The Relevance, Predictability, and Utility of Annexin A5 for Human Physiopathology
Abstract
:1. Introduction
2. Tertiary Structure and Polymerization of hAnxA5
Amino Acid Residues | Position | Function |
---|---|---|
Trp | Trp-187 in domain Ⅲ | High concentrations of Ca2+ bind to Domain Ⅲ of the conserved region and covalent structural changes Trp-187 are exposed [46,47] |
Arg | Conserved arginine residues in the endonexin fold of each homology segment | Stabilizing the tertiary structure of annexin A5 [48] |
Ser, Thr, special Trp | Thr72,Ser144,Ser228,Ser303,Trp185 | Contribute to membrane binding and participate directly in intermolecular contacts with phospholipid membrane components [39] |
Asp | Asp-226 | A molecular switch of the pH- and Ca2+-mediated conformational [49] |
Glu | Glu-95 | Crucial component of the ion-selectivity filter [50] |
3. Relevance to and Intervention in Human Physiopathological Disorders
3.1. Coagulation and Vascular Abnormalities
3.2. Autoimmune Diseases
3.3. Tumorigenesis
3.4. Pulmonary Fibrosis and Lung Injury
3.5. Liver Disease
4. Predictability as a Reagent for Detection and Identification
4.1. Tumor Biomarkers
4.2. Biomarkers of Neurodegenerative Diseases
4.3. Biomarkers in Heart Failure
4.4. Biomarkers in Kidney Injury
4.5. Biomarker in Asthma
5. Diagnostic and Therapeutical Usages of hAnxA5
5.1. Apoptosis Detector In Vitro or In Vivo
5.2. hAnxA5-Associated Targeted Drug Delivery (TDD) Strategy
5.3. hAnx5-Associated Anticancer Treatment
5.4. hAnx5-Associated Thrombotic Diseases Treatment
5.5. Application in Systemic Lupus Erythematosus (SLE) Treatment
5.6. Treatment of EIB in Asthma
6. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohn, H.; Kraus, W. Isolierung and charakterisierung eines neuen plazentaspezifischen proteins (PP10). Arch. Gynecol. 1979, 227, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Kume, K. Isolation of calphobindin-II and its mechanism of anticoagulant activity. Nihon Sanka Fujinka Gakkai Zasshi 1989, 41, 1537–1544. [Google Scholar] [PubMed]
- Mollenhauer, J.; Bee, J.A.; Lizarbe, M.A.; von der Mark, K. Role of anchorin CII, a 31,000-mol-wt membrane protein, in the interaction of chondrocytes with type II collagen. J. Cell Biol. 1984, 98, 1572–1579. [Google Scholar] [CrossRef]
- Schlaepfer, D.D.; Mehlman, T.; Burgess, W.H.; Haigler, H.T. Structural and functional-characterization of endonexin ii, a calcium-binding and phospholipid-binding protein. Proc. Natl. Acad. Sci. USA 1987, 84, 6078–6082. [Google Scholar] [CrossRef] [PubMed]
- Tait, J.F.; Gibson, D.; Fujikawa, K. Phospholipid binding properties of human placental anticoagulant protein-I, a member of the lipocortin family. J. Biol. Chem. 1989, 264, 7944–7949. [Google Scholar] [CrossRef]
- Andree, H.A.; Reutelingsperger, C.P.; Hauptmann, R.; Hemker, H.C.; Hermens, W.T.; Willems, G.M. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J. Biol. Chem. 1990, 265, 4923–4928. [Google Scholar] [CrossRef]
- Pepinsky, R.B.; Tizard, R.; Mattaliano, R.J.; Sinclair, L.K.; Miller, G.T.; Browning, J.L.; Chow, E.P.; Burne, C.; Huang, K.S.; Pratt, D. Five distinct calcium and phospholipid binding proteins share homology with lipocortin I. J. Biol. Chem. 1988, 263, 10799–10811. [Google Scholar] [CrossRef]
- Inaba, N.; Shirotake, S.; Ota, Y.; Fukazawa, I.; Nito, A.; Ijichi, M.; Takamizawa, H.; Bohn, H. Clinical significance of a new membrane associated placental protein 4 (PP4) in gynecologic malignancies. Nihon Sanka Fujinka Gakkai Zasshi 1986, 38, 265–266. [Google Scholar]
- Grundmann, U.; Abel, K.J.; Bohn, H.; Löbermann, H.; Lottspeich, F.; Küpper, H. Characterization of cDNA encoding human placental anticoagulant protein (PP4): Homology with the lipocortin family. Proc. Natl. Acad. Sci. USA 1988, 85, 3708–3712. [Google Scholar] [CrossRef]
- Shidara, Y.; Takahashi, O.; Murata, M.; Kume, K.; Narita, M.; Sato, H.; Sato, Y.; Higuchi, M.; Maki, M. Molecular structure and function of tissue thromboplastin and thromboplastin inhibitor, calphobindin in blood coagulation and fibrinolysis. Nihon Rinsho 1989, 47, 844–850. [Google Scholar]
- Heerde, W.; Lap, P.; Schoormans, S.; Groot, P.G.; Reutelingsperger, C.; Vroom, T.M. Localization of annexin A5 in human tissues. Annexins 2004, 1, 37–43. [Google Scholar]
- Kaneko, N.; Matsuda, R.; Hosoda, S.; Kajita, T.; Ohta, Y. Measurement of plasma annexin V by ELISA in the early detection of acute myocardial infarction. Clin. Chim. Acta 1996, 251, 65–80. [Google Scholar] [CrossRef]
