Genomic Regions and Candidate Genes Affecting Response to Heat Stress with Newcastle Virus Infection in Commercial Layer Chicks Using Chicken 600K Single Nucleotide Polymorphism Array
Abstract
:1. Introduction
2. Results
2.1. Effects of Treatments on Blood Parameters
2.2. Genetic Parameters
2.3. Genome-Wide Association Analysis
3. Discussion
3.1. Blood Parameter Measurements
3.2. GWAS Analysis and Candidate Gene Identification
4. Materials and Methods
4.1. Experimental Population
4.2. Blood Parameter Measurements
4.3. Genotyping
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, M.; Ratwan, P.; Dahiya, S.P.; Nehra, A.K. Climate Change and Heat Stress: Impact on Production, Reproduction and Growth Performance of Poultry and Its Mitigation Using Genetic Strategies. J. Therm. Biol. 2021, 97, 102867. [Google Scholar] [CrossRef]
- Salem, H.M.; Alqhtani, A.H.; Swelum, A.A.; Babalghith, A.O.; Melebary, S.J.; Soliman, S.M.; Khafaga, A.F.; Selim, S.; El-Saadony, M.T.; El-Tarabily, K.A.; et al. Heat Stress in Poultry with Particular Reference to the Role of Probiotics in Its Amelioration: An Updated Review. J. Therm. Biol. 2022, 108, 103302. [Google Scholar] [CrossRef]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic Losses from Heat Stress by US Livestock Industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef]
- Current and Future Economic Impact of Heat Stress in the U.S. Livestock and Poultry Sectors—Livestock and Poultry Environmental Learning Community. Available online: https://lpelc.org/current-and-future-economic-impact-of-heat-stress-in-the-u-s-livestock-and-poultry-sectors/ (accessed on 15 February 2024).
- Nawaz, A.H.; Amoah, K.; Leng, Q.Y.; Zheng, J.H.; Zhang, W.L.; Zhang, L. Poultry Response to Heat Stress: Its Physiological, Metabolic, and Genetic Implications on Meat Production and Quality Including Strategies to Improve Broiler Production in a Warming World. Front. Vet. Sci. 2021, 8, 699081. [Google Scholar] [CrossRef]
- Wasti, S.; Sah, N.; Mishra, B. Impact of Heat Stress on Poultry Health and Performances, and Potential Mitigation Strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef]
- Farrell, D. The Role of Poultry in Human Nutrition. Poult. Dev. Rev. 2013, 1, 2–9. [Google Scholar]
- FAO. Gateway to Poultry Production and Products; FAO: Washington, DC, USA, 2022. [Google Scholar]
- Li, G.-M.; Liu, L.-P.; Yin, B.; Liu, Y.-Y.; Dong, W.-W.; Gong, S.; Zhang, J.; Tan, J.-H. Heat Stress Decreases Egg Production of Laying Hens by Inducing Apoptosis of Follicular Cells via Activating the FasL/Fas and TNF-α Systems. Poult. Sci. 2020, 99, 6084. [Google Scholar] [CrossRef] [PubMed]
- Van Goor, A.; Bolek, K.J.; Ashwell, C.M.; Persia, M.E.; Rothschild, M.F.; Schmidt, C.J.; Lamont, S.J. Identification of Quantitative Trait Loci for Body Temperature, Body Weight, Breast Yield, and Digestibility in an Advanced Intercross Line of Chickens under Heat Stress. Genet. Sel. Evol. 2015, 47, 96. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.U.; Hume, M.E.; Byrd, J.A.; Nisbet, D.J.; Ijaz, A.; Sohail, A.; Shabbir, M.Z.; Rehman, H. Effect of Supplementation of Prebiotic Mannan-Oligosaccharides and Probiotic Mixture on Growth Performance of Broilers Subjected to Chronic Heat Stress. Poult. Sci. 2012, 91, 2235–2240. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.S.; Rashamol, V.P.; Bagath, M.; Sejian, V.; Dunshea, F.R. Impacts of Heat Stress on Immune Responses and Oxidative Stress in Farm Animals and Nutritional Strategies for Amelioration. Int. J. Biometeorol. 