Genetic Background of Acute Heart Rate Response to Exercise
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Populations
2.2. Result of Hardy–Weinberg Analysis and Individual Association of SNPs with AHRR and Optimisation of Polygenic Score
2.3. Association of oPGS with the Categories and Domains of Physical Activity
2.4. The association of oPGS with AHRR, Independent of Individual Physical Activity
3. Discussion
4. Materials and Methods
4.1. Sample Population and Investigations Performed
- (a)
- health status;
- (b)
- health care utilisation;
- (c)
- health determinants;
- (d)
- socioeconomic measures.
4.2. Measurement of Physical Activity and Cardiovascular Fitness
- (1)
- Each test starts with a 2 min rest period while the subjects sit on a chair.
- (2)
- Subjects are required to step up and down a 30 cm box 72 times in 3 min. The step rate was indicated by a metronome set at 96 beats/min (4 clicks = one step cycle) at a step rate of 24 steps/min.
- (3)
- The subject stops immediately after the test is completed, sits down and remains motionless for 5 s, and then the subject’s pulse is monitored for one minute.
- (4)
- The heart rate measurement is repeated 5 and 10 min later.
4.3. DNA Extraction, SNP Selection, Genotyping, Testing Hardy–Weinberg Equilibrium, and Linkage Disequilibrium
4.4. Calculation and Optimisation of the Polygenic Score
- Codominant genetic model: homozygous genotype with risk allele was coded as 2, while the heterozygous gene was coded as 1 and 0 was coded for no risk allele.
- Dominant genetic model: 2 was coded for the presence of one or two risk alleles, and 0 was coded for the absence of a risk allele.
- Recessive genetic model: 2 was scored for the presence of two risk alleles, while 0 was scored for the homozygous gene with no risk allele and the heterozygous gene.
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woessner, M.N.; Tacey, A.; Levinger-Limor, A.; Parker, A.G.; Levinger, P.; Levinger, I. The Evolution of Technology and Physical Inactivity: The Good, the Bad, and the Way Forward. Front. Public Health 2021, 9, 655491. [Google Scholar] [CrossRef]
- Tison, G.H.; Barrios, J.; Avram, R.; Kuhar, P.; Bostjancic, B.; Marcus, G.M.; Pletcher, M.J.; Olgin, J.E. Worldwide physical activity trends since COVID-19 onset. Lancet Glob. Health 2022, 10, E1381–E1382. [Google Scholar] [CrossRef]
- Haseler, T.; Haseler, C. Lack of physical activity is a global problem. BMJ 2022, 376, o348. [Google Scholar] [CrossRef] [PubMed]
- Nystoriak, M.A.; Bhatnagar, A. Cardiovascular Effects and Benefits of Exercise. Front. Cardiovasc. Med. 2018, 5, 135. [Google Scholar] [CrossRef] [PubMed]
- Beere, P.A.; Glagov, S.; Zarins, C.K. Retarding Effect of Lowered Heart-Rate on Coronary Atherosclerosis. Science 1984, 226, 180–182. [Google Scholar] [CrossRef]
- Beere, P.A.; Glagov, S.; Zarins, C.K. Experimental Atherosclerosis at the Carotid Bifurcation of the Cynomolgus Monkey—Localization, Compensatory Enlargement, and the Sparing Effect of Lowered Heart-Rate. Arterioscler. Thromb. Vasc. Biol. 1992, 12, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Tadic, M.; Cuspidi, C.; Grassi, G. Heart rate as a predictor of cardiovascular risk. Eur. J. Clin. Investig. 2018, 48, e12892. [Google Scholar] [CrossRef] [PubMed]