- Peetz, D.; Hafner, G.; Blankenberg, S.; Peivandi, A.A.; Schweigert, R.; Brunner, K.; Dahm, M.; Rupprecht, H.J.; Möckel, M. Annexin V does not represent a diagnostic alternative to myoglobin for early detection of myocardial infarction. Clin. Lab. 2002, 48, 517–523. [Google Scholar] [PubMed]
- Flaherty, M.J.; West, S.; Heimark, R.L.; Fujikawa, K.; Tait, J.F. Placental anticoagulant protein-I: Measurement in extracellular fluids and cells of the hemostatic system. J. Lab. Clin. Med. 1990, 115, 174–181. [Google Scholar]
- Römisch, J.; Schuler, E.; Bastian, B.; Bürger, T.; Dunkel, F.G.; Schwinn, A.; Hartmann, A.A.; Pâques, E.P. Annexins I to VI: Quantitative determination in different human cell types and in plasma after myocardial infarction. Blood Coag. Fibrinol. 1992, 3, 11–17. [Google Scholar] [CrossRef]
- Koster, J.J.; Boustead, C.M.; Middleton, C.A.; Walker, J.H. The sub-cellular localization of annexin V in cultured chick-embryo fibroblasts. Biochem. J. 1993, 291, 595–600. [Google Scholar] [CrossRef]
- Bevers, E.M.; Comfurius, P.; van Rijn, J.L.; Hemker, H.C.; Zwaal, R.F. Generation of prothrombin converting activity and the exposure of phosphatidylserine at the outer surface of platelets. Eur. J. Biochem. 1982, 122, 429–436. [Google Scholar] [CrossRef]
- Holmgren, L.; O’Reilly, M.S.; Folkman, J. Dormancy of micrometastasis: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med. 1995, 1, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.R.; Gibson, D.F.; Schwartz, S.M.; Tait, J.F. Binding and phagocytosis of apoptotic vascular smooth muscle cells is mediated in part by exposure of phosphatidylserine. Circ. Res. 1995, 77, 1136–1142. [Google Scholar] [CrossRef]
- Cookson, B.T.; Engelhardt, S.; Smith, C.; Bamford, H.A.; Prochazka, M.; Tait, J.F. Organization of the human annexin V (ANX5) gene. Genomics 1994, 20, 463–467. [Google Scholar] [CrossRef]
- Fernández, M.P.; Morgan, R.O.; Fernández, M.R.; Carcedo, M.T. The gene encoding human annexin V has a TATA-less promoter with a high G+C content. Gene 1994, 149, 253–260. [Google Scholar] [CrossRef]
- Funakoshi, T.; Heimark, R.L.; Hendrickson, L.E.; Mcmullen, B.A.; Fujikawa, K. Human placental anticoagulant protein: Isolation and characterization. Biochemistry 1987, 26, 5572–5578. [Google Scholar] [CrossRef]
- Raynal, P.; Pollard, H.B. Annexins: The problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim. Biophys. Acta 1994, 1197, 63–93. [Google Scholar] [CrossRef]
- van Genderen, H.O.; Kenis, H.; Hofstra, L.; Narula, J.; Reutelingsperger, C.P. Extracellular annexin A5: Functions of phosphatidylserine-binding and two-dimensional crystallization. Biochim. Biophys. Acta 2008, 1783, 953–963. [Google Scholar] [CrossRef]
- Philip, J.G.; Flower, R.J.; Buckingham, J.C. Blockade of the classical pathway of protein secretion does not affect the cellular exportation of lipocortin 1. Regul. Pept. 1998, 73, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Solito, E.; Mulla, A.; Morris, J.F.; Christian, H.C.; Flower, R.J.; Buckingham, J.C. Dexamethasone induces rapid serine-phosphorylation and membrane translocation of annexin 1 in a human folliculostellate cell line via a novel nongenomic mechanism involving the glucocorticoid receptor, protein kinase C, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase. Endocrinology 2003, 144, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Omer, S.; Meredith, D.; Morris, J.F.; Christian, H.C. Evidence for the role of adenosine 5’-triphosphate-binding cassette (ABC)-A1 in the externalization of annexin 1 from pituitary folliculostellate cells and ABCA1-transfected cell models. Endocrinology 2006, 147, 3219–3227. [Google Scholar] [CrossRef]
- Peterson, E.A.; Sutherland, M.R.; Nesheim, M.E.; Pryzdial, E.L. Thrombin induces endothelial cell-surface exposure of the plasminogen receptor annexin 2. J. Cell Sci. 2003, 116, 2399–2408. [Google Scholar] [CrossRef]
- Deora, A.B.; Kreitzer, G.; Jacovina, A.T.; Hajjar, K.A. An annexin 2 phosphorylation switch mediates p11-dependent translocation of annexin 2 to the cell surface. J. Biol. Chem. 2004, 279, 43411–43418. [Google Scholar] [CrossRef] [PubMed]
- Ravassa, S.; Bennaghmouch, A.; Kenis, H.; Lindhout, T.; Hackeng, T.; Narula, J.; Hofstra, L.; Reutelingsperger, C. Annexin A5 down-regulates surface expression of tissue factor: A novel mechanism of regulating the membrane receptor repertoir. J. Biol. Chem. 2005, 280, 6028–6035. [Google Scholar] [CrossRef]