2021, 65, 1231–1244. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Yu, Y.-H.; Hsiao, F.S.-H.; Su, C.-H.; Liu, H.-C.; Tobin, I.; Zhang, G.; Cheng, Y.-H. Influence of Heat Stress on Poultry Growth Performance, Intestinal Inflammation, and Immune Function and Potential Mitigation by Probiotics. Animals 2022, 12, 2297. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Yan, F.-F.; Hu, J.-Y.; Mohammed, A.; Cheng, H.-W. Bacillus Subtilis-Based Probiotic Improves Skeletal Health and Immunity in Broiler Chickens Exposed to Heat Stress. Animals 2021, 11, 1494. [Google Scholar] [CrossRef]
- Bartlett, J.R.; Smith, M.O. Effects of Different Levels of Zinc on the Performance and Immunocompetence of Broilers under Heat Stress. Poult. Sci. 2003, 82, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, S.; Habibian, M.; Moeini, M.M.; Abdolmohammadi, A.R. Effects of Different Levels of Organic and Inorganic Chromium on Growth Performance and Immunocompetence of Broilers under Heat Stress. Biol. Trace Elem. Res. 2012, 146, 309–317. [Google Scholar] [CrossRef]
- Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef]
- Amoia, C.F.A.N.; Nnadi, P.A.; Ezema, C.; Couacy-Hymann, E. Epidemiology of Newcastle Disease in Africa with Emphasis on Côte d’Ivoire: A Review. Vet. World 2021, 14, 1727–1740. [Google Scholar] [CrossRef]
- Apopo, A.A.; Kariithi, H.M.; Ateya, L.O.; Binepal, Y.S.; Sirya, J.H.; Dulu, T.D.; Welch, C.N.; Hernandez, S.M.; Afonso, C.L. A Retrospective Study of Newcastle Disease in Kenya. Trop. Anim. Health Prod. 2020, 52, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Haile, B.; Fentie, T.; Kassa, T. The Role of Live Chicken Markets as a Source of Replication and Dissemination of Newcastle Disease Virus in Chickens, Northwest Ethiopia. Poult. Sci. 2020, 99, 5415–5421. [Google Scholar] [CrossRef]
- Van Goor, A.; Ashwell, C.M.; Persia, M.E.; Rothschild, M.F.; Schmidt, C.J.; Lamont, S.J. Quantitative Trait Loci Identified for Blood Chemistry Components of an Advanced Intercross Line of Chickens under Heat Stress. BMC Genom. 2016, 17, 287. [Google Scholar] [CrossRef]
- Wolc, A.; Arango, J.; Settar, P.; Fulton, J.E.; O’Sullivan, N.P.; Dekkers, J.C.M. Genome Wide Association Study for Heat Stress Induced Mortality in a White Egg Layer Line. Poult. Sci. 2019, 98, 92–96. [Google Scholar] [CrossRef]
- Saelao, P.; Wang, Y.; Chanthavixay, G.; Gallardo, R.A.; Wolc, A.; Dekkers, J.C.M.; Lamont, S.J.; Kelly, T.; Zhou, H. Genetics and Genomic Regions Affecting Response to Newcastle Disease Virus Infection under Heat Stress in Layer Chickens. Genes 2019, 10, 61. [Google Scholar] [CrossRef]
- Felver-Gant, J.N.; Mack, L.A.; Dennis, R.L.; Eicher, S.D.; Cheng, H.W. Genetic Variations Alter Physiological Responses Following Heat Stress in 2 Strains of Laying Hens. Poult. Sci. 2012, 91, 1542–1551. [Google Scholar] [CrossRef]
- Boonkum, W.; Duangjinda, M.; Kananit, S.; Chankitisakul, V.; Kenchaiwong, W. Genetic Effect and Growth Curve Parameter Estimation under Heat Stress in Slow-Growing Thai Native Chickens. Vet. Sci. 2021, 8, 297. [Google Scholar] [CrossRef] [PubMed]
- Borzouie, S. Multilevel Evaluation of Prebiotic and Probiotic Supplementations, Heat Stress, and Genetic Strain Effects on Blood and Intestinal Epithelial Cells of Chicken. 2023. Available online: http://hdl.handle.net/10222/82938 (accessed on 15 February 2024).
