Bacteriophages of Thermophilic ‘Bacillus Group’ Bacteria—A Systematic Review, 2023 Update
Abstract
:1. Introduction
2. Review Data Search Methods
3. Chronological Review—2023 Update
4. Results and Discussion (Figure 1)
4.1. TP-84 (Caudoviricetes, Saundersvirus Tp84, Siphovirus morphotype, Host G. stearothermophilus)—2023 Update
4.2. AcaML1 (Unclassified Caudoviricetes, Myoviridae morphotype, Host Acidithiobacillus caldus ATCC 51756)
4.3. GR1 (Unclassified Caudoviricetes, Siphovirus morphotype, Host G. stearothermophilus ATCC 10149)
4.4. vB_GthS_PT9.1 (Unclassified Caudoviricetes, Siphovirus morphotype, Host Geobacillus thermodenitrificans)
4.5. vB_GthS_NIIg9.7 (Unclassified Caudoviricetes, Siphovirus morphotype, Host G. thermodenitrificans)
4.6. vB_GthS_PK5.1 (Unclassified Caudoviricetes, Siphovirus morphotype, Host G. thermodenitrificans)
4.7. vB_GthS_PK3.5 (Unclassified Caudoviricetes, Siphovirus morphotype, Host G. thermodenitrificans)
4.8. vB_GthS_PK3.6 (Unclassified Caudoviricetes, Siphovirus morphotype, Host G. thermodenitrificans)
4.9. vB_PtoS_NIIg3.2 (Unclassified Caudoviricetes, Siphovirus morphotype, Host G. thermodenitrificans)
4.10. vB_GthS_PK5.2, vB_GthS_PK2.1, vB_GthS_NIIg10.1, vB_GthS_NIIg2.1, vB_GthS_NIIg2.2, vB_GthS_NIIg2.3 (Unclassified Caudoviricetes, Siphovirus morphotype, Host G. thermodenitrificans)
5. Perspective
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Kheirvari, M.; Tumban, E. Potential Applications of Thermophilic Bacteriophages in One Health. Int. J. Mol. Sci. 2023, 24, 8222. [Google Scholar] [CrossRef] [PubMed]
- Tumban, E. (Ed.) Bacteriophage Virus-like Particles: Platforms for Vaccine Design. In Bacteriophages: Methods and Protocols; Humana: New York, NY, USA, 2024; Volume 2738, pp. 411–423. [Google Scholar]
- Aljabali, A.A.A.; Aljbaly, M.B.M.; Obeid, M.A.; Shahcheraghi, S.H.; Tambuwala, M.M. The Next Generation of Drug Delivery: Harnessing the Power of Bacteriophages. In Bacteriophages: Methods and Protocols; Tumban, E., Ed.; Humana: New York, NY, USA, 2024; Volume 2738, pp. 279–315. [Google Scholar]
- Doss, R.K.; Palmer, M.; Mead, D.A.; Hedlund, B.P. Functional Biology and Biotechnology of Thermophilic Viruses. Essays Biochem. 2023, 67, 671–684. [Google Scholar] [PubMed]
- Turner, D.; Kropinski, A.M.; Adriaenssens, E.M. A Roadmap for Genome-Based Phage Taxonomy. Viruses 2021, 13, 506. [Google Scholar] [CrossRef]
- Turner, D.; Shkoporov, A.N.; Lood, C.; Millard, A.D.; Dutilh, B.E.; Alfenas-Zerbini, P.; van Zyl, L.J.; Aziz, R.K.; Oksanen, H.M.; Poranen, M.M.; et al. Abolishment of Morphology-Based Taxa and Change to Binomial Species Names: 2022 Taxonomy Update of the ICTV Bacterial Viruses Subcommittee. Arch. Virol. 2023, 168, 74. [Google Scholar] [CrossRef]
- Łubkowska, B.; Jeżewska-Frąckowiak, J.; Sobolewski, I.; Skowron, P.M. Bacteriophages of Thermophilic ‘Bacillus Group’ Bacteria-A Review. Microorganisms 2021, 9, 1522. [Google Scholar] [CrossRef]
- Ash, C.; Farrow, J.A.E.; Wallbanks, S.; Collins, M.D. Phylogenetic Heterogeneity of the Genus Bacillus Revealed by Comparative Analysis of Small-subunit-ribosomal RNA Sequences. Lett. Appl. Microbiol. 1991, 13, 202–206. [Google Scholar] [CrossRef]
- Nazina, T.N.; Tourova, T.P.; Poltaraus, A.B.; Novikova, E.V.; Grigoryan, A.A.; Ivanova, A.E.; Lysenko, A.M.; Petrunyaka, V.V.; Osipov, G.A.; Belyaev, S.S.; et al. Taxonomic Study of Aerobic Thermophilic Bacilli: Descriptions of Geobacillus subterraneus Gen. Nov., Sp. Nov. and Geobacillus uzenensis Sp. Nov. from Petroleum Reservoirs and Transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the New Combinations G. stearothermophilus, G. Th. Int. J. Syst. Evol. Microbiol. 2001, 51, 433–446. [Google Scholar] [CrossRef]
- Aliyu, H.; Lebre, P.; Blom, J.; Cowan, D.; De Maayer, P. Phylogenomic Re-Assessment of the Thermophilic Genus Geobacillus. Syst. Appl. Microbiol. 2016, 39, 527–533, Erratum in Syst. Appl. Microbiol. 2018, 41, 529–530. [Google Scholar] [CrossRef]
- Najar, I.N.; Das, S.; Thakur, N. Reclassification of Geobacillus galactosidasius and Geobacillus yumthangensis as Parageobacillus galactosidasius Comb. Nov. and Parageobacillus yumthangensis Comb. Nov., Respectively. Int. J. Syst. Evol. Microbiol. 2020, 70, 6518–6523. [Google Scholar] [CrossRef] [PubMed]
- Koser, S.A. Action of the Bacteriophage on a Thermophilic Bacillus. Proc. Soc. Exp. Biol. Med. 1926, 24, 109–111. [Google Scholar] [CrossRef]