- Masuda, J.; Takayama, E.; Satoh, A.; Ida, M.; Shinohara, T.; Kojima-Aikawa, K.; Ohsuzu, F.; Nakanishi, K.; Kuroda, K.; Murakami, M.; et al. Levels of annexin IV and V in the plasma of pregnant and postpartum women. Thromb. Haemost. 2004, 91, 1129–1136. [Google Scholar] [CrossRef]
- Kenis, H.; van Genderen, H.; Bennaghmouch, A.; Rinia, H.A.; Frederik, P.; Narula, J.; Hofstra, L.; Reutelingsperger, C.P. Cell surface-expressed phosphatidylserine and annexin A5 open a novel portal of cell entry. J. Biol. Chem. 2004, 279, 52623–52629. [Google Scholar] [CrossRef]
- Burgmaier, M.; Schutters, K.; Willems, B.; van der Vorst, E.P.; Kusters, D.; Chatrou, M.; Norling, L.; Biessen, E.A.; Cleutjens, J.; Perretti, M.; et al. AnxA5 reduces plaque inflammation of advanced atherosclerotic lesions in apoE(-/-) mice. J. Cell Mol. Med. 2014, 18, 2117–2124. [Google Scholar] [CrossRef]
- Huber, R.; Römisch, J.; Paques, E.P. The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. EMBO J. 1990, 9, 3867–3874. [Google Scholar] [CrossRef]
- Benz, J.; Hofmann, A. Annexins: From structure to function. Biol. Chem. 1997, 378, 177–183. [Google Scholar]
- Swairjo, M.A.; Concha, N.O.; Kaetzel, M.A.; Dedman, J.R.; Seaton, B.A. Ca(2+)-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat. Struct. Biol. 1995, 2, 968–974. [Google Scholar] [CrossRef]
- Lizarbe, M.A.; Barrasa, J.I.; Olmo, N.; Gavilanes, F.; Turnay, J. Annexin-phospholipid interactions. Functional implications. Int. J. Mol. Sci. 2013, 14, 2652–2683. [Google Scholar] [CrossRef]
- Liemann, S.; Huber, R. Three-dimensional structure of annexins. Cell Mol. Life Sci. 1997, 53, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Campos, B.; Mo, Y.D.; Mealy, T.R.; Li, C.W.; Swairjo, M.A.; Balch, C.; Head, J.F.; Retzinger, G.; Dedman, J.R.; Seaton, B.A. Mutational and crystallographic analyses of interfacial residues in annexin V suggest direct interactions with phospholipid membrane components. Biochemistry 1998, 37, 8004–8010. [Google Scholar] [CrossRef] [PubMed]
- Concha, N.O.; Head, J.F.; Kaetzel, M.A.; Dedman, J.R.; Seaton, B.A. Annexin V forms calcium-dependent trimeric units on phospholipid vesicles. FEBS Lett. 1992, 314, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Voges, D.D.; Berendes, R.; Burger, A.; Demange, P.; Baumeister, W.; Huber, R. Three-dimensional structure of membrane-bound annexin V. A correlative electron microscopy-X-ray crystallography study. J. Mol. Biol. 1994, 238, 199–213. [Google Scholar] [CrossRef]
- Reviakine, I.; Bergsma-Schutter, W.; Mazères-Dubut, C.; Govorukhina, N.; Brisson, A. Surface topography of the p3 and p6 annexin V crystal forms determined by atomic force microscopy. J. Struct. Biol. 2000, 131, 234–239. [Google Scholar] [CrossRef]
- Hong, S.; Na, S.; Kim, O.H.; Jeong, S.; Oh, B.C.; Ha, N.C. High-resolution structures of annexin A5 in a two-dimensional array. J. Struct. Biol. 2020, 209, 107401. [Google Scholar] [CrossRef]
- Oling, F.; Bergsma-Schutter, W.; Brisson, A. Trimers, dimers of trimers, and trimers of trimers are common building blocks of annexin a5 two-dimensional crystals. J. Struct. Biol. 2001, 133, 55–63. [Google Scholar] [CrossRef]
- Reviakine, I.; Bergsma-Schutter, W.; Morozov, A.; Brisson, A. Two-dimensional crystallization of annexin A5 on phospholipid bilayers and monolayers: A solid-solid phase transition between crystal forms. Langmuir 2001, 17, 1680–1686. [Google Scholar] [CrossRef]
- Concha, N.O.; Head, J.F.; Kaetzel, M.A.; Dedman, J.R.; Seaton, B.A. Rat Annexin V Crystal structure: Ca2+-induced conformational changes. Science 1993, 261, 1321–1324. [Google Scholar] [CrossRef]
- Lewit-Bentley, A.; Morera, S.; Huber, R.; Bodo, G. The effect of metal binding on the structure of annexin V and implications for membrane binding. Eur. J. Biochem. 1992, 210, 73–77. [Google Scholar] [CrossRef]
- Gerke, V.; Moss, S.E. Annexins: From Structure to Function. Physiol. Rev. 2002, 82, 331–371. [Google Scholar] [CrossRef]
- Sopkova-De Oliveira Santos, J.; Vincent, M.; Tabaries, S.; Chevalier, A.; Kerbœuf, D.; Russo-Marie, F.; Lewit-Bentley, A.; Gallay, J. Annexin A5 D226K structure and dynamics: Identification of a molecular switch for the large-scale conformational change of domain III. FEBS Lett. 2001, 493, 122–128. [Google Scholar] [CrossRef]
- Berendes, R.; Voges, D.; Demange, P.; Huber, R.; Burger, A. Structure-Function Analysis of the Ion Channel Selectivity Filter in Human Annexin V. Science 1993, 262, 427–430. [Google Scholar] [CrossRef]
- Lentz, B.R. Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog. Lipid Res. 2003, 42, 423–438. [Google Scholar] [CrossRef]
