Functional Studies of Deafness-Associated Pendrin and Prestin Variants
Abstract
:1. Introduction
2. Results
2.1. Functional Characterization of Pendrin Variants
2.2. Functional Characterization of Prestin Variants
Transport Activity [Mean ± SD (n)] | Dox-Dependence | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dox: 0.1 µg/mL | Dox: 0.3 µg/mL | Dox: 1 µg/mL | Dox: 3 µg/mL | Dox: 10 µg/mL | Transport Activity/ log10 [Dox] (Slope ± SE) | Comparison to WT (F-Test) | |||
WT | HCO3–/Cl– | 0.597 ± 0.109 (10) | 0.795 ± 0.125 (10) | 1.102 ± 0.163 (10) | 1.485 ± 0.290 (10) | 1.731 ± 0.253 (10) | 0.591 ± 0.040 | not applicable | |
[nM/sec] | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | |||
I–/Cl– | 0.08 ± 0.04 (3) | 0.14 ± 0.01 (3) | 0.18 ± 0.02 (3) | 0.23 ± 0.04 (3) | 0.21 ± 0.02 (3) | 0.069 ± 0.012 | not applicable | ||
[mM/sec] | p = 0.049 | p = 0.0002 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | |||
Figure 2 | p.Gln383Glu (c.1147C>G) | HCO3–/Cl– | 0.061 ± 0.023 (4) | 0.072 ± 0.029 (4) | 0.084 ± 0.060 (4) | 0.125 ± 0.059 (3) | 0.073 ± 0.020 (4) | 0.015 ± 0.014 | Function impaired |
[nM/sec] | p = 0.4446 | p = 0.6253 | p = 0.8678 | p = 0.3807 | p = 0.6457 | p = 0.0034 | p < 0.0001 | ||
I–/Cl– | 0.01 ± 0.003 (3) | 0.012 ± 0.003 (3) | 0.011 ± 0.004 (3) | 0.015 ± 0.001 (3) | 0.017 ± 0.005 (3) | 0.003 ± 0.001 | Function impaired | ||
[mM/sec] | p = 0.2067 | p = 0.2589 | p = 0.2398 | p = 0.3427 | p = 0.4135 | p = 0.0132 | p < 0.0001 | ||
p.Glu384Gly (c.1151G>C) | HCO3–/Cl– | 0.055 ± 0.018 (4) | 0.063 ± 0.028 (4) | 0.081 ± 0.025 (4) | 0.088 ± 0.018 (4) | 0.081 ± 0.038 (4) | 0.016 ± 0.008 | Function impaired | |
[nM/sec] | p = 0.2875 | p = 0.407 | p = 0.7755 | p = 0.9276 | p = 0.7679 | p = 0.066 | p < 0.0001 | ||
I–/Cl– | 0.008 ± 0.002 (3) | 0.009 ± 0.002 (3) | 0.016 ± 0.009 (3) | 0.013 ± 0.004 (3) | 0.012 ± 0.002 (3) | 0.002 ± 0.002 | Function impaired | ||
[mM/sec] | p = 0.1742 | p = 0.1931 | p = 0.3773 | p = 0.3016 | p = 0.2592 | p = 0.1892 | p < 0.0001 | ||
p.Ala387Val (c.1160C>T) | HCO3–/Cl– | 0.046 ± 0.027 (4) | 0.054 ± 0.14 (4) | 0.067 ± 0.032 (4) | 0.082 ± 0.053 (4) | 0.100 ± 0.051 (4) | 0.028 ± 0.011 | Function impaired | |
[nM/sec] | p = 0.2327 | p = 0.3218 | p = 0.5252 | p = 0.8158 | p = 0.7995 | p = 0.023 | p < 0.0001 | ||
I–/Cl– | 0.008 ± 0.005 (3) | 0.016 ± 0.005 (3) | 0.011 ± 0.002 (3) | 0.017 ± 0.008 (3) | 0.015 ± 0.003 (3) | 0.003 ± 0.002 | Function impaired | ||
[mM/sec] | p = 0.1662 | p = 0.4038 | p = 0.2439 | p = 0.4111 | p = 0.3413 | p = 0.1819 | p < 0.0001 | ||
p.Gly389Arg (c.1165G>A) | HCO3–/Cl– | 0.054 ± 0.049 (3) | 0.064 ± 0.023 (3) | 0.064 ± 0.015 (3) | 0.071 ± 0.013 (3) | 0.075 ± 0.023 (3) | 0.010 ± 0.009 | Function impaired | |
[nM/sec] | p = 0.3825 | p = 0.5245 | p = 0.5265 | p = 0.6367 | p = 0.6956 | p = 0.3057 | p < 0.0001 | ||
I–/Cl– | 0.011 ± 0.007 (3) | 0.009 ± 0.005 (3) | 0.012 ± 0.006 (3) | 0.011 ± 0.001 (3) | 0.013 ± 0.004 (3) | 0.001 ± 0.002 | Function impaired | ||
[mM/sec] | p = 0.2336 | p = 0.1889 | p = 0.2642 | p = 0.2429 | p = 0.2878 | p = 0.4214 | p < 0.0001 | ||
p.Gly389Arg (c.1165G>C) | HCO3–/Cl– | 0.057 ± 0.015 (3) | 0.110 ± 0.090 (3) | 0.076 ± 0.019 (3) | 0.077 ± 0.012 (3) | 0.113 ± 0.066 (3) | 0.015 ± 0.018 | Function impaired | |
[nM/sec] | p = 0.4957 | p = 0.6993 | p = 0.7679 | p = 0.7755 | p = 0.6584 | p = 0.408 | p < 0.0001 | ||
I–/Cl– | 0.018 ± 0.008 (3) | 0.014 ± 0.009 (3) | 0.013 ± 0.002 (3) | 0.015 ± 0.002 (3) | 0.013 ± 0.002 (3) | slope < 0 | Function impaired | ||
[mM/sec] | p = 0.4607 | p = 0.3203 | p = 0.3036 | p = 0.375 | p = 0.2997 | p = 0.4403 | p < 0.0001 | ||
p.Ser391Asn (c.1172G>A) | HCO3–/Cl– | 0.076 ± 0.026 (4) | 0.084 ± 0.043 (4) | 0.075 ± 0.024 (4) | 0.085 ± 0.048 (4) | 0.066 ± 0.022 (4) | slope < 0 | Function impaired | |
[nM/sec] | p = 0.6844 | p = 0.8509 | p = 0.652 | p = 0.879 | p = 0.4908 | p = 0.6983 | p < 0.0001 | ||
I–/Cl– | 0.012 ± 0.004 (3) | 0.015 ± 0.005 (3) | 0.018 ± 0.001 (3) | 0.019 ± 0.007 (3) | 0.024 ± 0.006 (3) | 0.005 ± 0.002 | Function impaired | ||
[mM/sec] | p = 0.2746 | p = 0.3545 | p = 0.462 | p = 0.4873 | p = 0.7334 | p = 0.0053 | p < 0.0001 | ||
p.Ser391Arg (c.1173C>A) | HCO3–/Cl– | 0.049 ± 0.009 (3) | 0.038 ± 0.015 (3) | 0.036 ± 0.039 (3) | 0.056 ± 0.022 (3) | 0.106 ± 0.074 (3) | 0.026 ± 0.014 | Function impaired | |
[nM/sec] | p = 0.3588 | p = 0.2441 | p = 0.2289 | p = 0.4346 | p = 0.7391 | p = 0.0897 | p < 0.0001 | ||
I–/Cl– | 0.014 ± 0.002 (3) | 0.014 ± 0.003 (3) | 0.015 ± 0.001 (3) | 0.013 ± 0.002 (3) | 0.013 ± 0.001 (3) | slope < 0 | Function impaired | ||
[mM/sec] | p = 0.2964 | p = 0.3102 | p = 0.3437 | p = 0.2906 | p = 0.2652 | p = 0.4322 | p < 0.0001 | ||
p.Asn392Ser (c.1175A>G) | HCO3–/Cl– | 0.049 ± 0.018 (3) | 0.052 ± 0.046 (3) | 0.089 ± 0.041 (3) | 0.056 ± 0.032 (3) | 0.096 ± 0.027 (3) | 0.020 ± 0.012 | Function impaired | |
[nM/sec] | p = 0.3348 | p = 0.3763 | p = 0.9589 | p = 0.4347 | p = 0.9091 | p = 0.1275 | p < 0.0001 | ||
I–/Cl– | 0.009 ± 0.001 (3) | 0.016 ± 0.003 (3) | 0.015 ± 0.002 (3) | 0.015 ± 0.001 (3) | 0.023 ± 0.005 (3) | 0.005 ± 0.001 | Function impaired | ||
[mM/sec] | p = 0.1892 | p = 0.3664 | p = 0.3464 | p = 0.340 | p = 0.6698 | p = 0.0012 | p < 0.0001 | ||
p.Gly396Glu (c.1187G>A) | HCO3–/Cl– | 0.089 ± 0.038 (4) | 0.096 ± 0.060 (4) | 0.121 ± 0.054 (4) | 0.084 ± 0.031 (4) | 0.108 ± 0.013 (4) | 0.006 ± 0.013 | Function impaired | |
[nM/sec] | p = 0.9512 | p = 0.9048 | p = 0.4323 | p = 0.852 | p = 0.6605 | p = 0.6755 | p < 0.0001 | ||
I–/Cl– | 0.009 ± 0.005 (3) | 0.009 ± 0.001 (3) | 0.012 ± 0.002 (3) | 0.011 ± 0.003 (3) | 0.010 ± 0.002 (3) | 0.001 ± 0.001 | Function impaired | ||