- Olshansky, B.; Ricci, F.; Fedorowski, A. Importance of resting heart rate. Trends Cardiovasc. Med. 2023, 33, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Savonen, K.P.; Lakka, T.A.; Laukkanen, J.A.; Halonen, P.M.; Rauramaa, T.H.; Salonen, J.T.; Rauramaa, R. Heart rate response during exercise test and cardiovascular mortality in middle-aged men. Eur. Heart J. 2006, 27, 582–588. [Google Scholar] [CrossRef]
- Seccareccia, F.; Pannozzo, F.; Dima, F.; Minoprio, A.; Menditto, A.; Lo Noce, C.; Giampaoli, S. Heart rate as a predictor of mortality: The MATISS Project. Am. J. Public Health 2001, 91, 1258–1263. [Google Scholar] [CrossRef]
- Fang, S.C.; Wu, Y.L.; Tsai, P.S. Heart Rate Variability and Risk of All-Cause Death and Cardiovascular Events in Patients With Cardiovascular Disease: A Meta-Analysis of Cohort Studies. Biol. Res. Nurs. 2020, 22, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.; Batin, P.D.; Andrews, R.; Lindsay, S.J.; Brooksby, P.; Mullen, H.; Baig, W.; Flapan, A.D.; Cowley, A.; Prescott, R.J.; et al. Prospective study of heart rate variability and mortality in chronic heart failure—Results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-Heart). Circulation 1998, 98, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Hautala, A.J.; Mäkikallio, T.H.; Kiviniemi, A.; Laukkanen, R.T.; Nissilä, S.; Huikuri, H.V.; Tulppo, M.P. Heart rate dynamics after controlled training followed by a home-based exercise program. Eur. J. Appl. Physiol. 2004, 92, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Winsley, R. Acute and chronic effects of exercise on heart rate variability in adults and children: A review. Pediatr. Exerc. Sci. 2002, 14, 328–344. [Google Scholar] [CrossRef]
- Soares-Miranda, L.; Sattelmair, J.; Chaves, P.; Duncan, G.; Siscovick, D.S.; Stein, P.K.; Mozatfarian, D. Response to Letter Regarding Article, “Physical Activity and Heart Rate Variability in Older Adults: The Cardiovascular Health Study”. Circulation 2015, 131, E349–E350. [Google Scholar] [CrossRef]
- Cheng, W.K.; Zhang, Z.; Cheng, W.S.; Yang, C.; Diao, L.L.; Liu, W.J. Associations of leisure-time physical activity with cardiovascular mortality: A systematic review and meta-analysis of 44 prospective cohort studies. Eur. J. Prev. Cardiol. 2018, 25, 1864–1872. [Google Scholar] [CrossRef]
- Watts, E.L.; Matthews, C.E.; Freeman, J.R.; Gorzelitz, J.S.; Hong, H.G.; Liao, L.M.; McClain, K.M.; Saint-Maurice, P.F.; Shiroma, E.J.; Moore, S.C. Association of Leisure Time Physical Activity Types and Risks of All-Cause, Cardiovascular, and Cancer Mortality Among Older Adults. JAMA Netw. Open 2022, 5, e2228510. [Google Scholar] [CrossRef]
- Bergwall, S.; Acosta, S.; Ramne, S.; Mutie, P.; Sonestedt, E. Leisure-time physical activities and the risk of cardiovascular mortality in the Malmo diet and Cancer study. BMC Public Health 2021, 21, 1948. [Google Scholar] [CrossRef]
- Hidalgo-Santamaria, M.; Bes-Rastrollo, M.; Martinez-Gonzalez, M.A.; Moreno-Galarraga, L.; Ruiz-Canela, M.; Fernandez-Montero, A. Physical Activity Intensity and Cardiovascular Disease Prevention-From the Seguimiento Universidad de Navarra Study. Am. J. Cardiol. 2018, 122, 1871–1878. [Google Scholar] [CrossRef]