- van Tits, L.J.; van Heerde, W.L.; Landburg, P.P.; Boderie, M.J.; Muskiet, F.A.; Jacobs, N.; Duits, A.J.; Schnog, J.B. Plasma annexin A5 and microparticle phosphatidylserine levels are elevated in sickle cell disease and increase further during painful crisis. Biochem. Biophys. Res. Commun. 2009, 390, 161–164. [Google Scholar] [CrossRef]
- Mosser, G.; Ravanat, C.; Freyssinet, J.M.; Brisson, A. Sub-domain structure of lipid-bound annexin-V resolved by electron image analysis. J. Mol. Biol. 1991, 217, 241–245. [Google Scholar] [CrossRef]
- Andree, H.A.; Stuart, M.C.; Hermens, W.T.; Reutelingsperger, C.P.; Hemker, H.C.; Frederik, P.M.; Willems, G.M. Clustering of lipid-bound annexin V may explain its anticoagulant effect. J. Biol. Chem. 1992, 267, 17907–17912. [Google Scholar] [CrossRef]
- Rand, J.H.; Wu, X.X.; Quinn, A.S.; Taatjes, D.J. Resistance to annexin A5 anticoagulant activity: A thrombogenic mechanism for the antiphospholipid syndrome. Lupus 2008, 17, 922–930. [Google Scholar] [CrossRef]
- Wahezi, D.M.; Ilowite, N.T.; Wu, X.X.; Pelkmans, L.; Laat, B.; Schanberg, L.E.; Rand, J.H. Annexin A5 anticoagulant activity in children with systemic lupus erythematosus and the association with antibodies to domain I of β2-glycoprotein I. Lupus 2013, 22, 702–711. [Google Scholar] [CrossRef]
- Arnold, P.; Lu, X.; Amirahmadi, F.; Brandl, K.; Arnold, J.M.; Feng, Q. Recombinant human annexin A5 inhibits proinflammatory response and improves cardiac function and survival in mice with endotoxemia. Crit. Care Med. 2014, 42, e32–e41. [Google Scholar] [CrossRef]
- van Heerde, W.L.; Poort, S.; van ‘t Veer, C.; Reutelingsperger, C.P.; de Groot, P.G. Binding of recombinant annexin V to endothelial cells: Effect of annexin V binding on endothelial-cell-mediated thrombin formation. Biochem. J. 1994, 302 Pt 1, 305–312. [Google Scholar] [CrossRef]
- Ewing, M.M.; de Vries, M.R.; Nordzell, M.; Pettersson, K.; de Boer, H.C.; van Zonneveld, A.J.; Frostegård, J.; Jukema, J.W.; Quax, P.H. Annexin A5 therapy attenuates vascular inflammation and remodeling and improves endothelial function in mice. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 95–101. [Google Scholar] [CrossRef]
- Cederholm, A.; Frostegård, J. Annexin A5 in cardiovascular disease and systemic lupus erythematosus. Immunobiology 2005, 210, 761–768. [Google Scholar] [CrossRef]
- Domeij, H.; Hua, X.; Su, J.; Bäcklund, A.; Yan, Z.; Frostegård, A.G.; Haeggström, J.Z.; Modéer, T.; Frostegård, J. Annexin A5 inhibits atherogenic and pro-inflammatory effects of lysophosphatidylcholine. Prostaglandins Other Lipid Mediat. 2013, 106, 72–78. [Google Scholar] [CrossRef]
- Ewing, M.M.; Karper, J.C.; Sampietro, M.L.; de Vries, M.R.; Pettersson, K.; Jukema, J.W.; Quax, P.H. Annexin A5 prevents post-interventional accelerated atherosclerosis development in a dose-dependent fashion in mice. Atherosclerosis 2012, 221, 333–340. [Google Scholar] [CrossRef]
- Alijotas-Reig, J.; Esteve-Valverde, E.; Anunciación-Llunell, A.; Marques-Soares, J.; Pardos-Gea, J.; Miró-Mur, F. Pathogenesis, Diagnosis and Management of Obstetric Antiphospholipid Syndrome: A Comprehensive Review. J. Clin. Med. 2022, 11, 675. [Google Scholar] [CrossRef]
- Rand, J.H.; Wu, X.X.; Quinn, A.S.; Taatjes, D.J. The annexin A5-mediated pathogenic mechanism in the antiphospholipid syndrome: Role in pregnancy losses and thrombosis. Lupus 2010, 19, 460–469. [Google Scholar] [CrossRef]
- Khamashta, M.; Taraborelli, M.; Sciascia, S.; Tincani, A. Antiphospholipid syndrome. Best Pract. Res. Clin. Rheumatol. 2016, 30, 133–148. [Google Scholar] [CrossRef]
- Singh, N.K.; Yadav, D.P.; Gupta, A.; Singh, U.; Godara, M. Role of anti-annexin A5 in pathogenesis of hypercoagulable state in patients with antiphospholipid syndrome. Int. J. Rheum. Dis. 2013, 16, 325–330. [Google Scholar] [CrossRef]
- Vogt, E.; Ng, A.K.; Rote, N.S. Antiphosphatidylserine antibody removes annexin-V and facilitates the binding of prothrombin at the surface of a choriocarcinoma model of trophoblast differentiation. Am. J. Obstet. Gynecol. 1997, 177, 964–972. [Google Scholar] [CrossRef]
- Omar, G.; Mohamed, F.I.; Sadek, H.A.; Mamdouh, A.S. Diagnostic value of anti-annexin A5 antibodies in seropositive versus seronegative antiphospholipid syndrome patients. Egypt. Rheumatol. 2017, 40, S1110116417300881. [Google Scholar] [CrossRef]
- Stach, C.M.; Turnay, X.; Voll, R.E.; Kern, P.M.; Kolowos, W.; Beyer, T.D.; Kalden, J.R.; Herrmann, M. Treatment with annexin V increases immunogenicity of apoptotic human T-cells in Balb/c mice. Cell Death Differ. 2000, 7, 911–915. [Google Scholar] [CrossRef]