- Adant, M. Les Bacteriophages Des Microbes Thermophiles. Compt. Rend. Soc. Biol. 1928, 99, 1244–1245. [Google Scholar]
- White, R.; Georgi, C.E.; Militzer, W. Heat Studies on a Thermophilic Bacteriophage. Proc. Soc. Exp. Biol. Med. 1954, 85, 137–139. [Google Scholar] [CrossRef] [PubMed]
- White, R.; Georgi, C.E.; Militzer, W.E. Characteristics of a Thermophilic Bacteriophage. Proc. Soc. Exp. Biol. Med. 1955, 88, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Onodera, N. On Some Characteristics of a Newly Isolated Thermophilic Bacteriophage and Consideration of Its Thermostability. J. Electron. Microsc. 1961, 10, 91–102. [Google Scholar] [CrossRef]
- Saunders, G.F.; Campbell, L.L.; Postgate, J.R. Abstract. In Proceedings of the 148th National Meeting of the American Chemical Society, Chicago, IL, USA, 30 August–4 September 1964. [Google Scholar]
- Saunders, G.F.; Campbell, L.L. Characterization of a Thermophilic Bacteriophage for Bacillus stearothermophilus. J. Bacteriol. 1966, 91, 340–348. [Google Scholar] [CrossRef]
- Shafia, F.; Thompson, T.L. Isolation and Preliminary Characterization of Bacteriophage Phi-Mu-4. J. Bacteriol. 1964, 87, 999–1002. [Google Scholar] [CrossRef]
- Welker, N.E.; Campbell, L.L. Biochemical Changes in Lysogenic Bacillus stearothermophilus after Bacteriophage Induction. J. Bacteriol. 1965, 90, 1129–1137. [Google Scholar] [CrossRef]
- Welker, N.E.; Campbell, L.L. Induction and Properties of a Temperate Bacteriophage from Bacillus stearothermophilus. J. Bacteriol. 1965, 89, 175–184. [Google Scholar] [CrossRef]
- Carnevali, F.; Donelli, G. Some Properties of a Thermophilic Phage DNA. Arch. Biochem. Biophys. 1968, 125, 376–377. [Google Scholar] [CrossRef]
- Egbert, L.N.; Mitchell, H.K. Characteristics of Tphi3, a Bacteriophage for Bacillus. J. Virol. 1967, 1, 610–616. [Google Scholar] [CrossRef]
- Egbert, L.N. Characteristics of the Deoxyribonucleic Acid of T Phi 3, a Bacteriophage for Bacillus stearothermophilus. J. Virol. 1969, 3, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Humbert, R.D.; Fields, M.L. Study of Two Bacteriophages of Bacillus stearothermophilus Strain NCA1518. J. Virol. 1972, 9, 397–398. [Google Scholar] [CrossRef]
- Ljunger, C.; Edebo, M. The Influence of Inorganic Ions on the Heat Stability of a Thermophilic Bacteriophage. Physiol. Plant 1972, 27, 182–186. [Google Scholar] [CrossRef]
- Reanney, D.C.; Marsh, S.C.N. The Ecology of Viruses Attacking Bacillus stearothermophilus in Soil. Soil. Biol. Biochem. 1973, 5, 399–408. [Google Scholar] [CrossRef]
- Sakaki, Y.; Oshima, T. A New Lipid-Containing Phage Infecting Acidophilic Thermophilic Bacteria. Virology 1976, 75, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Sharp, R.J.; Ahmad, S.I.; Munster, A.; Dowsett, B.; Atkinson, T. The Isolation and Characterization of Bacteriophages Infecting Obligately Thermophilic Strains of Bacillus. Microbiology 1986, 132, 1709–1722. [Google Scholar] [CrossRef]
- Liu, B.; Wu, S.; Song, Q.; Zhang, X.; Xie, L. Two Novel Bacteriophages of Thermophilic Bacteria Isolated from Deep-Sea Hydrothermal Fields. Curr. Microbiol. 2006, 53, 163–166. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, X. Deep-Sea Thermophilic Geobacillus Bacteriophage GVE2 Transcriptional Profile and Proteomic Characterization of Virions. Appl. Microbiol. Biotechnol. 2008, 80, 697–707. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, F.; Wu, S.; Xu, Y.; Zhang, X. Genomic and Proteomic Characterization of a Thermophilic Geobacillus Bacteriophage GBSV1. Res. Microbiol. 2009, 160, 166–171. [Google Scholar] [CrossRef]
- Liu, B.; Wu, S.; Xie, L. Complete Genome Sequence and Proteomic Analysis of a Thermophilic Bacteriophage BV1. Acta Oceanol. Sin. 2010, 29, 84–89. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X. Genome Analysis of Deep-Sea Thermophilic Phage D6E. Appl. Environ. Microbiol. 2010, 76, 7861–7866. [Google Scholar] [CrossRef] [PubMed]
- Tapia, P.; Flores, F.M.; Covarrubias, P.C.; Acuña, L.G.; Holmes, D.S.; Quatrini, R. Complete Genome Sequence of Temperate Bacteriophage Aca ML1 from the Extreme Acidophile Acidithiobacillus ATCC 51756. J. Virol. 2012, 86, 12452–12453. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Mori, K.; Martono, H.; Nagayoshi, Y.; Fujino, Y.; Tashiro, K.; Kuhara, S.; Ohshima, T. Draft Genome Sequence of Geobacillus kaustophilus GBlys, a Lysogenic Strain with Bacteriophage ΦOH2. Genome. Announc. 2013, 1, e00634-13. [Google Scholar] [CrossRef] [PubMed]