[mM/sec] | p = 0.1751 | p = 0.1868 | p = 0.2536 | p = 0.2304 | p = 0.2133 | p = 0.3095 | p < 0.0001 | ||
p.Val402Met (c.1204G>A) | HCO3–/Cl– | 0.086 ± 0.026 (3) | 0.075 ± 0.010 (3) | 0.072 ± 0.029 (3) | 0.108 ± 0.071 (3) | 0.095 ± 0.020 (3) | 0.010 ± 0.013 | Function impaired | |
[nM/sec] | p = 0.9029 | p = 0.7134 | p = 0.6663 | p = 0.6978 | p = 0.9317 | p = 0.4368 | p < 0.0001 | ||
I–/Cl– | 0.013 ± 0.001 (3) | 0.011 ± 0.003 (3) | 0.016 ± 0.007 (3) | 0.018 ± 0.004 (3) | 0.018 ± 0.003 (3) | 0.004 ± 0.001 | Function impaired | ||
[mM/sec] | p = 0.2741 | p = 0.2302 | p = 0.3718 | p = 0.4644 | p = 0.4446 | p = 0.0321 | p < 0.0001 | ||
p.Thr404Ile (c.1211C>T) | HCO3–/Cl– | 0.091 ± 0.032 (5) | 0.062 ± 0.059 (5) | 0.085 ± 0.043 (5) | 0.094 ± 0.059 (5) | 0.100 ± 0.047 (5) | 0.010 ± 0.013 | Function impaired | |
[nM/sec] | p = 0.9989 | p = 0.4374 | p = 0.870 | p = 0.940 | p = 0.8092 | p = 0.4618 | p < 0.0001 | ||
I–/Cl– | 0.011 ± 0.004 (3) | 0.011 ± 0.004 (3) | 0.014 ± 0.004 (3) | 0.015 ± 0.003 (3) | 0.012 ± 0.007 (3) | 0.001 ± 0.002 | Function impaired | ||
[mM/sec] | p = 0.2324 | p = 0.2375 | p = 0.3348 | p = 0.365 | p = 0.2664 | p = 0.4046 | p < 0.0001 | ||
p.Ala406Thr (c.1216G>A) | HCO3–/Cl– | 0.233 ± 0.068 (3) | 0.345 ± 0.073 (3) | 0.473 ± 0.053 (3) | 0.479 ± 0.026 (3) | 0.461 ± 0.088 (3) | 0.118 ± 0.028 | Function impaired | |
[nM/sec] | p = 0.0172 | p = 0.0002 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.0011 | p < 0.0001 | ||
I–/Cl– | 0.056 ± 0.009 (3) | 0.094 ± 0.021 (3) | 0.120 ± 0.037 (3) | 0.111 ± 0.040 (3) | 0.122 ± 0.033 (3) | 0.030 ± 0.011 | Function impaired | ||
[mM/sec] | p = 0.3394 | p = 0.0308 | p = 0.005 | p = 0.0095 | p = 0.0046 | p = 0.017 | p = 0.0212 | ||
p.Ser408Asp (c.1222_3TC>GA) * | HCO3–/Cl– | 0.040 ± 0.019 (4) | 0.057 ± 0.020 (4) | 0.053 ± 0.012 (4) | 0.070 ± 0.031 (4) | 0.088 ± 0.031 (4) | 0.022 ± 0.007 | Function impaired | |
[nM/sec] | p = 0.1339 | p = 0.3078 | p = 0.2554 | p = 0.5357 | p = 0.919 | p = 0.0068 | p < 0.0001 | ||
I–/Cl– | 0.011 ± 0.002 (3) | 0.013 ± 0.003 (3) | 0.017 ± 0.004 (3) | 0.016 ± 0.007 (3) | 0.019 ± 0.002 (3) | 0.004 ± 0.001 | Function impaired | ||
[mM/sec] | p = 0.2394 | p = 0.276 | p = 0.4036 | p = 0.3921 | p = 0.4893 | p = 0.0165 | p < 0.0001 | ||
p.Ser408Glu (c.1222_4TCC>GAG) * | HCO3–/Cl– | 0.066 ± 0.032 (5) | 0.075 ± 0.021 (5) | 0.063 ± 0.034 (5) | 0.084 ± 0.059 (5) | 0.091 ± 0.057 (5) | 0.012 ± 0.012 | Function impaired | |
[nM/sec] | p = 0.477 | p = 0.6504 | p = 0.427 | p = 0.8493 | p = 0.9929 | p = 0.3294 | p < 0.0001 | ||
I–/Cl– | 0.008 ± 0.003 (3) | 0.009 ± 0.005 (3) | 0.010 ± 0.002 (3) | 0.015 ± 0.001 (3) | 0.010 ± 0.001 (3) | 0.002 ± 0.001 | Function impaired | ||
[mM/sec] | p = 0.1561 | p = 0.1915 | p = 0.2025 | p = 0.3308 | p = 0.2164 | p = 0.0695 | p < 0.0001 | ||
p.Arg409Cys (c.1225C>T) | HCO3–/Cl– | 0.103 ± 0.066 (3) | 0.091 ± 0.081 (3) | 0.065 ± 0.036 (3) | 0.076 ± 0.040 (3) | 0.168 ± 0.085 (3) | 0.023 ± 0.024 | Function impaired | |
[nM/sec] | p = 0.8259 | p = 0.9943 | p = 0.6379 | p = 0.782 | p = 0.1685 | p = 0.3529 | p < 0.0001 | ||
I–/Cl– | 0.022 ± 0.002 (3) | 0.024 ± 0.002 (3) | 0.028 ± 0.003 (3) | 0.028 ± 0.004 (3) | 0.026 ± 0.004 (3) | 0.002 ± 0.001 | Function impaired | ||
[mM/sec] | p = 0.6456 | p = 0.7489 | p = 0.9292 | p = 0.9227 | p = 0.8445 | p = 0.0791 | p < 0.0001 | ||
p.Arg409Leu (c.1226G>T) | HCO3–/Cl– | 0.234 ± 0.042 (4) | 0.275 ± 0.037 (4) | 0.318 ± 0.043 (4) | 0.334 ± 0.082 (4) | 0.380 ± 0.044 (3) | 0.071 ± 0.016 | Function impaired | |
[nM/sec] | p = 0.225 | p = 0.1221 | p = 0.0603 | p = 0.0453 | p = 0.0003 | p = 0.0004 | p < 0.0001 | ||
I–/Cl– | 0.061 ± 0.002 (3) | 0.078 ± 0.005 (3) | 0.086 ± 0.003 (3) | 0.086 ± 0.005 (3) | 0.095 ± 0.013 (3) | 0.015 ± 0.003 | Function impaired | ||
[mM/sec] | p = 0.0552 | p = 0.0072 | p = 0.0027 | p = 0.0024 | p = 0.009 | p < 0.0001 | p = 0.0001 | ||
p.Ala411Pro (c.1231G>C) | HCO3–/Cl– | 0.064 ± 0.021 (3) | 0.084 ± 0.021 (3) | 0.071 ± 0.033 (3) | 0.066 ± 0.013 (3) | 0.065 ± 0.014 (3) | slope < 0 | Function impaired | |
[nM/sec] | p = 0.5137 | p = 0.8711 | p = 0.6193 | p = 0.5427 | p = 0.529 | p = 0.6639 | p < 0.0001 | ||
I–/Cl– | 0.016 ± 0.002 (3) | 0.024 ± 0.002 (3) | 0.027 ± 0.005 (3) | 0.028 ± 0.005 (3) | 0.029 ± 0.005 (3) | 0.006 ± 0.002 | Function impaired | ||
[mM/sec] | p = 0.3929 | p = 0.7402 | p = 0.8987 | p = 0.9163 | p = 0.9784 | p = 0.0033 | p < 0.0001 | ||
p.Ala411Thr (c.1231G>A) | HCO3–/Cl– | 0.890 ± 0.010 (3) | 1.176 ± 0.035 (3) | 1.370 ± 0.120 (3) | 1.732 ± 0.237 (3) | 1.752 ± 0.047 (3) | 0.455 ± 0.049 | WT-like | |
[nM/sec] | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.0847 | ||
I–/Cl– | 0.064 ± 0.012 (3) | 0.079 ± 0.014 (3) | 0.094 ± 0.011 (3) | 0.113 ± 0.023 (3) | 0.123 ± 0.022 (3) | 0.030 ± 0.006 | Function impaired | ||
[mM/sec] | p = 0.0955 | p = 0.0224 | p = 0.0054 | p = 0.0009 | p = 0.0004 | p = 0.0001 | p = 0.0062 | ||
p.Val412Ile (c.1234G>A) | HCO3–/Cl– | 0.868 ± 0.186 (3) | 1.132 ± 0.503 (3) | 1.430 ± 0.706 (3) | 1.530 ± 0.532 (3) | 2.081 ± 0.849 (3) | 0.566 ± 0.194 | WT-like | |
[nM/sec] | p = 0.041 | p = 0.0091 | p = 0.0016 | p = 0.0009 | p < 0.0001 | p = 0.0121 | p = 0.8432 | ||
I–/Cl– | 0.085 ± 0.009 (3) | 0.117 ± 0.005 (3) | 0.122 ± 0.016 (3) | 0.141 ± 0.015 (3) | 0.146 ± 0.006 (3) | 0.029 ± 0.004 | Function impaired | ||
[mM/sec] | p = 0.005 | p = 0.0002 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.0036 | ||
p.Gln413Pro (c.1238A>C) | HCO3–/Cl– | 0.095 ± 0.021 (3) | 0.081 ± 0.027 (3) | 0.090 ± 0.057 (3) | 0.144 ± 0.056 (3) | 0.121 ± 0.100 (3) | 0.023 ± 0.020 | Function impaired | |