- Kennedy, G.M. Comparative Genomics and Transcriptomics of Heat Stress in Chicken and Guineafowl Populations from Selected Countries in Africa, Asia, and Europe. Ph.D. Thesis, JKUAT-IBR, Juja, Kenya, 2023. [Google Scholar]
- Sahana, G.; Cai, Z.; Sanchez, M.P.; Bouwman, A.C.; Boichard, D. Invited Review: Good Practices in Genome-Wide Association Studies to Identify Candidate Sequence Variants in Dairy Cattle. J. Dairy Sci. 2023, 106, 5218–5241. [Google Scholar] [CrossRef]
- Scott, M.F.; Ladejobi, O.; Amer, S.; Bentley, A.R.; Biernaskie, J.; Boden, S.A.; Clark, M.; Dell’Acqua, M.; Dixon, L.E.; Filippi, C.V.; et al. Multi-Parent Populations in Crops: A Toolbox Integrating Genomics and Genetic Mapping with Breeding. Heredity 2020, 125, 396–416. [Google Scholar] [CrossRef] [PubMed]
- Saelao, P.; Wang, Y.; Gallardo, R.A.; Lamont, S.J.; Dekkers, J.M.; Kelly, T.; Zhou, H. Novel Insights into the Host Immune Response of Chicken Harderian Gland Tissue during Newcastle Disease Virus Infection and Heat Treatment. BMC Vet. Res. 2018, 14, 280. [Google Scholar] [CrossRef] [PubMed]
- Saelao, P.; Wang, Y.; Chanthavixay, G.; Yu, V.; Gallardo, R.A.; Dekkers, J.C.M.; Lamont, S.J.; Kelly, T.; Zhou, H. Integrated Proteomic and Transcriptomic Analysis of Differential Expression of Chicken Lung Tissue in Response to NDV Infection during Heat Stress. Genes 2018, 9, 579. [Google Scholar] [CrossRef]
- Wang, Y.; Saelao, P.; Kern, C.; Jin, S.; Gallardo, R.A.; Kelly, T.; Dekkers, J.M.; Lamont, S.J.; Zhou, H. Liver Transcriptome Responses to Heat Stress and Newcastle Disease Virus Infection in Genetically Distinct Chicken Inbred Lines. Genes 2020, 11, 1067. [Google Scholar] [CrossRef]
- Wang, Y.; Saelao, P.; Chanthavixay, K.; Gallardo, R.; Bunn, D.; Lamont, S.J.; Dekkers, J.M.; Kelly, T.; Zhou, H. Physiological Responses to Heat Stress in Two Genetically Distinct Chicken Inbred Lines. Poult. Sci. 2018, 97, 770–780. [Google Scholar] [CrossRef]
- 10—Blood Gases: Technical Aspects and Interpretation|Elsevier Enhanced Reader. Available online: https://reader.elsevier.com/reader/sd/pii/B9780323390064000107?token=AB899E1511400832653DAF2D1B87CB9B662917728048D57DACB854D3500FE30B177C3C25E499D912C3E486F2AFE618DE&originRegion=us-east-1&originCreation=20221214003353 (accessed on 13 December 2022).