- Sun, X.; Liu, S.; Wang, J.; Wei, B.; Guo, C.; Chen, C.; Sun, M.Z. Annexin A5 regulates hepatocarcinoma malignancy via CRKI/II-DOCK180-RAC1 integrin and MEK-ERK pathways. Cell Death Dis. 2018, 9, 637. [Google Scholar] [CrossRef]
- Truong, D.; Fiorelli, R.; Barrientos, E.S.; Melendez, E.L.; Sanai, N.; Mehta, S.; Nikkhah, M. A three-dimensional (3D) organotypic microfluidic model for glioma stem cells—Vascular interactions. Biomaterials 2019, 198, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Yang, L.; Xiong, Y.; Guo, H.; Shen, X.; Cheng, Z.; Zhang, Y.; Gao, Z.; Zhu, X. Annexin A5 promotes invasion and chemoresistance to temozolomide in glioblastoma multiforme cells. Tumour Biol. 2014, 35, 12327–12337. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, W.; Wang, X.; Ci, Y.; Zhao, Y. Annexin A5 overexpression might suppress proliferation and metastasis of human uterine cervical carcinoma cells. Cancer Biomark. 2018, 23, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Ogata, H.; De Luca, L.M. Annexin V inhibits the 12-O-tetradecanoylphorbol-13-acetate-induced activation of Ras/extracellular signal-regulated kinase (ERK) signaling pathway upstream of Shc in MCF-7 cells. Oncogene 2000, 19, 2904–2912. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.; Hao, L.Q.; Ding, F.X.; Mei, Q.; Huang, J.J.; Fu, C.G.; Yan, H.L.; Sun, S.H. Expression of annexin A5 is associated with higher tumor stage and poor prognosis in colorectal adenocarcinomas. J. Clin. Gastroenterol. 2009, 43, 831–837. [Google Scholar] [CrossRef]
- Mitra, A.P.; Almal, A.A.; George, B.; Fry, D.W.; Lenehan, P.F.; Pagliarulo, V.; Cote, R.J.; Datar, R.H.; Worzel, W.P. The use of genetic programming in the analysis of quantitative gene expression profiles for identification of nodal status in bladder cancer. BMC Cancer 2006, 6, 159. [Google Scholar] [CrossRef]
- Dooley, T.P.; Reddy, S.P.; Wilborn, T.W.; Davis, R.L. Biomarkers of human cutaneous squamous cell carcinoma from tissues and cell lines identified by DNA microarrays and qRT-PCR. Biochem. Biophys. Res. Commun. 2003, 306, 1026–1036. [Google Scholar] [CrossRef]
- Hawkins, T.E.; Das, D.; Young, B.; Moss, S.E. DT40 cells lacking the Ca2+-binding protein annexin 5 are resistant to Ca2+-dependent apoptosis. Proc. Natl. Acad. Sci. USA 2002, 99, 8054–8059. [Google Scholar] [CrossRef]
- Luo, C.; Ji, X.; Fan, J.; Hou, Z.; Wang, T.; Wu, B.; Ni, C. Annexin A5 promotes macrophage activation and contributes to pulmonary fibrosis induced by silica particles. Toxicol. Ind. Health 2016, 32, 1628–1638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Y.; Zhou, R. Loss of Annexin A5 expression attenuates the lipopolysaccharide-induced inflammatory response of rat alveolar macrophages. Cell Biol. Int. 2020, 44, 391–401. [Google Scholar] [CrossRef]
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef]
- Rodríguez-Prados, J.C.; Través, P.G.; Cuenca, J.; Rico, D.; Aragonés, J.; Martín-Sanz, P.; Cascante, M.; Boscá, L. Substrate fate in activated macrophages: A comparison between innate, classic, and alternative activation. J. Immunol. 2010, 185, 605–614. [Google Scholar] [CrossRef]
- Xu, F.; Guo, M.; Huang, W.; Feng, L.; Zhu, J.; Luo, K.; Gao, J.; Zheng, B.; Kong, L.D.; Pang, T.; et al. Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH. Redox Biol. 2020, 36, 101634. [Google Scholar] [CrossRef]
- Tang, J.; Qin, Z.; Han, P.; Wang, W.; Yang, C.; Xu, Z.; Li, R.; Liu, B.; Qin, C.; Wang, Z.; et al. High Annexin A5 expression promotes tumor progression and poor prognosis in renal cell carcinoma. Int. J. Oncol. 2017, 50, 1839–1847. [Google Scholar] [CrossRef]
- Lu, B.; Zhao, J.; Xu, L.; Xu, Y.; Wang, X.; Peng, J. Identification of molecular target proteins in berberine-treated cervix adenocarcinoma HeLa cells by proteomic and bioinformatic analyses. Phytother. Res. 2012, 26, 646–656. [Google Scholar] [CrossRef]
- Guo, W.X.; Man, X.B.; Yuan, H.X.; Shi, J.; Xue, J.; Wu, M.C.; Cheng, S.Q. Proteomic analysis on portal vein tumor thrombus-associated proteins for hepatocellular carcinoma. Zhonghua Yi Xue Za Zhi 2007, 87, 2094–2097. [Google Scholar]
- Sofiadis, A.; Becker, S.; Hellman, U.; Hultin-Rosenberg, L.; Dinets, A.; Hulchiy, M.; Zedenius, J.; Wallin, G.; Foukakis, T.; Höög, A.; et al. Proteomic profiling of follicular and papillary thyroid tumors. Eur. J. Endocrinol. 2012, 166, 657–667. [Google Scholar] [CrossRef]
- Wu, X.; Tang, Y.; Huang, W. Identification of proteins interacting with multidrug resistance protein in gastric cancer. World J. Gastroenterol. 2011, 19, 3568–3573. [Google Scholar]