[nM/sec] | p = 0.9349 | p = 0.8519 | p = 0.984 | p = 0.3123 | p = 0.5596 | p = 0.2745 | p < 0.0001 | ||
I–/Cl– | 0.019 ± 0.003 (3) | 0.026 ± 0.007 (3) | 0.027 ± 0.002 (3) | 0.024 ± 0.001 (3) | 0.022 ± 0.004 (3) | 0.001 ± 0.002 | Function impaired | ||
[mM/sec] | p = 0.4857 | p = 0.8454 | p = 0.8783 | p = 0.7352 | p = 0.6318 | p = 0.6167 | p < 0.0001 | ||
p.Gln413Arg (c.1238A>G) | HCO3–/Cl– | 0.313 ± 0.107 (3) | 0.349 ± 0.156 (3) | 0.440 ± 0.212 (3) | 0.459 ± 0.203 (3) | 0.424 ± 0.208 (3) | 0.066 ± 0.059 | Function impaired | |
[nM/sec] | p = 0.0652 | p = 0.0349 | p = 0.0069 | p = 0.0048 | p = 0.0092 | p = 0.2848 | p < 0.0001 | ||
I–/Cl– | 0.039 ± 0.011 (3) | 0.050 ± 0.009 (3) | 0.058 ± 0.002 (3) | 0.064 ± 0.002 (3) | 0.072 ± 0.007 (3) | 0.016 ± 0.002 | Function impaired | ||
[mM/sec] | p = 0.5267 | p = 0.1857 | p = 0.0756 | p = 0.0391 | p = 0.0139 | p < 0.0001 | p = 0.0001 | ||
p.Glu414Lys (c.1240G>A) | HCO3–/Cl– | 0.305 ± 0.075 (3) | 0.314 ± 0.166 (3) | 0.327 ± 0.079 (3) | 0.404 ± 0.106 (3) | 0.429 ± 0.262 (3) | 0.067 ± 0.050 | Function impaired | |
[nM/sec] | p = 0.0431 | p = 0.0356 | p = 0.0279 | p = 0.0055 | p = 0.0033 | p = 0.1998 | p < 0.0001 | ||
I–/Cl– | 0.040 ± 0.008 (3) | 0.045 ± 0.007 (3) | 0.049 ± 0.002 (3) | 0.051 ± 0.005 (3) | 0.061 ± 0.008 (3) | 0.010 ± 0.002 | Function impaired | ||
[mM/sec] | p = 0.4681 | p = 0.3109 | p = 0.2121 | p = 0.1617 | p = 0.0545 | p = 0.0007 | p < 0.0001 | ||
p.Ser415Gly (c.1243A>G) | HCO3–/Cl– | 0.384 ± 0.171 (3) | 0.484 ± 0.075 (3) | 0.727 ± 0.184 (3) | 0.824 ± 0.260 (3) | 0.774 ± 0.260 (3) | 0.224 ± 0.070 | Function impaired | |
[nM/sec] | p = 0.0303 | p = 0.0059 | p = 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.0072 | p < 0.0001 | ||
I–/Cl– | 0.068 ± 0.011 (3) | 0.089 ± 0.011 (3) | 0.097 ± 0.014 (3) | 0.107 ± 0.016 (3) | 0.112 ± 0.007 (3) | 0.021 ± 0.004 | Function impaired | ||
[mM/sec] | p = 0.0377 | p = 0.0039 | p = 0.0017 | p = 0.0006 | p = 0.0003 | p = 0.0002 | p = 0.0007 | ||
p.Ser415Arg (c.1245C>A) | HCO3–/Cl– | 0.634 ± 0.135 (3) | 0.923 ± 0.072 (3) | 0.915 ± 0.013 (3) | 1.084 ± 0.041 (3) | 1.242 ± 0.057 (3) | 0.275 ± 0.033 | Function impaired | |
[nM/sec] | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | ||
I–/Cl– | 0.052 ± 0.009 (3) | 0.069 ± 0.018 (3) | 0.080 ± 0.011 (3) | 0.094 ± 0.010 (3) | 0.091 ± 0.013 (3) | 0.021 ± 0.004 | Function impaired | ||
[mM/sec] | p = 0.203 | p = 0.0371 | p = 0.0102 | p = 0.0023 | p = 0.0033 | p = 0.0005 | p = 0.0006 | ||
p.Ser532Ile (c.1595G>T) | HCO3–/Cl– | 0.549 ± 0.091 (4) | 0.793 ± 0.254 (4) | 0.816 ± 0.107 (4) | 0.845 ± 0.267 (4) | 0.912 ± 0.245 (4) | 0.155 ± 0.063 | Function impaired | |
[nM/sec] | p = 0.0011 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.0244 | p < 0.0001 | ||
I–/Cl– | 0.053 ± 0.011 (3) | 0.055 ± 0.011 (3) | 0.069 ± 0.018 (3) | 0.086 ± 0.028 (3) | 0.095 ± 0.009 (3) | 0.023 ± 0.006 | Function impaired | ||
[mM/sec] | p = 0.2373 | p = 0.198 | p = 0.0572 | p = 0.0108 | p = 0.0045 | p = 0.0011 | p = 0.0015 | ||
Figure 5 | p.Ala104Val (c.311C>T) | HCO3–/Cl– | 0.079 ± 0.017 (4) | 0.152 ± 0.080 (4) | 0.110 ± 0.035 (4) | 0.132 ± 0.029 (4) | 0.105 ± 0.039 (4) | 0.006 ± 0.015 | Function impaired |
[nM/sec] | p = 0.7598 | p = 0.1325 | p = 0.6295 | p = 0.3075 | p = 0.718 | p = 0.7015 | p < 0.0001 | ||
p.Ala104Thr (c.310G>A) * | HCO3–/Cl– | 0.363 ± 0.051 (6) | 0.402 ± 0.075 (6) | 0.468 ± 0.039 (6) | 0.528 ± 0.100 (6) | 0.443 ± 0.084 (6) | 0.057 ± 0.022 | Function impaired | |
[nM/sec] | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.0159 | p < 0.0001 | ||
p.Ala451Gly (c.1352C>G) * | HCO3–/Cl– | 0.479 ± 0.092 (3) | 0.911 ± 0.063 (3) | 0.993 ± 0.129 (3) | 1.284 ± 0.089 (3) | 1.836 ± 0.184 (3) | 0.618 ± 0.056 | WT-like | |
[nM/sec] | p = 0.0062 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.7423 | ||
p.Ala451Ser (c.1351G>T) * | HCO3–/Cl– | 0.572 ± 0.140 (3) | 0.921 ± 0.162 (3) | 1.168 ± 0.127 (3) | 1.406 ± 0.167 (3) | 1.749 ± 0.251 (3) | 0.568 ± 0.057 | WT-like | |
[nM/sec] | p = 0.0027 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.7667 | ||
p.Ala451Leu (c.1351_2GC>CT) * | HCO3–/Cl– | 0.097 ± 0.047 (3) | 0.144 ± 0.013 (3) | 0.100 ± 0.036 (3) | 0.093 ± 0.014 (3) | 0.143 ± 0.064 (3) | 0.008 ± 0.015 | Function impaired | |
[nM/sec] | p = 0.3455 | p = 0.0283 | p = 0.3058 | p = 0.4034 | p = 0.0299 | p = 0.6021 | p < 0.0001 |
2.3. Comparison to AlphaMissense Variant Effect Predictor
3. Discussion
4. Materials and Methods
4.1. Generation of Stable Cell Lines
4.2. Fluorometric Anion Transport Assays
4.3. Whole-Cell Recordings
4.4. NLC Data Analysis
4.5. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, B.Y.; Kim, H.M.; Ito, T.; Lee, K.Y.; Li, X.; Monahan, K.; Wen, Y.; Wilson, E.; Kurima, K.; Saunders, T.L.; et al. Mouse model of enlarged vestibular aqueducts defines temporal requirement of Slc26a4 expression for hearing acquisition. J. Clin. Investig. 2011, 121, 4516–4525. [Google Scholar] [CrossRef]
- Everett, L.A.; Belyantseva, I.A.; Noben-Trauth, K.; Cantos, R.; Chen, A.; Thakkar, S.I.; Hoogstraten-Miller, S.L.; Kachar, B.; Wu, D.K.; Green, E.D. Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum. Mol. Genet. 2001, 10, 153–161. [Google Scholar] [CrossRef]
- Zheng, J.; Shen, W.; He, D.Z.; Long, K.B.; Madison, L.D.; Dallos, P. Prestin is the motor protein of cochlear outer hair cells. Nature 2000, 405, 149–155. [Google Scholar] [CrossRef]
- Liberman, M.C.; Gao, J.; He, D.Z.; Wu, X.; Jia, S.; Zuo, J. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 2002, 419, 300–304. [Google Scholar] [CrossRef]