- Marks, T.J.; Hamilton, P.T. Characterization of a Thermophilic Bacteriophage of Geobacillus kaustophilus. Arch. Virol. 2014, 159, 2771–2775. [Google Scholar] [CrossRef] [PubMed]
- van Zyl, L.J.; Sunda, F.; Taylor, M.P.; Cowan, D.A.; Trindade, M.I. Identification and Characterization of a Novel Geobacillus thermoglucosidasius Bacteriophage, GVE3. Arch. Virol. 2015, 160, 2269–2282. [Google Scholar] [CrossRef] [PubMed]
- Morozova, V.; Bokovaya, O.; Kozlova, Y.; Kurilshikov, A.; Babkin, I.; Tupikin, A.; Bondar, A.; Ryabchikova, E.; Brayanskaya, A.; Peltek, S.; et al. A Novel Thermophilic Aeribacillus Bacteriophage AP45 Isolated from the Valley of Geysers, Kamchatka: Genome Analysis Suggests the Existence of a New Genus within the Siphoviridae Family. Extremophiles 2019, 23, 599–612. [Google Scholar] [CrossRef]
- Akhwale, J.K.; Rohde, M.; Rohde, C.; Bunk, B.; Spröer, C.; Klenk, H.P.; Boga, H.I.; Wittmann, J. Comparative Genomic Analysis of Eight Novel Haloalkaliphilic Bacteriophages from Lake Elmenteita, Kenya. PLoS ONE 2019, 14, e0212102. [Google Scholar] [CrossRef]
- Choi, D.; Kong, M. LysGR1, a Novel Thermostable Endolysin from Geobacillus stearothermophilus Bacteriophage GR1. Front. Microbiol. 2023, 14, 1178748. [Google Scholar] [CrossRef]
- Šimoliūnas, E.; Šimoliūnienė, M.; Laskevičiūtė, G.; Kvederavičiūtė, K.; Skapas, M.; Kaupinis, A.; Valius, M.; Meškys, R.; Kuisienė, N. Geobacillus Bacteriophages from Compost Heaps: Representatives of Three New Genera within Thermophilic Siphoviruses. Viruses 2023, 15, 1691. [Google Scholar] [CrossRef]
- Šimoliūnas, E.; Šimoliūnienė, M.; Laskevičiūtė, G.; Kvederavičiūtė, K.; Skapas, M.; Kaupinis, A.; Valius, M.; Meškys, R.; Kuisienė, N. Characterization of Parageobacillus Bacteriophage VB_PtoS_NIIg3.2—A Representative of a New Genus within Thermophilic Siphoviruses. Int. J. Mol. Sci. 2023, 24, 13980. [Google Scholar] [CrossRef]
- Sahin, E.; Karaca, B.; Gursoy, G.E.; Coleri Cihan, A. Identification and Molecular Characterization of a Novel Bacteriophage Isolated from Anoxybacillus caldiproteolyticus; GeneBank Submission 19-FEB-2018. Biology; Ankara University: Ankara, Turkey, Unpublished.
- Delgado, J.A.; Gonzalez, J.M. Genome of Geobacillus thermoglucosidasius Strain 23.6. MainChromosome + 2 Plasmids + Phage; GeneBank Submission 08-OCT-2020; Instituto de Recursos Naturales y Agrobiologia, IRNAS, Spanish Council for Research, CSIC: Sevilla, Spain, Unpublished.
- Welker, N.E. Transduction in Bacillus stearothermophilus. J. Bacteriol. 1988, 170, 3761–3764. [Google Scholar] [CrossRef]
- Burgess, S.A.; Flint, S.H.; Lindsay, D.; Cox, M.P.; Biggs, P.J. Insights into the Geobacillus stearothermophilus Species Based on Phylogenomic Principles. BMC Microbiol. 2017, 17, 140. [Google Scholar] [CrossRef]
- Łubkowska, B.; Czajkowska, E.; Stodolna, A.; Sroczyński, M.; Zylicz Stachula, A.; Sobolewski, I.; Skowron, M.P. A Novel Thermostable TP-84 Capsule Depolymerase: A Method for Rapid Polyethyleneimine Processing of a Bacteriophage-Expressed Proteins. Microb. Cell Factories 2023, 22, 80. [Google Scholar] [CrossRef]
- Skowron, P.M.; Kropinski, A.M.; Zebrowska, J.; Janus, L.; Szemiako, K.; Czajkowska, E.; Maciejewska, N.; Skowron, M.; Łoś, J.; Łoś, M.; et al. Sequence, Genome Organization, Annotation and Proteomics of the Thermophilic, 47.7-Kb Geobacillus Stearothermophilus Bacteriophage TP-84 and Its Classification in the New Tp84virus Genus. PLoS ONE 2018, 13, e0195449. [Google Scholar] [CrossRef]
- Żebrowska, J.; Żołnierkiewicz, O.; Ponikowska, M.; Puchalski, M.; Krawczun, N.; Makowska, J.; Skowron, P. Cloning and Characterization of a Thermostable Endolysin of Bacteriophage TP-84 as a Potential Disinfectant and Biofilm-Removing Biological Agent. Int. J. Mol. Sci. 2022, 23, 7612. [Google Scholar] [CrossRef] [PubMed]
- Łubkowska, B.; Sobolewski, I.; Adamowicz, K.; Zylicz-Stachula, A.; Skowron, P.M. Recombinant TP-84 Bacteriophage Glycosylase–Depolymerase Confers Activity against Thermostable Geobacillus stearothermophilus via Capsule Degradation. Int. J. Mol. Sci. 2024, 25, 722. [Google Scholar] [CrossRef]