- Fan, M.Y.; Yu, C.Q.; Guo, Y.; Bian, Z.; Li, X.; Yang, L.; Chen, Y.P.; Li, M.Q.; Li, X.Z.; Chen, J.S.; et al. Effect of total, domain-specific, and intensity-specific physical activity on all-cause and cardiovascular mortality among hypertensive adults in China. J. Hypertens. 2018, 36, 793–800. [Google Scholar] [CrossRef]
- Wanner, M.; Tarnutzer, S.; Martin, B.W.; Braun, J.; Rohrmann, S.; Bopp, M.; Faeh, D.; Cohort, S.N. Impact of different domains of physical activity on cause-specific mortality: A longitudinal study. Prev. Med. 2014, 62, 89–95. [Google Scholar] [CrossRef]
- Bahls, M.; Gross, S.; Baumeister, S.E.; Völzke, H.; Gläser, S.; Ewert, R.; Markus, M.R.P.; Medenwald, D.; Kluttig, A.; Felix, S.B.; et al. Association of domain-specific physical activity and cardiorespiratory fitness with all-cause and cause-specific mortality in two population-based cohort studies. Sci. Rep. 2018, 8, 16066. [Google Scholar] [CrossRef]
- Wang, Y.F.; Nie, J.; Ferrari, G.; Rey-Lopez, J.P.; Rezende, L.F.M. Association of Physical Activity Intensity with Mortality A National Cohort Study of 403 681 US Adults. JAMA Intern. Med. 2021, 181, 203–211. [Google Scholar] [CrossRef]
- Lopez, J.P.R.; Sabag, A.; Juan, M.M.; Rezende, L.F.M.; Pastor-Valero, M. Do vigorous-intensity and moderate-intensity physical activities reduce mortality to the same extent? A systematic review and meta-analysis. BMJ Open Sport Exerc. Med. 2020, 6, e000775. [Google Scholar] [CrossRef]
- Radtke, T.; Kriemler, S.; Eser, P.; Saner, H.; Wilhelm, M. Physical activity intensity and surrogate markers for cardiovascular health in adolescents. Eur. J. Appl. Physiol. 2013, 113, 1213–1222. [Google Scholar] [CrossRef]
- van de Vegte, Y.J.; Tegegne, B.S.; Verweij, N.; Snieder, H.; van der Harst, P. Genetics and the heart rate response to exercise. Cell. Mol. Life Sci. 2019, 76, 2391–2409. [Google Scholar] [CrossRef]
- Newton-Cheh, C.; Guo, C.Y.; Wang, T.J.; O’Donnell, C.J.; Levy, D.; Larson, M.G. Genome-wide association study of electrocardiographic and heart rate variability traits: The Framingham Heart Study. BMC Med. Genet. 2007, 8, S7. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.P.; Larson, M.G.; O’Donnell, C.J.; Tsuji, H.; Corey, D.; Levy, D. Genome scan linkage results for heart rate variability (The Framingham Heart Study). Am. J. Cardiol. 2002, 90, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Spielmann, N.; Leon, A.S.; Rao, D.C.; Rice, T.; Skinner, J.S.; Rankinen, T.; Bouchard, C. Genome-wide linkage scan for submaximal exercise heart rate in the HERITAGE family study. Am. J. Physiol. Circ. Physiol. 2007, 293, H3366–H3371. [Google Scholar] [CrossRef]
- Aaltonen, S.; Kujala, U.M.; Kaprio, J. Factors behind Leisure-Time Physical Activity Behavior Based on Finnish Twin Studies: The Role of Genetic and Environmental Influences and the Role of Motives. Biomed. Res. Int. 2014, 2014, 931820. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.C.; Chan, K.K.H.; Huang, Y.T.; Luo, X.; Liang, L.M.; Wilson, J.; Correa, A.; Levy, D.; Liu, S.M. Genetic Determinants for Leisure-Time Physical Activity. Med. Sci. Sports Exer. 2018, 50, 1620–1628. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Min, H.; Oh, S.; Kim, Y.; Lee, A.H.; Park, T. Joint Identification of Genetic Variants for Physical Activity in Korean Population. Int. J. Mol. Sci. 2014, 15, 12407–12421. [Google Scholar] [CrossRef]