- Cheatham, M.A.; Huynh, K.H.; Gao, J.; Zuo, J.; Dallos, P. Cochlear function in Prestin knockout mice. J. Physiol. 2004, 560, 821–830. [Google Scholar] [CrossRef]
- Dallos, P.; Wu, X.; Cheatham, M.A.; Gao, J.; Zheng, J.; Anderson, C.T.; Jia, S.; Wang, X.; Cheng, W.H.; Sengupta, S.; et al. Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 2008, 58, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Everett, L.A.; Glaser, B.; Beck, J.C.; Idol, J.R.; Buchs, A.; Heyman, M.; Adawi, F.; Hazani, E.; Nassir, E.; Baxevanis, A.D.; et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat. Genet. 1997, 17, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Pryor, S.P.; Madeo, A.C.; Reynolds, J.C.; Sarlis, N.J.; Arnos, K.S.; Nance, W.E.; Yang, Y.; Zalewski, C.K.; Brewer, C.C.; Butman, J.A.; et al. SLC26A4/PDS genotype-phenotype correlation in hearing loss with enlargement of the vestibular aqueduct (EVA): Evidence that Pendred syndrome and non-syndromic EVA are distinct clinical and genetic entities. J. Med. Genet. 2005, 42, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Stenson, P.D.; Mort, M.; Ball, E.V.; Chapman, M.; Evans, K.; Azevedo, L.; Hayden, M.; Heywood, S.; Millar, D.S.; Phillips, A.D.; et al. The Human Gene Mutation Database (HGMD((R))): Optimizing its use in a clinical diagnostic or research setting. Hum. Genet. 2020, 139, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Wasano, K.; Takahashi, S.; Rosenberg, S.K.; Kojima, T.; Mutai, H.; Matsunaga, T.; Ogawa, K.; Homma, K. Systematic quantification of the anion transport function of pendrin (SLC26A4) and its disease-associated variants. Hum. Mutat. 2020, 41, 316–331. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Cheatham, M.A.; Zheng, J.; Homma, K. The R130S mutation significantly affects the function of prestin, the outer hair cell motor protein. J. Mol. Med. 2016, 94, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Zhou, Y.; Cheatham, M.A.; Homma, K. The pathogenic roles of the p.R130S prestin variant in DFNB61 hearing loss. bioRxiv 2023. [Google Scholar] [CrossRef]
- Oza, A.M.; DiStefano, M.T.; Hemphill, S.E.; Cushman, B.J.; Grant, A.R.; Siegert, R.K.; Shen, J.; Chapin, A.; Boczek, N.J.; Schimmenti, L.A.; et al. Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Hum. Mutat. 2018, 39, 1593–1613. [Google Scholar] [CrossRef] [PubMed]
- Ashmore, J.F. Forward and reverse transduction in the mammalian cochlea. Neurosci. Res. Suppl. 1990, 12, S39–S50. [Google Scholar] [CrossRef] [PubMed]
- Santos-Sacchi, J. Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J. Neurosci. 1991, 11, 3096–3110. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Novati, G.; Pan, J.; Bycroft, C.; Zemgulyte, A.; Applebaum, T.; Pritzel, A.; Wong, L.H.; Zielinski, M.; Sargeant, T.; et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 2023, 381, eadg7492. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, X.; Huang, H.; Chen, Y.; Wang, F.; Hao, A.; Zhan, W.; Mao, Q.; Hu, Y.; Han, L.; et al. Asymmetric pendrin homodimer reveals its molecular mechanism as anion exchanger. Nat. Commun. 2023, 14, 3012. [Google Scholar] [CrossRef]
- Ge, J.; Elferich, J.; Dehghani-Ghahnaviyeh, S.; Zhao, Z.; Meadows, M.; von Gersdorff, H.; Tajkhorshid, E.; Gouaux, E. Molecular mechanism of prestin electromotive signal amplification. Cell 2021, 184, 4669–4679.e4613. [Google Scholar] [CrossRef]
- Bavi, N.; Clark, M.D.; Contreras, G.F.; Shen, R.; Reddy, B.G.; Milewski, W.; Perozo, E. The conformational cycle of prestin underlies outer-hair cell electromotility. Nature 2021, 600, 553–558. [Google Scholar] [CrossRef]
- Butan, C.; Song, Q.; Bai, J.P.; Tan, W.J.T.; Navaratnam, D.; Santos-Sacchi, J. Single particle cryo-EM structure of the outer hair cell motor protein prestin. Nat. Commun. 2022, 13, 290. [Google Scholar] [CrossRef]
- Futamata, H.; Fukuda, M.; Umeda, R.; Yamashita, K.; Tomita, A.; Takahashi, S.; Shikakura, T.; Hayashi, S.; Kusakizako, T.; Nishizawa, T.; et al. Cryo-EM structures of thermostabilized prestin provide mechanistic insights underlying outer hair cell electromotility. Nat. Commun. 2022, 13, 6208. [Google Scholar] [CrossRef]
- Tippett, D.N.; Breen, C.; Butler, S.J.; Sawicka, M.; Dutzler, R. Structural and functional properties of the transporter SLC26A6 reveal mechanism of coupled anion exchange. eLife 2023, 12, RP87178. [Google Scholar] [CrossRef]
- Walter, J.D.; Sawicka, M.; Dutzler, R. Cryo-EM structures and functional characterization of murine Slc26a9 reveal mechanism of uncoupled chloride transport. eLife 2019, 8, e46986. [Google Scholar] [CrossRef]
- Chi, X.; Jin, X.; Chen, Y.; Lu, X.; Tu, X.; Li, X.; Zhang, Y.; Lei, J.; Huang, J.; Huang, Z.; et al. Structural insights into the gating mechanism of human SLC26A9 mediated by its C-terminal sequence. Cell Discov. 2020, 6, 55. [Google Scholar] [CrossRef]
- Huang, B.; Han, M.; Wang, G.; Huang, S.; Zeng, J.; Yuan, Y.; Dai, P. Genetic mutations in non-syndromic deafness patients in Hainan Province have a different mutational spectrum compared to patients from Mainland China. Int. J. Pediatr. Otorhinolaryngol. 2018, 108, 49–54. [Google Scholar] [CrossRef]
- Carvalho, S.; Grangeiro, C.H.P.; Picanco-Albuquerque, C.G.; Dos Anjos, T.O.; De Molfetta, G.A.; Silva, W.A., Jr.; Ferraz, V.E.F. Contribution of SLC26A4 to the molecular diagnosis of nonsyndromic prelingual sensorineural hearing loss in a Brazilian cohort. BMC Res. Notes 2018, 11, 546. [Google Scholar] [CrossRef]
- Rendtorff, N.D.; Schrijver, I.; Lodahl, M.; Rodriguez-Paris, J.; Johnsen, T.; Hansen, E.C.; Nickelsen, L.A.; Tumer, Z.; Fagerheim, T.; Wetke, R.; et al. SLC26A4 mutation frequency and spectrum in 109 Danish Pendred syndrome/DFNB4 probands and a report of nine novel mutations. Clin. Genet. 2013, 84, 388–391. [Google Scholar] [CrossRef]