- Tang, S.; Huang, W.; Zhong, M.; Yin, L.; Jiang, H.; Hou, S.; Gan, P.; Yuan, Y. Identification Keratin 1 as a cDDP-resistant protein in nasopharyngeal carcinoma cell lines. J. Proteom. 2012, 75, 2352–2360. [Google Scholar] [CrossRef] [PubMed]
- Bedrood, S.; Jayasinghe, S.; Sieburth, D.; Chen, M.; Erbel, S.; Butler, P.C.; Langen, R.; Ritzel, R.A. Annexin A5 directly interacts with amyloidogenic proteins and reduces their toxicity. Biochemistry 2009, 48, 10568–10576. [Google Scholar] [CrossRef] [PubMed]
- Bartolome, F.; Krzyzanowska, A.; de la Cueva, M.; Pascual, C.; Antequera, D.; Spuch, C.; Villarejo-Galende, A.; Rabano, A.; Fortea, J.; Alcolea, D.; et al. Annexin A5 prevents amyloid-β-induced toxicity in choroid plexus: Implication for Alzheimer’s disease. Sci. Rep. 2020, 10, 9391. [Google Scholar] [CrossRef] [PubMed]
- Sohma, H.; Imai, S.-I.; Takei, N.; Honda, H.; Matsumoto, K.; Utsumi, K.; Matsuki, K.; Hashimoto, E.; Saito, T.; Kokai, Y. Evaluation of annexin A5 as a biomarker for Alzheimer’s disease and dementia with lewy bodies. Front. Aging Neurosci. 2013, 5, 15. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Burgmaier, M.; Ueland, T.; Schutters, K.; Aakhus, S.; Hofstra, L.; Gullestad, L.; Aukrust, P.; Hellmich, M.; Narula, J.; et al. Circulating annexin A5 predicts mortality in patients with heart failure. J. Intern. Med. 2016, 279, 89–97. [Google Scholar] [CrossRef]
- Jung, Y.H.; Han, D.; Shin, S.H.; Kim, E.-K.; Kim, H.-S. Proteomic identification of early urinary-biomarkers of acute kidney injury in preterm infants. Sci. Rep. 2020, 10, 4057. [Google Scholar] [CrossRef]
- Lee, G.; Pollard, H.B.; Arispe, N. Annexin 5 and apolipoprotein E2 protect against Alzheimer’s amyloid-beta-peptide cytotoxicity by competitive inhibition at a common phosphatidylserine interaction site. Peptides 2002, 23, 1249–1263. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Kokai, Y.; Imai, S.-I.; Utsumi, K.; Matsumoto, K.; Honda, H.; Mizue, Y.; Momma, M.; Maeda, T.; Toyomasu, S.; et al. Investigation of annexin A5 as a biomarker for Alzheimer’s disease using neuronal cell culture and mouse model. J. Neurosci. Res. 2010, 88, 2682–2692. [Google Scholar] [CrossRef]
- Wu, A.H. Serial testing of B-type natriuretic peptide and NTpro-BNP for monitoring therapy of heart failure: The role of biologic variation in the interpretation of results. Am. Heart J. 2006, 152, 828–834. [Google Scholar] [CrossRef]
- Ravassa, S.; González, A.; López, B.; Beaumont, J.; Querejeta, R.; Larman, M.; Díez, J. Upregulation of myocardial Annexin A5 in hypertensive heart disease: Association with systolic dysfunction. Eur. Heart J. 2007, 28, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Jakubowska, A.; Kiliś-Pstrusińska, K. Annexin V in children with idiopathic nephrotic syndrome treated with cyclosporine A. Adv. Clin. Exp. Med. 2020, 29, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lee, P.H.; Kim, B.G.; Hong, J.; Jang, A.S. Annexin A5 Protein as a Potential Biomarker for the Diagnosis of Asthma. Lung 2018, 196, 681–689. [Google Scholar] [CrossRef]
- Leist, M.; Jäättelä, M. Triggering of apoptosis by cathepsins. Cell Death Differ. 2001, 8, 324–326. [Google Scholar] [CrossRef]
- Reutelingsperger, C.P.; Dumont, E.; Thimister, P.W.; van Genderen, H.; Kenis, H.; van de Eijnde, S.; Heidendal, G.; Hofstra, L. Visualization of cell death in vivo with the annexin A5 imaging protocol. J. Immunol. Methods 2002, 265, 123–132. [Google Scholar] [CrossRef]
- Hengartner, M.O. The biochemistry of apoptosis. Nature 2000, 407, 770–776. [Google Scholar] [CrossRef]
- Savill, J.; Fadok, V. Corpse clearance defines the meaning of cell death. Nature 2000, 407, 784–788. [Google Scholar] [CrossRef]
- Keen, H.G.; Dekker, B.A.; Disley, L.; Hastings, D.; Lyons, S.; Reader, A.J.; Ottewell, P.; Watson, A.; Zweit, J. Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl. Med. Biol. 2005, 32, 395–402. [Google Scholar] [CrossRef]
- Taki, J.; Higuchi, T.; Kawashima, A.; Fukuoka, M.; Kayano, D.; Tait, J.F.; Matsunari, I.; Nakajima, K.; Kinuya, S.; Strauss, H.W. Effect of postconditioning on myocardial 99mTc-annexin-V uptake: Comparison with ischemic preconditioning and caspase inhibitor treatment. J. Nucl. Med. 2007, 48, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.J.; Azhdarinia, A.; Wu, P.; Yu, D.F.; Tansey, W.; Kalimi, S.K.; Kim, E.E.; Podoloff, D.A. In vivo and in vitro measurement of apoptosis in breast cancer cells using 99mTc-EC-annexin V. Cancer Biother. Radiopharm. 2001, 16, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Grierson, J.R.; Yagle, K.J.; Eary, J.F.; Tait, J.F.; Gibson, D.F.; Lewellen, B.; Link, J.M.; Krohn, K.A. Production of [F-18]fluoroannexin for imaging apoptosis with PET. Bioconjug. Chem. 2004, 15, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Bauwens, M.; De Saint-Hubert, M.; Devos, E.; Deckers, N.; Reutelingsperger, C.; Mortelmans, L.; Himmelreich, U.; Mottaghy, F.M.; Verbruggen, A. Site-specific 68Ga-labeled Annexin A5 as a PET imaging agent for apoptosis. Nucl. Med. Biol. 2011, 38, 381–392. [Google Scholar] [CrossRef]