- Beckford, R.C.; Ellestad, L.E.; Proszkowiec-Weglarz, M.; Farley, L.; Brady, K.; Angel, R.; Liu, H.-C.; Porter, T.E. Effects of Heat Stress on Performance, Blood Chemistry, and Hypothalamic and Pituitary mRNA Expression in Broiler Chickens. Poult. Sci. 2020, 99, 6317–6325. [Google Scholar] [CrossRef]
- Khan, W.A.; Khan, A.; Anjum, A.D. Effects of Induced Heat Stress on Some Biochemical Values in Broiler Chicks. Int. J. Agric. Biol. 2002, 4, 74–75. [Google Scholar]
- Closter, A.M.; van As, P.; Groenen, M.A.M.; Vereijken, A.L.J.; van Arendonk, J.A.M.; Bovenhuis, H. Genetic and Phenotypic Relationships between Blood Gas Parameters and Ascites-Related Traits in Broilers. Poult. Sci. 2009, 88, 483–490. [Google Scholar] [CrossRef]
- Asadollahi, H.; Vaez Torshizi, R.; Ehsani, A.; Masoudi, A. A Genome-Wide Association Study of Survival to Unexpected Acute Heat Stress in a F2 Chicken Population. J. Agric. Sci. Technol. 2021, 23, 283–292. [Google Scholar]
- Asadollahi, H.; Vaez Torshizi, R.; Ehsani, A.; Masoudi, A.A. An Association of CEP78, MEF2C, VPS13A and ARRDC3 Genes with Survivability to Heat Stress in an F2 Chicken Population. J. Anim. Breed. Genet. 2022, 139, 574–582. [Google Scholar] [CrossRef]
- Rowland, K.; Saelao, P.; Wang, Y.; Fulton, J.E.; Liebe, G.N.; McCarron, A.M.; Wolc, A.; Gallardo, R.A.; Kelly, T.; Zhou, H.; et al. Association of Candidate Genes with Response to Heat and Newcastle Disease Virus. Genes 2018, 9, 560. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.-X.; Chen, S.-E.; Chen, C.-F.; Lin, E.-C.; Huang, S.-Y. Genome-Wide Association Study on the Body Temperature Changes of a Broiler-Type Strain Taiwan Country Chickens under Acute Heat Stress. J. Therm. Biol. 2019, 82, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xing, C.-H.; Wei, W.; Zhang, X.-F.; Wei, Z.-Y.; Ren, L.-L.; Jiang, J.-J.; Li, M.; Wang, J.-X.; He, X.-X.; et al. Genome-Wide Scan for Selection Signatures and Genes Related to Heat Tolerance in Domestic Chickens in the Tropical and Temperate Regions in Asia. Poult. Sci. 2022, 101, 101821. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Hu, L.; Brito, L.F.; Dou, J.; Sammad, A.; Chang, Y.; Ma, L.; Guo, G.; Liu, L.; Zhai, L.; et al. Weighted Single-Step GWAS and RNA Sequencing Reveals Key Candidate Genes Associated with Physiological Indicators of Heat Stress in Holstein Cattle. J. Anim. Sci. Biotechnol. 2022, 13, 108. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wei, L.; Wang, J.; Xie, L.; Li, Y.Y.; Ran, S.; Ren, L.; Lu, K.; Li, J.; Timko, M.P.; et al. Integrating GWAS, Linkage Mapping and Gene Expression Analyses Reveals the Genetic Control of Growth Period Traits in Rapeseed (Brassica napus L.). Biotechnol. Biofuels 2020, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Chanthavixay, G.; Kern, C.; Wang, Y.; Saelao, P.; Lamont, S.J.; Gallardo, R.A.; Rincon, G.; Zhou, H. Integrated Transcriptome and Histone Modification Analysis Reveals NDV Infection Under Heat Stress Affects Bursa Development and Proliferation in Susceptible Chicken Line. Front. Genet. 2020, 11, 567812. [Google Scholar] [CrossRef]
- I-STAT-CG8+-Cartridge-Instructions-for-Use.Pdf. Available online: https://www.zoetisus.com/content/assets/docs/Diagnostics/package-inserts/i-STAT-CG8+-Cartridge-Instructions-for-Use.pdf (accessed on 20 February 2020).
- Fourth Report on Chicken Genes and Chromosomes 2022|Cytogenetic and Genome Research|Karger Publishers. Available online: https://karger.com/cgr/article/doi/10.1159/000529376/837021/Fourth-Report-on-Chicken-Genes-and-Chromosomes (accessed on 5 June 2023).
