptives |
---|---|
No. individuals (no. twin pairs) | 78 (39) |
Age at blood sampling (years) (range, mean (SD)) | 48–79, 66.0 (7.9) |
Gender (males (%)/females (%)) | 47 (60%)/31 (40%) |
Zygosity per twin pair (%) | 12 monozygotic (31%) |
12 same gender dizygotic (31%) | |
13 opposite gender dizygotic (33%) | |
2 unknown zygosity (5%) | |
Time from blood sample to AMI diagnosis (years) (range, mean (SD)) | 0.01–2.9, 1.4 (0.8) |
Smoking status (never/former (%), current (%)) | 56 (72%), 22 (28%) |
Systolic blood pressure (mmHg) (range, mean (SD)) | 116.5–220.5, 156.2 (22.6) |
Lipid levels (mmol/L): | |
Total cholesterol (range, mean (SD)) | 2.9–8.1, 5.5 (1.2) |
Triglycerides (range, mean (SD)) | 0.6–10.8, 2.0 (1.3) |
High-density lipoprotein (range, mean (SD)) | 0.5–2.4, 1.4 (0.2) |
Low-density lipoprotein (range, mean (SD)) | 0.9–5.5, 3.1 (1.0) |
Self-reported medication use (%) | |
(1) Heart and blood pressure/coagulation inhibitory/lipid-lowering medication | 48 (62%) |
(2) Diabetes medication | 1 (1%) |
(3) Non-users | 29 (37%) |
Body mass index (kg/m2) (range, mean (SD)) | 20.1–39.6, 27.9 (3.7) |
Self-reported diabetes disease status (%) | 1 type–1 diabetic (1%) |
6 type–2 diabetics (8%) | |
71 non-diabetics (91%) |
Accession No. | Protein Description | Gene | HR | SE | p-Value | 95% CI | q-Value | Imputed (Protein Call Rate (%)) |
---|---|---|---|---|---|---|---|---|
Q6ZV73 | FYVE, RhoGEF, and PH domain-containing protein 6 | FGD6 | 37.26 | 487.3 | 7.90 × 10−224 | (29.84, 46.52) | 2.87 × 10−221 | Yes (64.1) |
P43121 | Cell surface glycoprotein MUC18 | MCAM | 22.57 | 473.6 | 4.05 × 10−183 | (18.26, 27.89) | 7.36 × 10−181 | Yes (51.3) |
P42338 | Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform | PIK3CB | 1.04 | 0.03 | 6.70 × 10−5 | (1.02, 1.06) | 8.11 × 10−3 | Yes (61.5) |
P18428 | Lipopolysaccharide-binding protein | LBP | 0.91 | 0.06 | 2.27 × 10−4 | (0.86, 0.95) | 0.017 | Yes (74.4) |
A0A0B4J1V0 | Immunoglobulin heavy variable 3-15 | IGHV3-15 | 0.96 | 0.02 | 2.34 × 10−4 | (0.94, 0.98) | 0.017 | Yes (74.4) |
Q9NZP8 | Complement C1r subcomponent-like protein | C1RL | 0.93 | 0.04 | 5.57 × 10−4 | (0.90, 0.97) | 0.032 | Yes (87.2) |
P55056 | Apolipoprotein C-IV | APOC4 | 0.95 | 0.03 | 6.14 × 10−4 | (0.93, 0.98) | 0.032 | Yes (87.2) |
Hierarchy Group | Pathway ID | Description of Pathway | Observed Gene Count | Background Gene Count | Strength | FDR | Matching Proteins in the Network |
---|---|---|---|---|---|---|---|
Reactome | |||||||
Hemostasis | HSA-109582 | Hemostasis | 13 | 607 | 0.91 | 4.2 × 10−6 | TLN1, SERPINF2, HSPA5, IGLL1, FN1, QSOX1, PTPN1, ACTN1, CFL1, JCHAIN, CFD, SELL, PIK3CB |
HSA-114608 | Platelet degranulation | 8 | 126 | 1.38 | 4.2 × 10−6 | TLN1, SERPINF2, HSPA5, FN1, QSOX1, ACTN1, CFL1, CFD | |
HSA-76002 | Platelet activation, signaling, and aggregation | 10 | 260 | 1.16 | 4.2 × 10−6 | TLN1, SERPINF2, HSPA5, FN1, QSOX1, PTPN1, ACTN1, CFL1, CFD, PIK3CB | |
HSA-202733 | Cell surface interactions at the vascular wall | 5 | 139 | 1.13 | 0.0108 | IGLL1, FN1, JCHAIN, SELL, PIK3CB | |
Hemostasis/Signal Transduction | HSA-354192 | Integrin signaling | 3 | 27 | 1.62 | 0.0169 | TLN1, FN1, PTPN1 |
Signal Transduction | HSA-186797 | Signaling by PDGF | 4 | 58 | 1.42 | 0.0088 | COL6A3, THBS4, STAT1, PIK3CB |