- Kurihara, H.; Yang, D.J.; Cristofanilli, M.; Erwin, W.D.; Yu, D.F.; Kohanim, S.; Mendez, R.; Kim, E.E. Imaging and dosimetry of 99mTc EC annexin V: Preliminary clinical study targeting apoptosis in breast tumors. Appl. Radiat. Isot. 2008, 66, 1175–1182. [Google Scholar] [CrossRef]
- Kenis, H.; Zandbergen, H.R.; Hofstra, L.; Petrov, A.D.; Dumont, E.A.; Blankenberg, F.D.; Haider, N.; Bitsch, N.; Gijbels, M.; Verjans, J.W.; et al. Annexin A5 uptake in ischemic myocardium: Demonstration of reversible phosphatidylserine externalization and feasibility of radionuclide imaging. J. Nucl. Med. 2010, 51, 259–267. [Google Scholar] [CrossRef]
- Hua, Z.; Xie, D. Doxorubicin and Annexin v Conjugates and Its Preparation Method and Application: ZL201110217929.6. CN102294018B, 23 January 2018. [Google Scholar]
- Linke, B.; Abeler-Dörner, L.; Jahndel, V.; Kurz, A.; Mahr, A.; Pfrang, S.; Linke, L.; Krammer, P.H.; Weyd, H. The tolerogenic function of annexins on apoptotic cells is mediated by the annexin core domain. J. Immunol. 2015, 194, 5233–5242. [Google Scholar] [CrossRef]
- Plato, A.; Willment, J.A.; Brown, G.D. C-type lectin-like receptors of the dectin-1 cluster: Ligands and signaling pathways. Int. Rev. Immunol. 2013, 32, 134–156. [Google Scholar] [CrossRef] [PubMed]
- Bode, K.; Bujupi, F.; Link, C.; Hein, T.; Zimmermann, S.; Peiris, D.; Jaquet, V.; Lepenies, B.; Weyd, H.; Krammer, P.H. Dectin-1 Binding to Annexins on Apoptotic Cells Induces Peripheral Immune Tolerance via NADPH Oxidase-2. Cell Rep. 2019, 29, 4435–4446.e9. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zou, J.; Dai, Y.; Fan, W.; Niu, G.; Yang, Z.; Chen, X. Burst release of encapsulated annexin A5 in tumours boosts cytotoxic T-cell responses by blocking the phagocytosis of apoptotic cells. Nat. Biomed. Eng. 2020, 4, 1102–1116. [Google Scholar] [CrossRef]
- Chang, W.; Fa, H.; Xiao, D.; Wang, J. Targeting phosphatidylserine for Cancer therapy: Prospects and challenges. Theranostics 2020, 10, 9214–9229. [Google Scholar] [CrossRef]
- Frey, B.; Schildkopf, P.; Rödel, F.; Weiss, E.M.; Munoz, L.E.; Herrmann, M.; Fietkau, R.; Gaipl, U.S. AnnexinA5 renders dead tumor cells immunogenic--implications for multimodal cancer therapies. J. Immunotoxicol. 2009, 6, 209–216. [Google Scholar] [CrossRef]
- Kang, T.H.; Park, J.H.; Yang, A.; Park, H.J.; Lee, S.E.; Kim, Y.S.; Jang, G.Y.; Farmer, E.; Lam, B.; Park, Y.M.; et al. Annexin A5 as an immune checkpoint inhibitor and tumor-homing molecule for cancer treatment. Nat. Commun. 2020, 11, 1137. [Google Scholar] [CrossRef]
- Li, C.; Huang, J.; Yang, G. A rabbit femoral artery thrombosis model induced by balloon injury. J. Nanjing Med. Univ. 2001, 21, 277–280. [Google Scholar]
- Tait, J.F.; Engelhardt, S.; Smith, C.; Fujikawa, K. Prourokinase-annexin V chimeras. Construction, expression, and characterization of recombinant proteins. J. Biol. Chem. 1995, 270, 21594–21599. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Einaga, K.; Tsuchiyama, H.; Tait, J.F.; Fujikawa, K. Preparation and characterization of a disulfide-linked bioconjugate of annexin V with the B-chain of urokinase: An improved fibrinolytic agent targeted to phospholipid-containing thrombi. Biochemistry 1996, 35, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ding, W.Q.; Vaught, J.L.; Wolf, R.F.; Morrissey, J.H.; Harrison, R.G.; Lind, S.E. A soluble tissue factor-annexin V chimeric protein has both procoagulant and anticoagulant properties. Blood 2006, 107, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, F.A.; Larkin, S.K.; Emeis, J.J.; Allison, A.C. Interaction of an annexin V homodimer (Diannexin) with phosphatidylserine on cell surfaces and consequent antithrombotic activity. Thromb. Haemost. 2007, 97, 478–486. [Google Scholar] [PubMed]