- Withey, S.; Cartmell, E.; Avery, L.M.; Stephenson, T. Bacteriophages—Potential for Application in Wastewater Treatment Processes. Sci. Total Environ. 2005, 339, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Yu, X.; Guo, W.; Guo, C.; Guo, X.; Li, Q.; Zhu, Y. Bacteriophage-Mediated Control of Biofilm: A Promising New Dawn for the Future. Front. Microbiol. 2022, 13, 825828. [Google Scholar] [CrossRef] [PubMed]
- Astals, S.; Venegas, C.; Peces, M.; Jofre, J.; Lucena, F.; Mata-Alvarez, J. Balancing Hygienization and Anaerobic Digestion of Raw Sewage Sludge. Water Res. 2012, 46, 6218–6227. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, H.; Ryu, S. Bacteriophage and Endolysin Engineering for Biocontrol of Food Pathogens/Pathogens in the Food: Recent Advances and Future Trends. Crit. Rev. Food Sci. Nutr. 2023, 63, 8919–8938. [Google Scholar] [CrossRef] [PubMed]
- Nazir, A.; Xu, X.; Liu, Y.; Chen, Y. Phage Endolysins: Advances in the World of Food Safety. Cells 2023, 12, 2169. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ji, X.; Li, Q.; Zhang, G.; Peng, J.; Hai, J.; Zhang, Y.; Ci, B.; Li, H.; Xiong, Y.; et al. TsPPHG Lysin from the Extremophilic Thermus Bacteriophage TSP4 as a Potential Antimicrobial Agent against Both Gram-Negative and Gram-Positive Pathogenic Bacteria. Viruses 2020, 12, 192. [Google Scholar] [CrossRef]
- Uldahl, K.B.; Walk, S.T.; Olshefsky, S.C.; Young, M.J.; Peng, X. SMV1, an Extremely Stable Thermophilic Virus Platform for Nanoparticle Trafficking in the Mammalian GI Tract. J. Appl. Microbiol. 2017, 123, 1286–1297. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Yuan, X.; Zhu, Z.; Feng, Y.; Li, N.; Yu, S.; Li, C.; Chen, B.; Wu, S.; Gu, Q.; et al. Isolation and Characterization of Bacillus Cereus Bacteriophage DZ1 and Its Application in Foods. Food Chem. 2024, 431, 137128. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.Y.; Lin, J.T.; Ricker, N.; Anany, H. The Age of Phage: Friend or Foe in the New Dawn of Therapeutic and Biocontrol Applications? Pharmaceuticals 2021, 14, 199. [Google Scholar] [CrossRef]
- Moser, M.J.; DiFrancesco, R.A.; Gowda, K.; Klingele, A.J.; Sugar, D.R.; Stocki, S.; Mead, D.A.; Schoenfeld, T.W. Thermostable DNA Polymerase from a Viral Metagenome Is a Potent RT-PCR Enzyme. PLoS ONE 2012, 7, e38371. [Google Scholar] [CrossRef] [PubMed]
- Heller, R.C.; Chung, S.; Crissy, K.; Dumas, K.; Schuster, D.; Schoenfeld, T.W. Engineering of a Thermostable Viral Polymerase Using Metagenome-Derived Diversity for Highly Sensitive and Specific RT-PCR. Nucleic Acids Res. 2019, 47, 3619–3630. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, L.; Mitsunobu, H.; Lu, X.; Hernandez, A.J.; Yoshida-Takashima, Y.; Nunoura, T.; Tabor, S.; Richardson, C.C. Deep-Sea Vent Phage DNA Polymerase Specifically Initiates DNA Synthesis in the Absence of Primers. Proc. Natl. Acad. Sci. USA 2017, 114, E2310–E2318. [Google Scholar] [CrossRef]
- Blondal, T.; Thorisdottir, A.; Unnsteinsdottir, U.; Hjorleifsdottir, S.; Ævarsson, A.; Ernstsson, S.; Fridjonsson, O.H.; Skirnisdottir, S.; Wheat, J.O.; Hermannsdottir, A.G.; et al. Isolation and Characterization of a Thermostable RNA Ligase 1 from a Thermus scotoductus Bacteriophage TS2126 with Good Single-Stranded DNA Ligation Properties. Nucleic Acids Res. 2005, 33, 135–142. [Google Scholar] [CrossRef]
N° | Bacteriophage Species | Virus Class, Morphotype | GenBank Accession Number | Host (Used for Propagation) | Genome | Original Discovery Reference | Isolate Location | Life Cycle | Growth Temperature (°C, Optimal/Range) and pH (Optimal/Range) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Type and Size [bp] | ORFs | G+C [%] | |||||||||
1 | ‘thermophilic lytic principle’ | ND | ND | B. stearothermophilus T60 | ND | ND | ND | Koser, 1926 [12] | sewage, polluted river water (USA) | lytic | 52–60, app. 7 |
2 | ‘thermophilic bacteriophage’ | ND | ND | ND | ND | ND | ND | Adant, 1928 [13] | ND | lytic | 52–55 |
3 | ‘thermophilic bacteriophage’ | ND | ND | thermophilic bacterium no. 10 | ND | ND | ND | White et al., 1954, 1955 [14,15] | greenhouse soil (USA) | lytic | 65 (50–70), 7 |
4 | ‘thermophilic bacteriophage’ | ND | ND | Bacillus sp. | DNA, RNA (RNA is questionable) | ND | ND | Onodera 1961 [16] | compost (Japan) | lytic | 65 (55–70), 7.2 |