- Turner, T.N.; Wilfert, A.B.; Bakken, T.E.; Bernier, R.A.; Pepper, M.R.; Zhang, Z.; Torene, R.I.; Retterer, K.; Eichler, E.E. Sex-Based Analysis of De Novo Variants in Neurodevelopmental Disorders. Am. J. Hum. Genet. 2019, 105, 1274–1285. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, O.; Al-Shamsi, A. Mutation spectrum of non-syndromic hearing loss in the UAE, a retrospective cohort study and literature review. Mol. Genet. Genomic Med. 2022, 10, e2052. [Google Scholar] [CrossRef] [PubMed]
- Coyle, B.; Reardon, W.; Herbrick, J.A.; Tsui, L.C.; Gausden, E.; Lee, J.; Coffey, R.; Grueters, A.; Grossman, A.; Phelps, P.D.; et al. Molecular analysis of the PDS gene in Pendred syndrome. Hum. Mol. Genet. 1998, 7, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Koohiyan, M.; Hashemzadeh-Chaleshtori, M.; Tabatabaiefar, M.A. Molecular diagnosis of SLC26A4-related hereditary hearing loss in a group of patients from two provinces of Iran. Intractable Rare Dis. Res. 2021, 10, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Yeh, T.H.; Chen, P.J.; Hsu, C.J. Prevalent SLC26A4 mutations in patients with enlarged vestibular aqueduct and/or Mondini dysplasia: A unique spectrum of mutations in Taiwan, including a frequent founder mutation. Laryngoscope 2005, 115, 1060–1064. [Google Scholar] [CrossRef]
- Sakuma, N.; Moteki, H.; Takahashi, M.; Nishio, S.Y.; Arai, Y.; Yamashita, Y.; Oridate, N.; Usami, S. An effective screening strategy for deafness in combination with a next-generation sequencing platform: A consecutive analysis. J. Hum. Genet. 2016, 61, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Ladsous, M.; Vlaeminck-Guillem, V.; Dumur, V.; Vincent, C.; Dubrulle, F.; Dhaenens, C.M.; Wemeau, J.L. Analysis of the thyroid phenotype in 42 patients with Pendred syndrome and nonsyndromic enlargement of the vestibular aqueduct. Thyroid. 2014, 24, 639–648. [Google Scholar] [CrossRef]
- Albert, S.; Blons, H.; Jonard, L.; Feldmann, D.; Chauvin, P.; Loundon, N.; Sergent-Allaoui, A.; Houang, M.; Joannard, A.; Schmerber, S.; et al. SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations. Eur. J. Hum. Genet. 2006, 14, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Blons, H.; Feldmann, D.; Duval, V.; Messaz, O.; Denoyelle, F.; Loundon, N.; Sergout-Allaoui, A.; Houang, M.; Duriez, F.; Lacombe, D.; et al. Screening of SLC26A4 (PDS) gene in Pendred’s syndrome: A large spectrum of mutations in France and phenotypic heterogeneity. Clin. Genet. 2004, 66, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.J.; Zhao, Y.L.; Rao, S.Q.; Guo, Y.F.; Yuan, H.; Zong, L.; Guan, J.; Xu, B.C.; Wang, D.Y.; Han, M.K.; et al. A distinct spectrum of SLC26A4 mutations in patients with enlarged vestibular aqueduct in China. Clin. Genet. 2007, 72, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Shaukat, S.; Liu, X.Z.; Hahn, S.H.; Naz, S.; Ghosh, M.; Kim, H.N.; Moon, S.K.; Abe, S.; Tukamoto, K.; et al. Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians: Global implications for the epidemiology of deafness. J. Med. Genet. 2003, 40, 242–248. [Google Scholar] [CrossRef]
- Miyagawa, M.; Nishio, S.Y.; Usami, S.; Deafness Gene Study, C. Mutation spectrum and genotype-phenotype correlation of hearing loss patients caused by SLC26A4 mutations in the Japanese: A large cohort study. J. Hum. Genet. 2014, 59, 262–268. [Google Scholar] [CrossRef]
- Hutchin, T.; Coy, N.N.; Conlon, H.; Telford, E.; Bromelow, K.; Blaydon, D.; Taylor, G.; Coghill, E.; Brown, S.; Trembath, R.; et al. Assessment of the genetic causes of recessive childhood non-syndromic deafness in the UK—Implications for genetic testing. Clin. Genet. 2005, 68, 506–512. [Google Scholar] [CrossRef]
- Reardon, W.; CF, O.M.; Trembath, R.; Jan, H.; Phelps, P.D. Enlarged vestibular aqueduct: A radiological marker of pendred syndrome, and mutation of the PDS gene. QJM 2000, 93, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.Y.; Stewart, A.K.; Madeo, A.C.; Pryor, S.P.; Lenhard, S.; Kittles, R.; Eisenman, D.; Kim, H.J.; Niparko, J.; Thomsen, J.; et al. Hypo-functional SLC26A4 variants associated with nonsyndromic hearing loss and enlargement of the vestibular aqueduct: Genotype-phenotype correlation or coincidental polymorphisms? Hum. Mutat. 2009, 30, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Wang, S.; Zhao, X.; Wang, X.; Wang, X.; Cheng, X.; Huang, L. Mutation analysis of the SLC26A4 gene in three Chinese families. Biosci. Trends 2019, 13, 441–447. [Google Scholar] [CrossRef]
- Landa, P.; Differ, A.M.; Rajput, K.; Jenkins, L.; Bitner-Glindzicz, M. Lack of significant association between mutations of KCNJ10 or FOXI1 and SLC26A4 mutations in Pendred syndrome/enlarged vestibular aqueducts. BMC Med. Genet. 2013, 14, 85. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, Y.; Huang, S.; Huang, B.; Cheng, J.; Kang, D.; Wang, G.; Han, D.; Dai, P. KCNJ10 may not be a contributor to nonsyndromic enlargement of vestibular aqueduct (NSEVA) in Chinese subjects. PLoS ONE 2014, 9, e108134. [Google Scholar] [CrossRef]
- Chen, D.Y.; Chen, X.W.; Jin, X.; Zuo, J.; Wei, C.G.; Cao, K.L.; Fang, F.D. Screening of SLC26A4 (PDS) gene mutation in cochlear implant recipients with inner ear malformation. Zhonghua Yi Xue Za Zhi 2007, 87, 2820–2824. [Google Scholar]