- Ober, E.A.; Olofsson, B.; Mäkinen, T.; Jin, S.-W.; Shoji, W.; Koh, G.Y.; Alitalo, K.; Stainier, D.Y.R. Vegfc Is Required for Vascular Development and Endoderm Morphogenesis in Zebrafish. EMBO Rep. 2004, 5, 78–84. [Google Scholar] [CrossRef]
- Indrieri, A.; van Rahden, V.A.; Tiranti, V.; Morleo, M.; Iaconis, D.; Tammaro, R.; D’Amato, I.; Conte, I.; Maystadt, I.; Demuth, S.; et al. Mutations in COX7B Cause Microphthalmia with Linear Skin Lesions, an Unconventional Mitochondrial Disease. Am. J. Hum. Genet. 2012, 91, 942–949. [Google Scholar] [CrossRef]
- PCO2 and Calculated Values for HCO3, TCO2, Base Excess and Anion Gap. Available online: https://harvardapparatus.com/media/harvard/pdf/OT20.pdf (accessed on 27 August 2003).
- Gaucher, C.; Boudier, A.; Bonetti, J.; Clarot, I.; Leroy, P.; Parent, M. Glutathione: Antioxidant Properties Dedicated to Nanotechnologies. Antioxidants 2018, 7, 62. [Google Scholar] [CrossRef]
- Satriano, A.; Franchini, S.; Lapergola, G.; Pluchinotta, F.; Gazzolo, D. Glutathione Blood Concentrations: A Biomarker of Oxidative Damage Protection during Cardiopulmonary Bypass in Children. Diagnostics 2019, 9, 118. [Google Scholar] [CrossRef]
- Sipes, I.G.; Wiersma, D.A.; Armstrong, D.J. The Role of Glutathione in the Toxicity of Xenobiotic Compounds: Metabolic Activation of 1,2-Dibromoethane by Glutathione. In Biological Reactive Intermediates III: Mechanisms of Action in Animal Models and Human Disease; Advances in Experimental Medicine and Biology; Kocsis, J.J., Jollow, D.J., Witmer, C.M., Nelson, J.O., Snyder, R., Eds.; Springer US: Boston, MA, USA, 1986; pp. 457–467. ISBN 978-1-4684-5134-4. [Google Scholar]
- Townsend, D.M.; Tew, K.D. The Role of Glutathione-S-Transferase in Anti-Cancer Drug Resistance. Oncogene 2003, 22, 7369–7375. [Google Scholar] [CrossRef]
- Pajaud, J.; Kumar, S.; Rauch, C.; Morel, F.; Aninat, C. Regulation of Signal Transduction by Glutathione Transferases. Int. J. Hepatol. 2012, 2012, e137676. [Google Scholar] [CrossRef] [PubMed]
- Townsend, D.M.; Findlay, V.L.; Tew, K.D. Glutathione S-Transferases as Regulators of Kinase Pathways and Anticancer Drug Targets. Methods Enzym. 2005, 401, 287–307. [Google Scholar] [CrossRef]
- Singh, R.R.; Reindl, K.M. Glutathione S-Transferases in Cancer. Antioxidants 2021, 10, 701. [Google Scholar] [CrossRef] [PubMed]
- Øvrebø, K.K.; Svardal, A. The Effect of Glutathione Modulation on the Concentration of Homocysteine in Plasma of Rats. Pharmacol. Toxicol. 2000, 87, 103–107. [Google Scholar] [CrossRef]
- García-Laorden, M.I.; Lorente, J.A.; Flores, C.; Slutsky, A.S.; Villar, J. Biomarkers for the Acute Respiratory Distress Syndrome: How to Make the Diagnosis More Precise. Ann. Transl. Med. 2017, 5, 283. [Google Scholar] [CrossRef] [PubMed]