- De Moor, M.H.M.; Liu, Y.J.; Boomsma, D.I.; Li, J.; Hamilton, J.J.; Hottenga, J.J.; Levy, S.; Liu, X.G.; Pei, Y.F.; Posthuma, D.; et al. Genome-Wide Association Study of Exercise Behavior in Dutch and American Adults. Med. Sci. Sports Exerc. 2009, 41, 1887–1895. [Google Scholar] [CrossRef]
- Hara, M.; Hachiya, T.; Sutoh, Y.; Matsuo, K.; Nishida, Y.; Shimanoe, C.; Tanaka, K.; Shimizu, A.; Ohnaka, K.; Kawaguchi, T.; et al. Genomewide Association Study of Leisure-Time Exercise Behavior in Japanese Adults. Med. Sci. Sports Exerc. 2018, 50, 2433–2441. [Google Scholar] [CrossRef]
- Kostrzewa, E.; Brandys, M.K.; van Lith, H.A.; Kas, M.J.H. A candidate syntenic genetic locus is associated with voluntary exercise levels in mice and humans. Behav. Brain Res. 2015, 276, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.T.; Jiao, Y.W.; Yang, P.Y.; Liao, Y.X.; Gu, X.L.; Hu, F.Y.; Chen, B.F. The association study between gene polymorphisms and risk of liver, lung and gastric cancer in a Chinese population. Pathol. Res. Pract. 2020, 216, 153237. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Huang, C.; Wang, H.; Wang, C.; Dong, L.J.; Gu, X.L.; Feng, X.H.; Chen, B.F. Association study between gene polymorphisms and cancer risk. Pathol. Res. Pract. 2020, 216, 152735. [Google Scholar] [CrossRef] [PubMed]
- Rennie, K.L.; Hemingway, H.; Kumari, M.; Brunner, E.; Malik, M.; Marmot, M. Effects of moderate and vigorous physical activity on heart rate variability in a British study of civil servants. Am. J. Epidemiol. 2003, 158, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, C.; Bartels, M.; Groen-Blokhuis, M.; Dolan, C.V.; de Moor, M.H.M.; Abdellaoui, A.; van Beijsterveldt, C.E.M.; Ehli, E.A.; Hottenga, J.J.; Willemsen, G.; et al. The Dopaminergic Reward System and Leisure Time Exercise Behavior: A Candidate Allele Study. Biomed. Res. Int. 2014, 2014, 591717. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Leskinen, T.; Alen, M.; Cheng, S.; Sipila, S.; Heinonen, A.; Kaprio, J.; Suominen, H.; Kujala, U.M. Long-term leisure time physical activity and properties of bone: A twin study. Bone 2009, 44, S343. [Google Scholar] [CrossRef]
- Adány, R.; Pikó, P.; Fiatal, S.; Kósa, Z.; Sándor, J.; Bíró, E.; Kósa, K.; Paragh, G.; Bába, E.B.; Veres-Balajti, I.; et al. Prevalence of Insulin Resistance in the Hungarian General and Roma Populations as Defined by Using Data Generated in a Complex Health (Interview and Examination) Survey. Int. J. Environ. Res. Public Health 2020, 17, 4833. [Google Scholar] [CrossRef]
- Bácsné Bába, É.; Ráthonyi, G.; Müller, A.; Ráthonyi-Odor, K.; Balogh, P.; Ádány, R.; Bács, Z. Physical Activity of the Population of the Most Obese Country in Europe, Hungary. Front. Public Health 2020, 8, 203. [Google Scholar] [CrossRef] [PubMed]