5 | TP-84 | Caudoviricetes, Saundersvirus, Siphovirus morphotype | KY565347.1 | B. stearothermophilus strain 10 | circular, dsDNA, 47,718 bp | 81 | 54.5 | Saunders et al., 1964 [17] Saunders & Campbell, 1966 [18] | greenhouse soil (USA) | lytic | 58 (43–76), 7.2 |
6 | φ μ-4 | ND | ND | B. stearothermophilus | ND | ND | ND | Shafia & Thompson, 1964 [19] | ND | lytic/lysogenic | 50–65, 7 |
7 | TP-1 | Siphovirus morphotype (putative) | ND | B. stearothermophilus | dsDNA, 18,516 bp, (MW app. 12.1 MDa) | ND | 42 | Welker & Campbell, 1965 [20,21] | ND | lysogenic/lytic | 55 (50–65), 7 |
8 | ST1 | Siphovirus Myovirus morphotype (putative) | ND | B. stearothermophilus strain S13 | dsDNA | ND | 43 | Carnevali & Donelli, 1968 [22] | ND | lytic | 60, app. 7 |
9 | Tφ3 | Siphovirus morphotype | ND | B. stearothermophilus ATCC 8005 SR | ds DNA, app. 35,700 bp (MW app. 23.2 MDa) | ND | 40.2 | Egbert & Mitchel, 1967 [23] Egbert, 1969 [24] | soil (USA) | lytic | 60, 7.3 |
10 | GH5 | ND | ND | B. stearothermophilus NCA 1518 | ND | ND | ND | Humbert & Fields, 1972 [25] | greenhouse soil (USA) | lytic | 42.5–67, app. 7 |
11 | GH8 | Siphovirus morphotype | ND | B. stearothermophilus NCA 1518 | ND | ND | ND | Humbert & Fields, 1972 [25] | greenhouse soli (USA) | lytic | 42.5–67, app. 7 |
12 | PhB1 | Siphovirus morphotype | ND | Bacillus sp. strain B | ND | ND | ND | Ljunger & Edebo, 1972 [26] | farm soil (Sweden) | lytic | 55, 7.3 |
13 | D5 | ND | ND | B. stearothermophilus NRS T91, ATCC 7953 | ND | ND | ND | Reanney & Marsch, 1973 [27] | ND | lytic | 45 (30–55), app. 7 |
14 | D6 | ND | ND | B. stearothermophilus NRS T91, ATCC 7953 | ND | ND | ND | Reanney & Marsch, 1973 [27] | ND | lytic | 45 (30–55), app. 7 |
15 | D7 | ND | ND | B. stearothermophilus NRS T91, ATCC 7953 | ND | ND | ND | Reanney & Marsch, 1973 [27] | ND | lytic | 45 (30–55), app. 7 |
16 | D8 | ND | ND | B. stearothermophilus NRS T91, ATCC 7953 | ND | ND | ND | Reanney & Marsch, 1973 [27] | ND | lytic | 45 (30–55), app. 7 |
17 | φNS11 | Sphaerolipovirus morphotype (putative) | ND | B.acidocaldarius TA6 | dsDNA | ND | ND | Sakaki & Oshima, 1976 [28] | hot spring (Beppu, Japan) | lytic | 60, 3.5 (2–5) |
18 | JS001 | ND | ND | B. caldotenax | dsDNA | ND | ND | Sharp et al., 1986 [29] | ND | lytic/lysogenic | 55 (50–70), 7.3 ± 0.2 |
19 | JS004 | ND | ND | Bacillus thermophile RS 239 | dsDNA | ND | ND | Sharp et al., 1986 [29] | silage | lytic | 55 (50–70), 7.3 ± 0.2 |
20 | JS005 | ND | ND | B. thermophile RS 239 | dsDNA | ND | ND | Sharp et al., 1986 [29] | rotting straw | lytic | 55 (50–70), 7.3 ± 0.2 |
21 | JS006 | ND | ND | Bacillus thermophile RS 239 | dsDNA | ND | ND | Sharp et al., 1986 [29] | compost | lytic | 55 (50–70), 7.3 ± 0.2 |
22 | JS007 | ND | ND | Bacillus thermophile RS 240 | dsDNA | ND | ND | Sharp et al., 1986 [29] | silage | lytic | 55 (50–70), 7.3 ± 0.2 |
23 | JS008 | ND | ND | Bacillus thermophile RS 241 | dsDNA | ND | ND | Sharp et al., 1986 [29] | rotting straw | lytic | 55 (50–70), 7.3 ± 0.2 |
24 | JS009 | ND | ND | Bacillus thermophile RS 242 | dsDNA | ND | ND | Sharp et al., 1986 [29] | stable manure | lytic | 55 (50–70), 7.3 ± 0.2 |
25 | JS010 | ND | ND | Bacillus thermophile RS 242 | dsDNA | ND | ND | Sharp et al., 1986 [29] | compost | lytic | 55 (50–70), 7.3 ± 0.2 |
26 | JS011 | ND | ND | Bacillus thermophile RS 239 | dsDNA | ND | ND | Sharp et al., 1986 [29] | silage | lytic | 55 (50–70), 7.3 ± 0.2 |
27 | JS012 | ND | ND | Bacillus thermophile RS 239 | dsDNA | ND | ND | Sharp et al., 1986 [29] | compost | lytic | 55 (50–70), 7.3 ± 0.2 |
28 | JS013 | ND | ND | B. stearothermophilus NCA 1503 | dsDNA | ND | ND | Sharp et al., 1986 [29] | soil | lytic | 55 (50–70), 7.3 ± 0.2 |
29 | JS014 | ND | ND | B. stearothermophilus NCA 1503 | dsDNA | ND | ND | Sharp et al., 1986 [29] | rotting straw | lytic | 55 (50–70), 7.3 ± 0.2 |
30 | JS015 | ND | ND | B. stearothermophilus NCA 1503 | dsDNA | ND | ND | Sharp et al., 1986 [29] | compost | lytic | 55 (50–70), 7.3 ± 0.2 |
31 | JS017 | ND | ND | B. caldotenax | dsDNA | ND | ND | Sharp et al., 1986 [29] | compost | lytic | 55 (50–70), 7.3 ± 0.2 |
32 | JS018 | ND | ND | B. caldotenax | dsDNA | ND | ND | Sharp et al., 1986 [29] | rotting vegetation | lytic | 55 (50–70), 7.3 ± 0.2 |
33 | JS019 | ND | ND | B. caldotenax | dsDNA | ND | ND | Sharp et al., 1986 [29] | rotting vegetation | lytic | 55 (50–70), 7.3 ± 0.2 |
34 | JS020 | ND | ND | B. caldotenax | dsDNA | ND | ND | Sharp et al., 1986 [29] | rotting vegetation | lytic | 55 (50–70), 7.3 ± 0.2 |