- Sinaki, M.R.; Sadeghi, M.; Bahrami, A.; Shahrbabak, M.M. Identification of genes, biological pathways and signaling affecting heat stress with microarray data sets in poultry. IJAS 2020, 51, 243–251. [Google Scholar] [CrossRef]
- Wang, S.-H.; Cheng, C.-Y.; Tang, P.-C.; Chen, C.-F.; Chen, H.-H.; Lee, Y.-P.; Huang, S.-Y. Differential Gene Expressions in Testes of L2 Strain Taiwan Country Chicken in Response to Acute Heat Stress. Theriogenology 2013, 79, 374–382.e7. [Google Scholar] [CrossRef]
- Yamamoto, K.; Furukawa, M.T.; Fukumura, K.; Kawamura, A.; Yamada, T.; Suzuki, H.; Hirose, T.; Sakamoto, H.; Inoue, K. Control of the Heat Stress-Induced Alternative Splicing of a Subset of Genes by hnRNP K. Genes Cells 2016, 21, 1006–1014. [Google Scholar] [CrossRef]
- Kwon, W.; Choi, S.-K.; Kim, D.; Kim, H.-G.; Park, J.-K.; Han, J.E.; Cho, G.-J.; Yun, S.; Yu, W.; Han, S.-H.; et al. ZNF507 Affects TGF-β Signaling via TGFBR1 and MAP3K8 Activation in the Progression of Prostate Cancer to an Aggressive State. J. Exp. Clin. Cancer Res. 2021, 40, 291. [Google Scholar] [CrossRef]
- Gilmour, A.R. Asreml for Testing Fixed Effects and Estimating Multiple Trait Variance Components. In Proceedings of the Association for the Advancement of Animal Breeding and Genetics, Dubbo, Australia, 6–10 April 1997. [Google Scholar]
- VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Waide, E.H.; Tuggle, C.K.; Serão, N.V.L.; Schroyen, M.; Hess, A.; Rowland, R.R.R.; Lunney, J.K.; Plastow, G.; Dekkers, J.C.M. Genomewide Association of Piglet Responses to Infection with One of Two Porcine Reproductive and Respiratory Syndrome Virus Isolates1. J. Anim. Sci. 2017, 95, 16–38. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Res 2022, gkac194. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
Phenotype | AH | CH | CH&NDV |
---|---|---|---|
h2 ± SE | h2 ± SE | h2 ± SE | |
Na+ (mmol/L) | 0.02 ± 0.06 | 0.04 ± 0.06 | 0.01 ± 0.06 |
K+ (mmol/L) | 0.02 ± 0.06 | 0.02 ± 0.06 | 0.00 ± 0.06 |
iCa2+ (mmol/L) | 0.00 ± 0.00 | 0.11 ± 0.07 | 0.00 ± 0.06 |
Glu (mg/dL) | 0.06 ± 0.07 | 0.11 ± 0.07 | 0.17 ± 0.08 |
pH | 0.06 ± 0.06 | 0.06 ± 0.06 | 0.18 ± 0.08 |
PCO2 (mmHg) | 0.08 ± 0.06 | 0.02 ± 0.05 | 0.19 ± 0.08 |
TCO2(mmol/L) | 0.23 ± 0.09 | 0.10 ± 0.07 | 0.23 ± 0.08 |
HCO3 (mmol/L) | 0.26 ± 0.09 | 0.12 ± 0.07 | 0.18 ± 0.08 |
BE (mmol/L) | 0.23 ± 0.08 | 0.14 ± 0.07 | 0.20 ± 0.08 |
PO2 (mmHg) | 0.11 ± 0.08 | 0.01 ± 0.06 | 0.10 ± 0.07 |
sO2 (%) | 0.00 ± 0.06 | 0.00 ± 0.07 | 0.16 ± 0.08 |
Phenotype | Number of Significant SNPs | |||
---|---|---|---|---|
Var99.5, 5% | Var99.5, 10% | Var95, 5% | Var95, 10% | |