Developmental Biology | HSA-9675108 | Nervous system development | 9 | 575 | 0.77 | 0.0088 | ANK3, COL6A3, TLN1, PRX, MSN, NRCAM, CFL1, CLTCL1, PIK3CB |
HSA-422475 | Axon guidance | 8 | 551 | 0.74 | 0.0187 | ANK3, COL6A3, TLN1, MSN, NRCAM, CFL1, CLTCL1, PIK3CB | |
Immune System | HSA-168256 | Immune System | 16 | 1979 | 0.49 | 0.0108 | LBP, VTN, LYZ, ANPEP, HSPA5, FN1, PIGR, MSN, STAT1, QSOX1, FCGR3A, PTPN1, CFL1, CFD, SELL, PIK3CB |
HSA-168249 | Innate Immune System | 11 | 1041 | 0.6 | 0.0169 | LBP, VTN, LYZ, ANPEP, PIGR, QSOX1, FCGR3A, CFL1, CFD, SELL, PIK3CB | |
Extracellular matrix organization | HSA-3000170 | Syndecan interactions | 3 | 27 | 1.62 | 0.0169 | VTN, FN1, ACTN1 |
KEGG | |||||||
Cellular Processes; Cellular community—eukaryotes | hsa04510 | Focal adhesion | 7 | 195 | 1.13 | 3.2 × 10−4 | VTN, COL6A3, TLN1, THBS4, FN1, ACTN1, PIK3CB |
Cellular Processes; Cell motility | hsa04810 | Regulation of the actin cytoskeleton | 5 | 209 | 0.96 | 0.0196 | FN1, MSN, ACTN1, CFL1, PIK3CB |
Environmental Information Processing; Signaling molecules and interaction | hsa04512 | ECM-receptor interaction | 4 | 88 | 1.24 | 0.0169 | VTN, COL6A3, THBS4, FN1 |
Human Diseases; Infectious disease: viral | hsa05165 | Human papillomavirus infection | 6 | 324 | 0.85 | 0.0196 | VTN, COL6A3, THBS4, FN1, STAT1, PIK3CB |
Human Diseases; Cancer: overview | hsa05205 | Proteoglycans in cancer | 5 | 194 | 0.99 | 0.0196 | VTN, ANK3, FN1, MSN, PIK3CB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beck, H.C.; Skovgaard, A.C.; Mohammadnejad, A.; Palstrøm, N.B.; Nielsen, P.F.; Mengel-From, J.; Hjelmborg, J.; Rasmussen, L.M.; Soerensen, M. A Mass Spectrometry-Based Proteome Study of Twin Pairs Discordant for Incident Acute Myocardial Infarction within Three Years after Blood Sampling Suggests Novel Biomarkers. Int. J. Mol. Sci. 2024, 25, 2638. https://doi.org/10.3390/ijms25052638
Beck HC, Skovgaard AC, Mohammadnejad A, Palstrøm NB, Nielsen PF, Mengel-From J, Hjelmborg J, Rasmussen LM, Soerensen M. A Mass Spectrometry-Based Proteome Study of Twin Pairs Discordant for Incident Acute Myocardial Infarction within Three Years after Blood Sampling Suggests Novel Biomarkers. International Journal of Molecular Sciences. 2024; 25(5):2638. https://doi.org/10.3390/ijms25052638
Chicago/Turabian StyleBeck, Hans Christian, Asmus Cosmos Skovgaard, Afsaneh Mohammadnejad, Nicolai Bjødstrup Palstrøm, Palle Fruekilde Nielsen, Jonas Mengel-From, Jacob Hjelmborg, Lars Melholt Rasmussen, and Mette Soerensen. 2024. "A Mass Spectrometry-Based Proteome Study of Twin Pairs Discordant for Incident Acute Myocardial Infarction within Three Years after Blood Sampling Suggests Novel Biomarkers" International Journal of Molecular Sciences 25, no. 5: 2638. https://doi.org/10.3390/ijms25052638
APA StyleBeck, H. C., Skovgaard, A. C., Mohammadnejad, A., Palstrøm, N. B., Nielsen, P. F., Mengel-From, J., Hjelmborg, J., Rasmussen, L. M., & Soerensen, M. (2024). A Mass Spectrometry-Based Proteome Study of Twin Pairs Discordant for Incident Acute Myocardial Infarction within Three Years after Blood Sampling Suggests Novel Biomarkers. International Journal of Molecular Sciences, 25(5), 2638. https://doi.org/10.3390/ijms25052638