- Jing, J.; Sun, Y. An α(IIb)β(3)- and phosphatidylserine (PS)-binding recombinant fusion protein promotes PS-dependent anticoagulation and integrin-dependent antithrombosis. J. Biol. Chem. 2019, 294, 6670–6684. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Ren, X.; Wang, S.; Li, X.; Luo, X.; Yin, Z. Annexin V-Conjugated Mixed Micelles as a Potential Drug Delivery System for Targeted Thrombolysis. Biomacromolecules 2017, 18, 865–876. [Google Scholar] [CrossRef]
- Subramanian, S.; Ugoya, S.O.; Zhao, Z.; McRobb, L.S.; Grau, G.E.; Combes, V.; Inglis, D.W.; Gauden, A.J.; Lee, V.S.; Moutrie, V.; et al. Stable thrombus formation on irradiated microvascular endothelial cells under pulsatile flow: Pre-testing annexin V-thrombin conjugate for treatment of brain arteriovenous malformations. Thromb. Res. 2018, 167, 104–112. [Google Scholar] [CrossRef]
- Espinosa, G.; Cervera, R.; Font, J.; Shoenfeld, Y. Antiphospholipid syndrome: Pathogenic mechanisms. Autoimmun. Rev. 2003, 2, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Chighizola, C.B.; Ubiali, T.; Meroni, P.L. Treatment of thrombotic antiphospholipid syndrome: The rationale of current management-an insight into future approaches. J. Immunol. Res. 2015, 2015, 951424. [Google Scholar] [CrossRef]
- Wu, X.X.; Guller, S.; Rand, J.H. Hydroxychloroquine reduces binding of antiphospholipid antibodies to syncytiotrophoblasts and restores annexin A5 expression. Am. J. Obstet. Gynecol. 2011, 205, 576.e7–576.e14. [Google Scholar] [CrossRef]
- Eggleston, P.A.; Kagey-Sobotka, A.; Lichtenstein, L.M. A comparison of the osmotic activation of basophils and human lung mast cells. Am. Rev. Respir. Dis. 1987, 135, 1043–1048. [Google Scholar]
- Tahan, F.; Akar, H.H.; Saraymen, B. Exhaled breath condensate annexin A5 levels in exercise-induced bronchoconstriction in asthma: A preliminary study. Allergol. Immunopathol. 2015, 43, 538–542. [Google Scholar] [CrossRef]
- Garnier, Y.; Ferdinand, S.; Garnier, M.; Cita, K.C.; Hierso, R.; Claes, A.; Connes, P.; Hardy-Dessources, M.D.; Lapouméroulie, C.; Lemonne, N.; et al. Plasma microparticles of sickle patients during crisis or taking hydroxyurea modify endothelium inflammatory properties. Blood 2020, 136, 247–256. [Google Scholar] [CrossRef]
- Zahran, A.M.; El-Badawy, O.; Ali, W.A.; Mahran, Z.G.; Mahran, E.; Rayan, A. Circulating microparticles and activated platelets as novel prognostic biomarkers in COVID-19; relation to cancer. PLoS ONE 2021, 16, e0246806. [Google Scholar] [CrossRef]
- Garnier, Y.; Claude, L.; Hermand, P.; Sachou, E.; Claes, A.; Desplan, K.; Chahim, B.; Roger, P.M.; Martino, F.; Colin, Y.; et al. Plasma microparticles of intubated COVID-19 patients cause endothelial cell death, neutrophil adhesion and netosis, in a phosphatidylserine-dependent manner. Br. J. Haematol. 2022, 196, 1159–1169. [Google Scholar] [CrossRef]
Biomarker Type | Diseases | Content Change | hAnxA5 Mechanism of Action | References |
---|---|---|---|---|
Cancer biomarker | RCC | ↑ | Activates PI3K/Akt/mTOR pathway; promotes the expression of MMP2 and MMP9 | [84] |
Gastric carcinoma | ↑ | Activation of MRP promotes resistance to gastric cancer. | [88] | |
NPC | ↑ | The mechanism remains uncertain. | [89] | |
Thyroid carcinoma | ↓ | The mechanism remains uncertain. | [87] | |
PVTT | ↑ | The mechanism remains uncertain. | [86] | |
CRC | ↑ | The mechanism remains uncertain. | [75] | |
Neurodegenerative diseases biomarker | PD | Choroid plexus↓ Cerebrospinal fluid↑ | The mechanism remains uncertain. | [90] |
AD | ↑ | Ca2+ restores mitochondrial depolarization. | [91] | |
DLB | ↑ | Modulates alpha-synuclein. | [92] | |
Other diseases biomarker | Bronchial asthma | ↑ | Modulates TGF-β1, connective tissue growth factor. | |
Heart failure | ↑ | The systolic function of the left ventricle was negatively correlated. | [93] | |
Acute kidney injury in preterm infants | ↑ | Urinary hAnxA5 is higher in the early stages. | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, J. The Relevance, Predictability, and Utility of Annexin A5 for Human Physiopathology. Int. J. Mol. Sci. 2024, 25, 2865. https://doi.org/10.3390/ijms25052865
Jing J. The Relevance, Predictability, and Utility of Annexin A5 for Human Physiopathology. International Journal of Molecular Sciences. 2024; 25(5):2865. https://doi.org/10.3390/ijms25052865
Chicago/Turabian StyleJing, Jian. 2024. "The Relevance, Predictability, and Utility of Annexin A5 for Human Physiopathology" International Journal of Molecular Sciences 25, no. 5: 2865. https://doi.org/10.3390/ijms25052865
APA StyleJing, J. (2024). The Relevance, Predictability, and Utility of Annexin A5 for Human Physiopathology. International Journal of Molecular Sciences, 25(5), 2865. https://doi.org/10.3390/ijms25052865