- Jette, M.; Sidney, K.; Blumchen, G. Metabolic Equivalents (Mets) in Exercise Testing, Exercise Prescription, and Evaluation of Functional-Capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A Second Update of Codes and MET Values. Med. Sci. Sports Exer. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Souza, H.C.D.; Philbois, S.V.; Veiga, A.C.; Aguilar, B.A. Heart Rate Variability and Cardiovascular Fitness: What We Know so Far. Vasc. Health Risk Manag. 2021, 17, 701–711. [Google Scholar] [CrossRef]
- Templeton, G.F.; Pope, M.B.; Burney, L.L. The Usefulness of the Two-Step Normality Transformation in Retesting Existing Theories: Evidence on the Productivity Paradox. Data Base Adv. Inf. Syst. 2021, 52, 53–64. [Google Scholar] [CrossRef]
- Manning, S.E.; Ku, H.C.; Dluzen, D.F.; Xing, C.; Zhou, Z.Y. A nonparametric alternative to the Cochran-Armitage trend test in genetic case-control association studies: The Jonckheere-Terpstra trend test. PLoS ONE 2023, 18, e0280809. [Google Scholar] [CrossRef]
Poor AHRR (n = 206) | Moderate AHRR (n = 208) | Good AHRR (n = 206) | |||
---|---|---|---|---|---|
Average (95%CI) | p for Trend | ||||
ΔHR ¥ | 61.42 (58.17–64.66) | 26.54 (25.98–27.11) | 12.72 (12.07–13.37) | <0.001 ** | |
Age (years) | 42.72 (40.96–44.48) | 43.88 (42.22–45.53) | 42.55 (40.85–44.26) | 0.938 | |
Body mass index (kg/m2) | 27.49 (26.60–28.37) | 27.44 (26.70–28.18) | 26.89 (26.09–27.70) | 0.384 | |
Average diastolic blood pressure (mmHg) | 80.21 (78.95–81.47) | 78.78 (77.61–79.95) | 79.11 (77.69–80.53) | 0.321 | |
Fasting glucose (mmol/L) | 5.08 (4.88–5.28) | 5.17 (4.89–5.45) | 5.10 (4.89–5.30) | 0.757 | |
Prevalence in % (95%CI) | p for Trend | ||||
Women | 71.36 (64.92–77.20) | 63.94 (57.26–70.24) | 60.68 (53.90–67.16) | 0.023 * | |
Traveling by vehicle | 44.17 (37.51–51.00) | 59.13 (52.37–65.65) | 47.09 (40.35–53.90) | 0.555 | |
Education | Primary | 56.31 (49.49–62.96) | 38.46 (32.05–45.20) | 64.08 (57.37–70.40) | 0.041 * |
High school | 30.58 (24.59–37.11) | 51.92 (45.15–58.65) | 29.13 (23.24–35.59) | ||
University | 13.11 (9.02–18.22) | 9.62 (6.17–14.18) | 6.80 (3.95–10.85) | ||
Current smoking status | 47.09 (40.35–53.90) | 39.61 (33.13–46.38) | 57.28 (50.46–63.90) | 0.039 * | |
Roma ethnicity | 53.88 (47.06–60.60) | 31.25 (25.24–37.77) | 61.65 (54.89–68.09) | 0.115 |
Poor AHRR (n = 206) | Moderate AHRR (n = 208) | Good AHRR (n = 206) | p for Trend | |
---|---|---|---|---|
Average (95%CI) | ||||
HRrest | 76.79 (75.47–78.10) | 76.99 (75.54–78.43) | 78.56 (77.13–80.00) | 0.085 |
HRexerc | 138.20 (134.82–141.58) | 103.53 (101.99–105.07) | 91.21 (89.61–92.80) | <0.001 ** |
HR5min | 105.68 (103.08–108.28) | 89.44 (88.02–90.85) | 84.40 (82.89–85.90) | <0.001 ** |
HR10min | 87.18 (85.34–89.02) | 80.47 (79.14–81.80) | 78.52 (77.13–79.91) | <0.001 ** |
ΔHR5min | 28.90 (26.38–31.41) | 12.45 (11.36–13.54) | 5.83 (5.04–6.63) | <0.001 ** |
ΔHR10min | 10.39 (8.87–11.92) | 3.49 (2.62–4.35) | −0.04 (−0.74–0.65) | <0.001 ** |
Poor AHRR (n = 206) | Moderate AHRR (n = 208) | Good AHRR (n = 206) | ||
---|---|---|---|---|
Average MET-min/week (95%CI) | p for trend | |||
Total physical activity | 8489 (7540–9439) | 11,446 (10,328–12,565) | 11,747 (10,655–12,840) | <0.001 ** |