35 | JS021 | ND | ND | B. caldotenax | dsDNA | ND | ND | Sharp et al., 1986 [29] | rotting vegetation | lytic | 55 (50–70), 7.3 ± 0.2 |
36 | JS022 | ND | ND | B. caldotenax | dsDNA | ND | ND | Sharp et al., 1986 [29] | compost | lytic | 55 (50–70), 7.3 ± 0.2 |
37 | JS023 | ND | ND | B. caldotenax | dsDNA | ND | ND | Sharp et al., 1986 [29] | compost | lytic | 55 (50–70), 7.3 ± 0.2 |
38 | JS024 | ND | ND | B. caldotenax | dsDNA | ND | ND | Sharp et al., 1986 [29] | compost | lytic | 55 (50–70), 7.3 ± 0.2 |
39 | JS025 | ND | ND | B. caldotenax | dsDNA | ND | ND | Sharp et al., 1986 [29] | compost | lytic | 55 (50–70), 7.3 ± 0.2 |
40 | JS026 | ND | ND | B. caldotenax | dsDNA | ND | ND | Sharp et al., 1986 [29] | compost | lytic | 55 (50–70), 7.3 ± 0.2 |
41 | JS027 | ND | ND | Bacillus thermophile RS 241 | dsDNA | ND | ND | Sharp et al., 1986 [29] | compost | lytic | 55 (50–70), 7.3 ± 0.2 |
42 | BVW1 (W1) | Siphovirus morphotype | ND | Bacillus sp. w13 | dsDNA, app. 18 kb | ND | ND | Liu et al., 2006 [30] | deep-sea hydrothermal fields (West Pacific) | lytic | 60, 7.0 |
43 | GVE1 (E1) | Siphovirus morphotype | ND | Geobacillus sp. E 26323 | dsDNA, app. 41 kb | ND | ND | Liu et al., 2006 [30] | deep-sea hydrothermal fields (East Pacific) | lytic | 60, 7.0 |
44 | GVE2 (E2) | unclassified Caudoviricetes, Siphovirus morphotype | NC_009552.3 DQ453159 | Geobacillus sp. E 263 | linear, dsDNA, 40,863 bp | 62 | 44.8 | Liu & Zhang, 2008 [31] | deep sea (China) | lysogenic | 65, 7.0 |
45 | GBSV1 | Caudoviricetes, Svunavirus | NC_008376 | Geobacillus sp. 6k512 | linear, dsDNA, 34,683 bp | 54 | 44.4 | Liu et al., 2009, 2010 [32,33] | off-shore hot spring (Xiamen, China) | lytic | 65, 7.2 |
46 | BV1 | Caudoviricetes, Svunavirus sv1 | NC_009737, DQ840344 | Geobacillus sp. 6k512 | linear, dsDNA, 35,055 bp | 54 | 44.4 | Liu et al., 2009, 2010 [32,33] | off-shore hot spring (Xiamen, China) | lytic | 65, 7.2 |
47 | D6E | unclassified Caudoviricetes | NC_019544 | Geobacillus sp. E 26323 | circular, dsDNA, 49,335 bp | 49 | 46 | Wang & Zhang, 2010 [34] | deep-sea hydrothermal fields (East Pacific) | lytic | 65, 7.0 |
48 | AcaML1 | unclassified Caudoviricetes, Myovirus morphotype | JX507079 | Acidithiobacillus caldus ATCC 51756 | dsDNA 59,363 bp | 72 | 64.5 | Tapia et al., 2012 [35] | coal spoil enrichment culture (Kingsbury, UK) | lytic/lysogenic | 45 2.5 |
49 | ϕOH2 (phiOH2) | unclassified Caudoviricetes, Siphovirus morphotype | AB823818, NC_021784 | G. kaustophilus GBlys, G. kaustophilus NBRC 102445(T), lysogenic G. kaustophilus GBlys) | dsDNA, 38,099 bp | 60 | 45 | Doi et al., 2013 [36] | hot spring sediment (Japan) | lytic/lysogenic | 55 |
50 | GBK2 | unclassified Caudoviricetes, Siphovirus morphotype | KJ159566 | G. kaustophilus | circularly permuted, dsDNA, 39,078 bp | 62 | 43 | Marks & Hamilton, 2014 [37] | compost (Cary, NC, USA) | lytic | 55, 7.3 |
51 | GVE3 (E3) | unclassified Caudoviricetes, Siphovirus morphotype | NC_029073, KP144388 | G. thermoglucosidasius | dsDNA 141,298 bp | 202 | 29.6 | Van Zyl et al., 2015 [38] | ND | lytic/lysogenic | 60, 7.3 |
52 | AP45 | Caudoviricetes; Kamchatkavirus, Siphovirus morphotype | KX965989 | Aeribacillus sp. CEMTC656 | dsDNA 51,606 bp | 71 | 38.3 | Morozowa et al., 2019 [39] | soil (Valley of Geysers, Kamchatka, Russia) | lytic/lysogenic | 55, 7.5 |
53 | vB_Bps-36 | unclassified Caudoviricetes | MH884513 | B. pseudalcaliphilus | dsDNA 50,485 bp | 68 | 41.1 | Akhwale et al., 2019 [40] | Lake Elmenteita (Kenya) | lytic/? | 30–40< 9< |
54 | vB_BpsM-61 | unclassified Caudoviricetes | MH884514 | B. pseudofirmus (Alkalihalophilus pseudofirmus) | dsDNA 48,160 bp | 75 | 43.5 | Akhwale et al., 2019 [40] | Lake Elmenteita (Kenya) | lytic/? | 30–40< 9< |
55 | vB_BboS-125 | Caudoviricetes; Elmenteitavirus | NC_048735.1 MH884509 | B. bogoriensis (Alkalihalobacillus borgiensis) | dsDNA 58,528 bp | 81 | 48.6 | Akhwale et al., 2019 [40] | Lake Elmenteita (Kenya) | lytic/? | 30–40< 9< |
56 | vB_BcoS-136 | unclassified Caudoviricetes | MH884508 | B. cohnii (Sutcliffiella cohnii) | dsDNA 160,590 bp | 240 | 32.2 | Akhwale et al., 2019 [40] | Lake Elmenteita (Kenya) | lytic/? | 30–40< 9< |
57 | vB_BpsS-140 | unclassified Caudoviricetes | MH884512 | B. pseudalcaliphilus (Alkalihalobacillus pseudalcaliphilus) | dsDNA 55,091 bp | 68 | 39.8 | Akhwale et al., 2019 [40] | Lake Elmenteita (Kenya) | lytic/? | 30–40< 9< |