- Van Hauwe, P.; Everett, L.A.; Coucke, P.; Scott, D.A.; Kraft, M.L.; Ris-Stalpers, C.; Bolder, C.; Otten, B.; de Vijlder, J.J.; Dietrich, N.L.; et al. Two frequent missense mutations in Pendred syndrome. Hum. Mol. Genet. 1998, 7, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Huang, Z.; Tao, Z.; Li, X.; Li, L.; Li, Y.; Wu, H.; Yang, T. Molecular etiology of hearing impairment associated with nonsyndromic enlarged vestibular aqueduct in East China. Am. J. Med. Genet. A 2013, 161, 2226–2233. [Google Scholar] [CrossRef]
- Gonzalez Trevino, O.; Karamanoglu Arseven, O.; Ceballos, C.J.; Vives, V.I.; Ramirez, R.C.; Gomez, V.V.; Medeiros-Neto, G.; Kopp, P. Clinical and molecular analysis of three Mexican families with Pendred’s syndrome. Eur. J. Endocrinol. 2001, 144, 585–593. [Google Scholar] [CrossRef]
- Courtmans, I.; Mancilla, V.; Ligny, C.; Hilbert, P.; Mansbach, A.L.; Van Maldergem, L. Clinical findings and PDS mutations in 15 patients with hearing loss and dilatation of the vestibular aqueduct. J. Laryngol. Otol. 2007, 121, 312–317. [Google Scholar] [CrossRef]
- Ji, Y.B.; Han, D.Y.; Wang, D.Y.; Zhou, Y.; Zhao, C.; Wang, H.; Lan, L.; Wang, Q.J. Evaluation of deaf-mute patients with sensitive deafness gene screening in Shandong province. Zhonghua Yi Xue Za Zhi 2009, 89, 2531–2535. [Google Scholar]
- Pera, A.; Villamar, M.; Vinuela, A.; Gandia, M.; Meda, C.; Moreno, F.; Hernandez-Chico, C. A mutational analysis of the SLC26A4 gene in Spanish hearing-impaired families provides new insights into the genetic causes of Pendred syndrome and DFNB4 hearing loss. Eur. J. Hum. Genet. 2008, 16, 888–896. [Google Scholar] [CrossRef]
- Yuan, Y.Y.; Dai, P.; Zhu, Q.W.; Kang, D.Y.; Huang, D.L. Sequencing analysis of whole SLC26A4 gene related to IVS7-2A > G mutation in 1552 moderate to profound sensorineural hearing loss patients in China. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2009, 44, 449–454. [Google Scholar] [PubMed]
- Sloan-Heggen, C.M.; Bierer, A.O.; Shearer, A.E.; Kolbe, D.L.; Nishimura, C.J.; Frees, K.L.; Ephraim, S.S.; Shibata, S.B.; Booth, K.T.; Campbell, C.A.; et al. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum. Genet 2016, 135, 441–450. [Google Scholar] [CrossRef]
- Scott, D.A.; Wang, R.; Kreman, T.M.; Andrews, M.; McDonald, J.M.; Bishop, J.R.; Smith, R.J.; Karniski, L.P.; Sheffield, V.C. Functional differences of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss (DFNB4). Hum. Mol. Genet. 2000, 9, 1709–1715. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.S.; Park, H.J.; Yoo, S.Y.; Namkung, W.; Jo, M.J.; Koo, S.K.; Park, H.Y.; Lee, W.S.; Kim, K.H.; Lee, M.G. Heterogeneity in the processing defect of SLC26A4 mutants. J. Med. Genet. 2008, 45, 411–419. [Google Scholar] [CrossRef]
- Ishihara, K.; Okuyama, S.; Kumano, S.; Iida, K.; Hamana, H.; Murakoshi, M.; Kobayashi, T.; Usami, S.; Ikeda, K.; Haga, Y.; et al. Salicylate restores transport function and anion exchanger activity of missense pendrin mutations. Hear. Res. 2010, 270, 110–118. [Google Scholar] [CrossRef]
- Gillam, M.P.; Bartolone, L.; Kopp, P.; Benvenga, S. Molecular analysis of the PDS gene in a nonconsanguineous Sicilian family with Pendred’s syndrome. Thyroid. 2005, 15, 734–741. [Google Scholar] [CrossRef]
- Taylor, J.P.; Metcalfe, R.A.; Watson, P.F.; Weetman, A.P.; Trembath, R.C. Mutations of the PDS gene, encoding pendrin, are associated with protein mislocalization and loss of iodide efflux: Implications for thyroid dysfunction in Pendred syndrome. J. Clin. Endocrinol. Metab. 2002, 87, 1778–1784. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, V.C.S.; Bernardinelli, E.; Zocal, N.; Fernandez, J.A.; Nofziger, C.; Castilho, A.M.; Sartorato, E.L.; Paulmichl, M.; Dossena, S. Reduction of Cellular Expression Levels Is a Common Feature of Functionally Affected Pendrin (SLC26A4) Protein Variants. Mol. Med. 2016, 22, 41–53. [Google Scholar] [CrossRef]
- Pera, A.; Dossena, S.; Rodighiero, S.; Gandia, M.; Botta, G.; Meyer, G.; Moreno, F.; Nofziger, C.; Hernandez-Chico, C.; Paulmichl, M. Functional assessment of allelic variants in the SLC26A4 gene involved in Pendred syndrome and nonsyndromic EVA. Proc. Natl. Acad. Sci. USA 2008, 105, 18608–18613. [Google Scholar] [CrossRef]
- Han, J.J.; Nguyen, P.D.; Oh, D.Y.; Han, J.H.; Kim, A.R.; Kim, M.Y.; Park, H.R.; Tran, L.H.; Dung, N.H.; Koo, J.W.; et al. Elucidation of the unique mutation spectrum of severe hearing loss in a Vietnamese pediatric population. Sci. Rep. 2019, 9, 1604. [Google Scholar] [CrossRef]
- Cardenas, R.; Prinsley, P.; Philpott, C.; Bhutta, M.F.; Wilson, E.; Brewer, D.S.; Jennings, B.A. Whole exome sequencing study identifies candidate loss of function variants and locus heterogeneity in familial cholesteatoma. PLoS ONE 2023, 18, e0272174. [Google Scholar] [CrossRef]
- Mutai, H.; Suzuki, N.; Shimizu, A.; Torii, C.; Namba, K.; Morimoto, N.; Kudoh, J.; Kaga, K.; Kosaki, K.; Matsunaga, T. Diverse spectrum of rare deafness genes underlies early-childhood hearing loss in Japanese patients: A cross-sectional, multi-center next-generation sequencing study. Orphanet J. Rare Dis. 2013, 8, 172. [Google Scholar] [CrossRef]
- Toth, T.; Deak, L.; Fazakas, F.; Zheng, J.; Muszbek, L.; Sziklai, I. A new mutation in the human pres gene and its effect on prestin function. Int. J. Mol. Med. 2007, 20, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Feliciano, P.; Shu, C.; Wang, T.; Astrovskaya, I.; Hall, J.B.; Obiajulu, J.U.; Wright, J.R.; Murali, S.C.; Xu, S.X.; et al. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. Nat. Genet. 2022, 54, 1305–1319. [Google Scholar] [CrossRef]