By intensity categories | Average MET-min/week (95%CI) | p for trend | ||
Vigorous | 2276 (1592–2960) | 3448 (2788–4109 | 3478 (2739–4218) | <0.001 ** |
Moderate | 4395 (3847–4943) | 5811 (5179–6443) | 6546 (5848–7245) | <0.001 ** |
Light | 1819 (1517–2120) | 2187 (1872–2501) | 1723 (1436–2010) | 0.944 |
By domains | Average MET-min/week (95%CI) | p for trend | ||
Work | 3782 (2984—4580) | 5407 (4569–6246) | 5510 (4678–6343) | 0.003 ** |
Transport | 1283 (1045–1521) | 1445 (1180–1710) | 1761 (1466–2055) | 0.012 * |
Domestic work and gardening | 2584 (2199–2968) | 3241 (2852–3630) | 3049 (2628–3470) | 0.052 |
Leisure-time | 841 (637–1045) | 1353 (1076–1630) | 1427 (1167–1688) | <0.001 ** |
B Value (95% CI) | p-Value | |
---|---|---|
HRrest | −0.13 (−0.48–0.22) | 0.465 |
HRexerc | −2.86 (−3.73–−2.00) | 1.83 × 10−10 ** |
HR5min | −1.55 (−2.11–−1.00) | 5.15 × 10−8 ** |
HR10min | −0.68 (−1.07–−0.28) | 0.0008 ** |
ΔHR | −2.61 (−3.46–−1.75) | 3.29 × 10−9 ** |
ΔHR5min | −1.41 (−1.95–−0.88) | 3.17 × 10−7 ** |
ΔHR10min | −0.52 (−0.84–−0.20) | 0.001 ** |
B value (95%CI) | p-value | |
Total physical activity | 179.28 (−95.94–454.50) | 0.201 |
By intensity categories | B value (95%CI) | p-value |
Vigorous | −51.63 (−197.48–94.21) | 0.490 |
Moderate | 58.46 (−92.21–208.92) | 0.447 |
Light | −3.81 (−80.21–72.58) | 0.922 |
By domains | B value (95%CI) | p-value |
Work | −42.64 (−231.95–146.66) | 0.658 |
Transport | 40.90 (−22.68–104.48) | 0.207 |
Domestic and gardening | 44.62 (−56.07–145.31) | 0.385 |
Leisure-time | 84.85 (25.43–144.27) | 0.005 ** |
B value (95%CI) | p-value | |
Total physical activity | −0.001 (−0.001–0.000) | 1.90 × 10−5 ** |
oPGS | −2.606 (−3.458–−1.754) | 3.29 × 10−9 ** |
By intensity categories | B value (95%CI) | p-value |
Vigorous | −0.002 (−0.003–−0.001) | 5.37 × 10−4 ** |
Moderate | −0.002 (−0.003–−0.001) | 0.002 ** |
Light | −0.002 (−0.004–0.000) | 0.085 |
oPGS | −2.698 (−3.548–−1.849) | 8.33 × 10−10 ** |
By domains | B value (95%CI) | p-value |
Work | −0.000 (−0.001–0.000) | 0.109 |
Transport | −0.000 (−0.002–0.001) | 0.394 |
Domestic work and gardening | −0.001 (−0.001–0.000) | 0.066 |
Leisure-time | −0.002 (−0.003–−0.001) | 6.35 × 10−4 ** |
oPGS | −2.498 (−3.350–−1.646) | 1.37 × 10−8 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pikó, P.; Al Ashkar, H.; Kovács, N.; Veres-Balajti, I.; Ádány, R. Genetic Background of Acute Heart Rate Response to Exercise. Int. J. Mol. Sci. 2024, 25, 3238. https://doi.org/10.3390/ijms25063238
Pikó P, Al Ashkar H, Kovács N, Veres-Balajti I, Ádány R. Genetic Background of Acute Heart Rate Response to Exercise. International Journal of Molecular Sciences. 2024; 25(6):3238. https://doi.org/10.3390/ijms25063238
Chicago/Turabian StylePikó, Péter, Habib Al Ashkar, Nóra Kovács, Ilona Veres-Balajti, and Róza Ádány. 2024. "Genetic Background of Acute Heart Rate Response to Exercise" International Journal of Molecular Sciences 25, no. 6: 3238. https://doi.org/10.3390/ijms25063238
APA StylePikó, P., Al Ashkar, H., Kovács, N., Veres-Balajti, I., & Ádány, R. (2024). Genetic Background of Acute Heart Rate Response to Exercise. International Journal of Molecular Sciences, 25(6), 3238. https://doi.org/10.3390/ijms25063238