58 | GR1 | unclassified Caudoviricetes, Siphovirus morphotype | OK896991 | G. stearothermophilus ATTC 10149 | dsDNA 79,387 bp | 108 | 32.34 | Choi &Kong, 2023 [41] | soil Gyeongchun Line railroad (Seul, Republic of Korea) | lytic | 50 7.2 |
59 | vB_GthS_PT9.1 | unclassified Caudoviricetes, Siphovirus morphotype | OP341630 | G. thermodenitrificans | dsDNA 38,373 bp | 75 | 43.9 | Šimoliūnas et al., 2023a [42] | compost heaps (Lithuania) | lytic | 45–80 |
60 | vB_GthS_NIIg9.7 | unclassified Caudoviricetes, Siphovirus morphotype | OP341624 | G. thermodenitrificans NIIg-9 | dsDNA 39,016 bp | 76 | 44.4 | Šimoliūnas et al., 2023a [42] | compost heaps (Lithuania) | lytic | 50–78 |
61 | vB_GthS_PK5.1 | unclassified Caudoviricetes, Siphovirus morphotype | OP341628 | G. thermodenitrificans | dsDNA 38,161 bp | 64 | 43.6 | Šimoliūnas et al., 2023a [42] | compost heaps (Lithuania) | lytic | 48–80 |
62 | vB_GthS_PK3.5 | unclassified Caudoviricetes, Siphovirus morphotype | OP341626 | G. thermodenitrificans | dsDNA 38,788 bp | 76 | 43.5 | Šimoliūnas et al., 2023a [42] | compost heaps (Lithuania) | lytic | 50–78 |
63 | vB_GthS_PK3.6 | unclassified Caudoviricetes, Siphovirus morphotype | OP341627 | G. thermodenitrificans | dsDNA 38,405 bp | 68 | 44.8 | Šimoliūnas et al., 2023a [42] | compost heaps (Lithuania) | lytic | 50–80 |
64 | vB_PtoS_NIIg3.2 | unclassified Caudoviricetes, Siphovirus morphotype | OP341623 | P. toebii strain NIIg-3 G. thermodenitrificans | dsDNA 38,970 bp | 42.2 | 42.2 | Šimoliūnas et al., 2023b [43] | compost heaps (Lithuania) | lytic/lysogenic? | 50–80 |
65 | vB_GthS_PK5.2, | unclassified Caudoviricetes, Siphovirus morphotype | OP341629.1 | G. thermodenitrificans | dsDNA | ND | ND | Šimoliūnienė et al., unpublished data [44] | compost heaps (Lithuania) | lytic | ND |
66 | vB_GthS_PK2.1, | unclassified Caudoviricetes, Siphovirus morphotype | OP341625.1 | G. thermodenitrificans | dsDNA | ND | ND | Šimoliūnienė et al., unpublished data [44] | compost heaps (Lithuania) | lytic | ND |
67 | vB_GthS_NIIg10.1, | unclassified Caudoviricetes, Siphovirus morphotype | ND | G. thermodenitrificans | dsDNA | ND | ND | Šimoliūnienė et al., unpublished data [44] | compost heaps (Lithuania) | lytic | ND |
68 | vB_GthS_NIIg2.1, | unclassified Caudoviricetes, Siphovirus morphotype | ND | G. thermodenitrificans | dsDNA | ND | ND | Šimoliūnienė et al., unpublished data [44] | compost heaps (Lithuania) | lytic | ND |
69 | vB_GthS_NIIg2.2, | unclassified Caudoviricetes, Siphovirus morphotype | ND | G. thermodenitrificans | dsDNA | ND | ND | Šimoliūnienė et al., unpublished data [44] | compost heaps (Lithuania) | lytic | ND |
70 | vB_GthS_NIIg2.3 | unclassified Caudoviricetes, Siphovirus morphotype | ND | G. thermodenitrificans | dsDNA | ND | ND | Šimoliūnienė et al., unpublished data [44] | compost heaps (Lithuania) | lytic | ND |
71 | A403 | Caudoviricetes; Tandoganvirus | NC_048701 MG969427 | Anoxybacillus caldiproteolyticus | dsDNA 40,847 bp | ND | ND | Sahin et al., unpublished data [44] | ND | ND | ND |
72 | JGon-2020a | ND | CP063417 | P. thermoglucosidasius 23.6 | dsDNA 55,505 bp | ND | ND | Delgado & Gonzalez, unpublished data [45] | ND | ND | ND |
CDS Name | CDS Length (bp) | Location in the Genome (bp) | CDS Arbitrary Orientation | Polypeptide Length (aa) | Predicted Polypeptide Molecular Weight (kDa) | Experimentally Determined Polypeptide Molecular Weight (kDa) | Predicted Isoelectric Point | Hypothetical Function (Analysis) | Confirmed by Proteomic Analysis |
---|---|---|---|---|---|---|---|---|---|
TP84_03 | 687 | 1868–2554 | + | 228 | 26.3 | 26.3 | 9.17 | DUF3310 domain-containing protein | unknown |
TP84_07 | 147 | 4799–4945 | + | 48 | 5.3 | ND | 7.94 | unknown | unknown |
TP84_09 | 210 | 7004–7213 | + | 69 | 8.2 | ND | 4.89 | putative membrane-associated protein | unknown |
TP84_10 | 828 | 7441–8268 | + | 275 | 31.6 | ND | 4.70 | putative prohead protease | putative prohead protease |
TP84_14 | 330 | 10,032–10,361 | + | 109 | 12.2 | ND | 5.16 | unknown | unknown |
TP84_17 | 378 | 11,162–11,539 | + | 125 | 14.6 | 14.6 | 5.35 | tail assembly protein | tail assembly protein |
TP84_24 | 210 | 19,061–19,270 | + | 69 | 7.9 | ND | 4.59 | unknown | unknown |