- Morgan, A.; Lenarduzzi, S.; Cappellani, S.; Pecile, V.; Morgutti, M.; Orzan, E.; Ghiselli, S.; Ambrosetti, U.; Brumat, M.; Gajendrarao, P.; et al. Genomic Studies in a Large Cohort of Hearing Impaired Italian Patients Revealed Several New Alleles, a Rare Case of Uniparental Disomy (UPD) and the Importance to Search for Copy Number Variations. Front. Genet. 2018, 9, 681. [Google Scholar] [CrossRef] [PubMed]
- Koire, A.; Katsonis, P.; Kim, Y.W.; Buchovecky, C.; Wilson, S.J.; Lichtarge, O. A method to delineate de novo missense variants across pathways prioritizes genes linked to autism. Sci. Transl. Med. 2021, 13, eabc1739. [Google Scholar] [CrossRef]
- Brandes, N.; Weissbrod, O.; Linial, M. Open problems in human trait genetics. Genome Biol. 2022, 23, 131. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Livesey, B.J.; Marsh, J.A. Interpreting protein variant effects with computational predictors and deep mutational scanning. Dis. Model. Mech. 2022, 15, dmm049510. [Google Scholar] [CrossRef]
- Tollefson, M.R.; Gogal, R.A.; Weaver, A.M.; Schaefer, A.M.; Marini, R.J.; Azaiez, H.; Kolbe, D.L.; Wang, D.; Weaver, A.E.; Casavant, T.L.; et al. Assessing variants of uncertain significance implicated in hearing loss using a comprehensive deafness proteome. Hum. Genet. 2023, 142, 819–834. [Google Scholar] [CrossRef]
- Fowler, D.M.; Adams, D.J.; Gloyn, A.L.; Hahn, W.C.; Marks, D.S.; Muffley, L.A.; Neal, J.T.; Roth, F.P.; Rubin, A.F.; Starita, L.M.; et al. An Atlas of Variant Effects to understand the genome at nucleotide resolution. Genome Biol. 2023, 24, 147. [Google Scholar] [CrossRef] [PubMed]
- Tabet, D.; Parikh, V.; Mali, P.; Roth, F.P.; Claussnitzer, M. Scalable Functional Assays for the Interpretation of Human Genetic Variation. Annu. Rev. Genet. 2022, 56, 441–465. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.P.; Homma, K.; Duan, C.; Zheng, J.; Cheatham, M.A.; Dallos, P. Functional regulation of the SLC26-family protein prestin by calcium/calmodulin. J. Neurosci. 2014, 34, 1325–1332. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Barone, S.; Varasteh Kia, M.; Holliday, L.S.; Zahedi, K.; Soleimani, M. Identification of IQGAP1 as a SLC26A4 (Pendrin)-Binding Protein in the Kidney. Front. Mol. Biosci. 2022, 9, 874186. [Google Scholar] [CrossRef]
- Zheng, J.; Du, G.G.; Matsuda, K.; Orem, A.; Aguinaga, S.; Deak, L.; Navarrete, E.; Madison, L.D.; Dallos, P. The C-terminus of prestin influences nonlinear capacitance and plasma membrane targeting. J. Cell Sci. 2005, 118, 2987–2996. [Google Scholar] [CrossRef]
- Zheng, L.; Zheng, J.; Whitlon, D.S.; Garcia-Anoveros, J.; Bartles, J.R. Targeting of the hair cell proteins cadherin 23, harmonin, myosin XVa, espin, and prestin in an epithelial cell model. J. Neurosci. 2010, 30, 7187–7201. [Google Scholar] [CrossRef]
- Royaux, I.E.; Suzuki, K.; Mori, A.; Katoh, R.; Everett, L.A.; Kohn, L.D.; Green, E.D. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 2000, 141, 839–845. [Google Scholar] [CrossRef]
- Wangemann, P.; Itza, E.M.; Albrecht, B.; Wu, T.; Jabba, S.V.; Maganti, R.J.; Lee, J.H.; Everett, L.A.; Wall, S.M.; Royaux, I.E.; et al. Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Med. 2004, 2, 30. [Google Scholar] [CrossRef]
- Santos-Sacchi, J.; Kakehata, S.; Takahashi, S. Effects of membrane potential on the voltage dependence of motility-related charge in outer hair cells of the guinea-pig. J. Physiol. 1998, 510 Pt 1, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Zhou, Y.; Kojima, T.; Cheatham, M.A.; Homma, K. Prestin’s fast motor kinetics is essential for mammalian cochlear amplification. Proc. Natl. Acad. Sci. USA 2023, 120, e2217891120. [Google Scholar] [CrossRef] [PubMed]
HCO3–/Cl– Antiport Assay Results | AM Prediction | |||||
---|---|---|---|---|---|---|
%WT Activity | Variant Effect | AM Score | AM Category | |||
Wasano et al., 2020 [10] | p.Ser28Gly (c.82A>G) | 29.2 ± 8.3 | Function impaired | 0.1421 | benign | |
p.Ser49Arg (c.147C>G) | 104.1 ± 13.7 | WT-like | 0.0831 | benign | ||
p.Pro76Ser (c.226C>T) | 30.5 ± 6.3 | Function impaired | 0.2937 | benign | ||
p.Ser90Leu (c.269C>T) | 0.1 ± 0.9 | Function impaired | 0.8985 | pathogenic | ||
p.Thr99Arg (c.296C>G) | 0 | Function impaired | 0.9802 | pathogenic | ||
p.Leu117Phe (c.349C>T) | 95.5 ± 12.5 | WT-like | 0.804 | pathogenic | ||
p.Pro123Ser (c.367C>T) | 2.9 ± 1.3 | Function impaired | 0.7286 | pathogenic | ||
p.Gly131Val (c.392G>T) | 0.4 ± 1.7 | Function impaired | 0.9925 | pathogenic | ||
p.Ser133Thr (c.397T>A) | 2.3 ± 2.0 | Function impaired | 0.4642 | ambiguous | ||
p.Gly139Ala (c.416G>C) | 0 | Function impaired | 0.9105 | pathogenic | ||
p.Met147Thr (c.440T>C) | 0.6 ± 2.8 | Function impaired | 0.9459 | pathogenic | ||
p.Met147Val (c.439A>G) | 6.4 ± 8.5 | Function impaired | 0.7909 | pathogenic | ||
p.Val163Ile (c.487G>A) | 105.1 ± 23.2 | WT-like | 0.0632 | benign | ||
p.Val186Phe (c.556G>T) | 0 | Function impaired | 0.4777 | ambiguous | ||
p.Thr193Ile (c.578C>T) | 0.9 ± 1.3 | Function impaired | 0.9082 | pathogenic | ||
p.Tyr214Cys (c.641A>G) | 31.4 ± 6.0 | Function impaired | 0.8371 | pathogenic | ||
p.Val239Asp (c.716T>A) | 4.9 ± 2.3 | Function impaired | 0.9612 | pathogenic | ||
p.Asp266Asn (c.796G>A) | 106.7 ± 17.7 | WT-like | 0.0528 | ambiguous | ||
p.Thr307Ala (c.919A>G) | 105.5 ± 15.2 | WT-like | 0.4074 | ambiguous | ||
p.Asn324Tyr (c.970A>T) | 99.4 ± 19.5 | WT-like | 0.1773 | pathogenic | ||
p.Gly334Val (c.1001G>T) | 59.5 ± 10.8 | Function impaired | 0.7329 | pathogenic | ||
p.Phe354Ser (c.1061T>C) | 96.6 ± 17.4 | WT-like | 0.5739 | pathogenic | ||
p.Lys369Glu (c.1105A>G) | 39.4 ± 4.2 | Function impaired | 0.4968 | ambiguous | ||
p.Ala372Val (c.1115C>T) | 0.1± 0.9 | Function impaired | 0.9528 | pathogenic | ||