AH_sO2 | 1 | 1 | 1 | 1 |
CH_pH | 0 | 0 | 2 | 2 |
CH_HCO3 | 0 | 0 | 0 | 2 |
CH_BE | 0 | 0 | 1 | 2 |
CH_Glu | 0 | 0 | 0 | 1 |
CH_Na+ | 0 | 0 | 0 | 1 |
CH_K | 4 | 4 | 16 | 24 |
CH_TCO2 | 0 | 0 | 0 | 1 |
CH&NDV_Na+ | 2 | 4 | 15 | 16 |
CH&NDV_HCO3 | 1 | 1 | 4 | 2 |
CH&NDV_TCO2 | 1 | 1 | 3 | 1 |
Phenotype | Number of SNPs | Chr: Mb | Numbers of Associated Genes |
---|---|---|---|
AH_sO2 | 1 | 4: 11.9–12.9 | 25 |
CH1_BE | 1 | 11: 0.9–1.9 | 21 |
CH1_pH | 2 | 6: 0.2–1.2 | 18 |
CH1_K+ | 16 | 1: 1.1–2.1 | 63 |
CH&NDV_Na+ | 15 | 12: 12.5–13.5 | 14 |
CH&NDV_HCO3 | 4 | 3: 8.3–9.3 | 16 |
CH&NDV_TCO2 | 3 | 3: 8.3–9.3 | 13 |
Heat Stress (HS) vs. Non-Treated (NT) | |||
---|---|---|---|
AH | CH | CH&NDV | |
Na+ | NS 1 | NS | NS |
K+ | NS | NS | NS |
iCa2+ | NS | NS | NS |
Glu | NS | NS | + 3 |
pH | NS | NS | NS |
PCO2 | NS | NS | NS |
TCO2 | NS | NS | NS |
HCO3 | NS | NS | NS |
BE | NS | − 2 | NS |
PO2 | NS | NS | NS |
sO2 | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Saelao, P.; Chanthavixay, G.; Gallardo, R.A.; Wolc, A.; Fulton, J.E.; Dekkers, J.M.; Lamont, S.J.; Kelly, T.R.; Zhou, H. Genomic Regions and Candidate Genes Affecting Response to Heat Stress with Newcastle Virus Infection in Commercial Layer Chicks Using Chicken 600K Single Nucleotide Polymorphism Array. Int. J. Mol. Sci. 2024, 25, 2640. https://doi.org/10.3390/ijms25052640
Wang Y, Saelao P, Chanthavixay G, Gallardo RA, Wolc A, Fulton JE, Dekkers JM, Lamont SJ, Kelly TR, Zhou H. Genomic Regions and Candidate Genes Affecting Response to Heat Stress with Newcastle Virus Infection in Commercial Layer Chicks Using Chicken 600K Single Nucleotide Polymorphism Array. International Journal of Molecular Sciences. 2024; 25(5):2640. https://doi.org/10.3390/ijms25052640
Chicago/Turabian StyleWang, Ying, Perot Saelao, Ganrea Chanthavixay, Rodrigo A. Gallardo, Anna Wolc, Janet E. Fulton, Jack M. Dekkers, Susan J. Lamont, Terra R. Kelly, and Huaijun Zhou. 2024. "Genomic Regions and Candidate Genes Affecting Response to Heat Stress with Newcastle Virus Infection in Commercial Layer Chicks Using Chicken 600K Single Nucleotide Polymorphism Array" International Journal of Molecular Sciences 25, no. 5: 2640. https://doi.org/10.3390/ijms25052640
APA StyleWang, Y., Saelao, P., Chanthavixay, G., Gallardo, R. A., Wolc, A., Fulton, J. E., Dekkers, J. M., Lamont, S. J., Kelly, T. R., & Zhou, H. (2024). Genomic Regions and Candidate Genes Affecting Response to Heat Stress with Newcastle Virus Infection in Commercial Layer Chicks Using Chicken 600K Single Nucleotide Polymorphism Array. International Journal of Molecular Sciences, 25(5), 2640. https://doi.org/10.3390/ijms25052640