TP84_28 | 1185 | 23,676–24,860 | + | 394 | 44.2 | 44.2 | 9.67 | endolysin | endolysin |
TP84_31 | 156 | 26,023–26,178 | + | 51 | 6.0 | ND | 6.15 | putative membrane protein | putative membrane protein |
TP84_32 | 255 | 26,235–26,489 | + | 84 | 9.8 | 9.7 | 9.70 | unknown | unknown |
TP84_34 | 255 | 26,884–27,138 | + | 84 | 9.6 | ND | 4.48 | putative membrane protein | putative membrane protein |
TP84_36 | 237 | 27,353–27,589 | + | 78 | 9.3 | 9.3 | 9.91 | unknown | unknown |
TP84_37 | 396 | 27,698–28,093 | + | 131 | 14.9 | 14.8 | 6.41 | unknown | unknown |
TP84_38 | 201 | 28,090–28,290 | + | 66 | 7.4 | 7.4 | 6.73 | unknown | unknown |
TP84_39 | 216 | 28,403–28,618 | + | 71 | 8,1 | ND | 7.96 | unknown | unknown |
TP84_40 | 210 | 28,615–28,824 | + | 69 | 8.2 | ND | 9.39 | unknown | unknown |
TP84_44 | 132 | 29,708–29,839 | + | 43 | 5.0 | ND | 10.62 | unknown | unknown |
TP84_45 | 231 | 29,839–30,069 | + | 76 | 8.5 | ND | 9.75 | unknown | unknown |
TP84_50 | 159 | 33,468–33,626 | + | 52 | 5.8 | ND | 6.53 | unknown | unknown |
TP84_51 | 159 | 33,832–33,990 | + | 52 | 6.1 | ND | 10.41 | aspartyl-phosphate phosphatase Spo0E family protein | unknown |
TP84_52 | 237 | 34,030–34,266 | + | 78 | 8.5 | ND | 5.36 | transcriptional regulator (HTH_XRE family) | transcriptional regulator (HTH_XRE family) |
TP84_53 | 1017 | 34,238–35,254 | + | 338 | 38.5 | ND | 5.33 | RecB-like protein | RecB-like protein |
TP84_54 | 1020 | 35,270–36,289 | + | 339 | 38.8 | ND | 5.78 | DNA single-strand annealing protein | DNA single-strand annealing protein |
TP84_55 | 222 | 36,337–36,558 | + | 73 | 8.8 | ND | 4.54 | unknown | unknown |
TP84_56 | 183 | 36,924–37,106 | + | 60 | 7.4 | 7.4 | 9.25 | unknown | unknown |
TP84_57 | 783 | 37,127–37,909 | + | 260 | 30.3 | 30.4 | 8.57 | conserved phage C-terminal domain-containing protein (bacterial) | unknown |
TP84_63 | 468 | 40,851–41,318 | + | 155 | 17.4 (18.3) * | 17.4 (18.3) * | 5.16 | single-stranded DNA-binding protein | single-stranded DNA-binding protein |
TP84_64 | 240 | 41,343–41,582 | + | 79 | 9.3 | 9.3 | 6.89 | unknown | unknown |
TP84_66 | 270 | 41,751–42,020 | + | 89 | 10.4 | ND | 5.92 | single-stranded DNA-binding protein | single-stranded DNA-binding protein |
TP84_67 | 183 | 42,023–42,205 | + | 60 | 6.9 | ND | 4.58 | unknown | unknown |
TP84_68 | 987 | 42,209–43,195 | + | 328 | 38.6 | 38.5 | 6.91 | thymidylate synthase | thymidylate synthase |
TP84_69 | 501 | 43,200–43,700 | + | 166 | 20.0 | 20.1 | 5.67 | dUTP diphosphatase | dUTP diphosphatase |
TP84_71 | 246 | 44,014–44,259 | + | 81 | 9.4 | ND | 10.21 | unknown | unknown |
TP84_72 | 504 | 44,246–44,749 | + | 167 | 19.3 | ND | 7.70 | Holliday junction-specific endonuclease | Holliday junction-specific endonuclease |
TP84_76 | 126 | 45,675–45,800 | + | 41 | 4.8 | ND | 5.54 | unknown | unknown |
TP84_77 | 186 | 45,857–46,042 | + | 61 | 7.2 | ND | 9.19 | unknown | unknown |
TP84_78 | 204 | 46,047–46,250 | + | 67 | 7.5 | ND | 12.16 | unknown | unknown |
TP84_79 | 354 | 46,380–46,733 | + | 117 | 13.4 | 13.4 | 7.82 | unknown | unknown |
TP84_80 | 366 | 46,741–47,106 | + | 121 | 14.0 | 13.9 | 6.82 | unknown | unknown |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skowron, P.M.; Łubkowska, B.; Sobolewski, I.; Zylicz-Stachula, A.; Šimoliūnienė, M.; Šimoliūnas, E. Bacteriophages of Thermophilic ‘Bacillus Group’ Bacteria—A Systematic Review, 2023 Update. Int. J. Mol. Sci. 2024, 25, 3125. https://doi.org/10.3390/ijms25063125
Skowron PM, Łubkowska B, Sobolewski I, Zylicz-Stachula A, Šimoliūnienė M, Šimoliūnas E. Bacteriophages of Thermophilic ‘Bacillus Group’ Bacteria—A Systematic Review, 2023 Update. International Journal of Molecular Sciences. 2024; 25(6):3125. https://doi.org/10.3390/ijms25063125
Chicago/Turabian StyleSkowron, Piotr M., Beata Łubkowska, Ireneusz Sobolewski, Agnieszka Zylicz-Stachula, Monika Šimoliūnienė, and Eugenijus Šimoliūnas. 2024. "Bacteriophages of Thermophilic ‘Bacillus Group’ Bacteria—A Systematic Review, 2023 Update" International Journal of Molecular Sciences 25, no. 6: 3125. https://doi.org/10.3390/ijms25063125
APA StyleSkowron, P. M., Łubkowska, B., Sobolewski, I., Zylicz-Stachula, A., Šimoliūnienė, M., & Šimoliūnas, E. (2024). Bacteriophages of Thermophilic ‘Bacillus Group’ Bacteria—A Systematic Review, 2023 Update. International Journal of Molecular Sciences, 25(6), 3125. https://doi.org/10.3390/ijms25063125