p.Asn392Tyr (c.1174A>T) | 0.5 ± 0.7 | Function impaired | 0.9493 | pathogenic | ||
p.Ser399Pro (c.1195T>C) | 78.9 ± 12.2 | Function impaired | 0.5658 | pathogenic | ||
p.Ser408Phe (c.1223C>T) | 0.9 ± 1.3 | Function impaired | 0.9938 | pathogenic | ||
p.Arg409His (c.1226G>A) | 2.8 ± 2.6 | Function impaired | 0.9499 | pathogenic | ||
p.Thr410Lys (c.1229C>A) | 1.9 ± 1.1 | Function impaired | 0.9957 | pathogenic | ||
p.Thr410Met (c.1229C>T) | 1.4 ± 1.7 | Function impaired | 0.9314 | pathogenic | ||
p.Thr416Pro (c.1246A>C) | 2.2 ± 0.7 | Function impaired | 0.8985 | pathogenic | ||
p.Gln421Leu (c.1262A>T) | 14.1 ± 5.9 | Function impaired | 0.8205 | pathogenic | ||
p.Ile426Asn (c.1277T>A) | 63.8 ± 11.2 | Function impaired | 0.8501 | pathogenic | ||
p.Leu445Trp (c.1334T>G) | 0 | Function impaired | 0.9933 | pathogenic | ||
p.Asn457Lys (c.1371C>A) | 36.4 ± 5.5 | Function impaired | 0.992 | pathogenic | ||
p.Arg470His (c.1409G>A) | 119.6 ± 19.7 | WT-like | 0.0709 | benign | ||
p.Val483Glu (c.1448T>A) | 70.7 ± 11.6 | WT-like | 0.7757 | pathogenic | ||
p.Gly497Ser (c.1489G>A) | 9.8 ± 2.9 | Function impaired | 0.883 | pathogenic | ||
p.Thr527Pro (c.1579A>C) | 42.0 ± 6.8 | Function impaired | 0.7253 | pathogenic | ||
p.Ile529Ser (c.1586T>G) | 16.1 ± 3.1 | Function impaired | 0.7726 | pathogenic | ||
p.Tyr556Cys (c.1667A>G) | 6.5 ± 1.3 | Function impaired | 0.4069 | ambiguous | ||
p.Cys565Tyr (c.1694G>A) | 80.8 ± 10.3 | WT-like | 0.1986 | benign | ||
p.Ser657Asn (c.1970G>A) | 33.0 ± 6.0 | Function impaired | 0.7648 | pathogenic | ||
p.Val659Leu (c.1975G>C) | 37.9 ± 8.1 | Function impaired | 0.2582 | benign | ||
p.Ser666Phe (c.1997C>T) | 17.8 ± 5.3 | Function impaired | 0.4588 | ambiguous | ||
p.Asp669Glu (c.2007C>A) | 0.0 ± 0.0 | Function impaired | 0.973 | pathogenic | ||
p.Phe683Ser (c.2048T>C) | 2.8 ± 1.8 | Function impaired | 0.9461 | pathogenic | ||
p.Phe692Leu (c.2074T>C) | 36.0 ± 9.6 | Function impaired | 0.7169 | pathogenic | ||
p.Leu703Pro (c.2108T>C) | 0.3 ± 0.9 | Function impaired | 0.955 | pathogenic | ||
p.Thr721Met (c.2162C>T) | 0.6 ± 1.7 | Function impaired | 0.4373 | ambiguous | ||
p.His723Arg (c.2168A>G) | 13.4 ± 6.2 | Function impaired | 0.684 | pathogenic | ||
This study | p.Gln383Glu (c.1147C>G) | 2.5 ± 2.4 | Function impaired | 0.4658 | ambiguous | |
p.Glu384Gly (c.1151G>C) | 2.7 ± 1.4 | Function impaired | 0.9808 | pathogenic | ||
p.Ala387Val (c.1160C>T) | 4.7 ± 1.9 | Function impaired | 0.9179 | pathogenic | ||
p.Gly389Arg (c.1165G>A) | 1.7 ± 1.5 | Function impaired | 0.996 | pathogenic | ||
p.Gly389Arg (c.1165G>C) | 2.5 ± 3.1 | Function impaired | 0.996 | pathogenic | ||
p.Ser391Asn (c.1172G>A) | 0 | Function impaired | 0.8762 | pathogenic | ||
p.Ser391Arg (c.1173C>A) | 4.3 ± 2.4 | Function impaired | 0.9974 | pathogenic | ||
p.Asn392Ser (c.1175A>G) | 3.4 ± 2.0 | Function impaired | 0.3199 | benign | ||
p.Gly396Glu (c.1187G>A) | 1.0 ± 0.2 | Function impaired | 0.9866 | pathogenic | ||
p.Val402Met (c.1204G>A) | 1.7 ± 2.2 | Function impaired | 0.5617 | pathogenic | ||
p.Thr404Ile (c.1211C>T) | 1.7 ± 2.2 | Function impaired | 0.9734 | pathogenic | ||
p.Ala406Thr (c.1216G>A) | 20.0 ± 4.9 | Function impaired | 0.8845 | pathogenic | ||
p.Ser408Asp (c. 1222_3TC>GA) * | 3.7 ± 1.2 | Function impaired | 0.9971 | pathogenic | ||
p.Ser408Glu (c.1222_4TCC>GAG) * | 2.0 ± 2.0 | Function impaired | 0.9964 | pathogenic | ||
p.Arg409Cys (c.1225C>T) | 3.4 ± 4.1 | Function impaired | 0.8893 | pathogenic | ||
p.Arg409Leu (c.1226G>T) | 12.0 ± 2.8 | Function impaired | 0.9763 | pathogenic | ||
p.Ala411Pro (c.1231G>C) | 0 | Function impaired | 0.9893 | pathogenic | ||
p.Ala411Thr (c.1231G>A) | 77.0 ± 9.8 | WT-like | 0.5393 | ambiguous | ||
p.Val412Ile (c.1234G>A) | 95.8 ± 33.5 | WT-like | 0.0792 | benign | ||
p.Gln413Pro (c.1238A>C) | 3.9 ± 3.4 | Function impaired | 0.9839 | pathogenic | ||
p.Gln413Arg (c.1238A>G) | 11.2 ± 10.0 | Function impaired | 0.8859 | pathogenic | ||
p.Glu414Lys (c.1240G>A) | 11.3 ± 8.5 | Function impaired | 0.8309 | pathogenic | ||
p.Ser415Gly (c.1243A>G) | 37.9 ± 12.1 | Function impaired | 0.1027 | benign | ||
p.Ser415Arg (c.1245C>A) | 46.5 ± 6.4 | Function impaired | 0.9514 | pathogenic | ||
p.Ser532Ile (c.1595G>T) | 26.2 ± 10.8 | Function impaired | 0.3304 | benign | ||
p.Ala104Val (c.311C>T) | 1.0 ± 2.5 | Function impaired | 0.9684 | pathogenic | ||
p.Ala104Thr (c.310G>A) * | 9.6 ± 3.8 | Function impaired | 0.9153 | pathogenic | ||
p.Ala451Gly (c.1352C>G) * | 104.6 ± 11.8 | WT-like | 0.1774 | benign | ||
p.Ala451Ser (c.1351G>T) * | 96.1 ± 11.6 | WT-like | 0.2429 | benign | ||
p.Ala451Leu (c.1351_2GC>CT) * | 1.4 ± 2.5 | Function impaired | 0.9707 | pathogenic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, S.; Kojima, T.; Wasano, K.; Homma, K. Functional Studies of Deafness-Associated Pendrin and Prestin Variants. Int. J. Mol. Sci. 2024, 25, 2759. https://doi.org/10.3390/ijms25052759
Takahashi S, Kojima T, Wasano K, Homma K. Functional Studies of Deafness-Associated Pendrin and Prestin Variants. International Journal of Molecular Sciences. 2024; 25(5):2759. https://doi.org/10.3390/ijms25052759
Chicago/Turabian StyleTakahashi, Satoe, Takashi Kojima, Koichiro Wasano, and Kazuaki Homma. 2024. "Functional Studies of Deafness-Associated Pendrin and Prestin Variants" International Journal of Molecular Sciences 25, no. 5: 2759. https://doi.org/10.3390/ijms25052759
APA StyleTakahashi, S., Kojima, T., Wasano, K., & Homma, K. (2024). Functional Studies of Deafness-Associated Pendrin and Prestin Variants. International Journal of Molecular Sciences, 25(5), 2759. https://doi.org/10.3390/ijms25052759