Excess Enthalpies Analysis of Biofuel Components: Sunflower Oil–Alcohols Systems
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Solubility Measurements
4.3. The Kinetics of the Transesterification Reaction Investigation
4.4. Molar Mass of Sunflower Oil
4.5. Molar Excess Enthalpy Measurements
4.6. Calculation
4.6.1. Redlich–Kister
4.6.2. Non-Random Two-Liquid Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nation. Available online: https://sdgs.un.org/2030agenda (accessed on 22 January 2024).
- Aytav, E.; Kocar, G. Biodiesel from the Perspective of Turkey: Past, Present and Future. Renew. Sustain. Energy Rev. 2013, 25, 335–350. [Google Scholar] [CrossRef]
- Das, P.; Jha, C.K.; Saxena, S.; Ghosh, R.K. Can Biofuels Help Achieve Sustainable Development Goals in India? A Systematic Review. Renew. Sustain. Energy Rev. 2024, 192, 114246. [Google Scholar] [CrossRef]
- Geissler, C.H.; Ryu, J.; Maravelias, C.T. The Future of Biofuels in the United States Transportation Sector. Renew. Sustain. Energy Rev. 2024, 192, 114276. [Google Scholar] [CrossRef]
- Vega, L.P.; Bautista, K.T.; Campos, H.; Daza, S.; Vargas, G. Biofuel Production in Latin America: A Review for Argentina, Brazil, Mexico, Chile, Costa Rica and Colombia. Energy Rep. 2024, 11, 28–38. [Google Scholar] [CrossRef]
- Cherwoo, L.; Gupta, I.; Flora, G.; Verma, R.; Kapil, M.; Arya, S.K.; Ravindran, B.; Khoo, K.S.; Bhatia, S.K.; Chang, S.W.; et al. Biofuels an Alternative to Traditional Fossil Fuels: A Comprehensive Review. Sustain. Energy Technol. Assess. 2023, 60, 103503. [Google Scholar] [CrossRef]
- Manivasagam, V.; Narayanan, P.; Kuma Gupta, N.; Shinde, T.; Panchal, H.; Thangavel, R.; Kumar Choudhary, A.; Kumar, V.; Sukumaran, A.; Muthusamy, S.; et al. Investigation on 1-Propanol Electronic Mode of Fumigation on Diesel Engine Performance and Emission Fueled with Diesel and Lemongrass Biodiesel Blend Using AHP-COPRAS. Energy Convers. Manag. X 2023, 20, 100468. [Google Scholar] [CrossRef]
- Tosun, Z.; Aydin, H. Combustion, Performance and Emission Analysis of Propanol Addition on Safflower Oil Biodiesel in a Diesel Engine. Clean. Chem. Eng. 2022, 3, 100041. [Google Scholar] [CrossRef]
- Kukana, R.; Jakhar, O.P. Effect of Ternary Blends Diesel/n-Propanol/Composite Biodiesel on Diesel Engine Operating Parameters. Energy 2022, 260, 124970. [Google Scholar] [CrossRef]
- Musthafa, B.; Saravanan, B.; Asokan, M.A.; Devendiran, S.; Venkatesan, K. Effect of Ethanol, Propanol and Butanol on Karanja Biodiesel with Vegetable Oil Fuelled in a Single Cylinder Diesel Engine. Egypt. J. Pet. 2023, 32, 35–40. [Google Scholar] [CrossRef]
- Atmanli, A. Comparative Analyses of Diesel–Waste Oil Biodiesel and Propanol, n-Butanol or 1-Pentanol Blends in a Diesel Engine. Fuel 2016, 176, 209–215. [Google Scholar] [CrossRef]
- Yilmaz, N.; Vigil, F.M. Potential Use of a Blend of Diesel, Biodiesel, Alcohols and Vegetable Oil in Compression Ignition Engines. Fuel 2014, 124, 168–172. [Google Scholar] [CrossRef]
- Atmanli, A. Effects of a Cetane Improver on Fuel Properties and Engine Characteristics of a Diesel Engine Fueled with the Blends of Diesel, Hazelnut Oil and Higher Carbon Alcohol. Fuel 2016, 172, 209–217. [Google Scholar] [CrossRef]
- Serrano, M.; Oliveros, R.; Sánchez, M.; Moraschini, A.; Martínez, M.; Aracil, J. Influence of Blending Vegetable Oil Methyl Esters on Biodiesel Fuel Properties: Oxidative Stability and Cold Flow Properties. Energy 2014, 65, 109–115. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Das, L.M.; Babu, M.K.G.; Arora, P.; Singh, V.P.; Kumar, N.R.; Varyani, T.S. Comparative Evaluation of Performance and Emission Characteristics of Jatropha, Karanja and Polanga Based Biodiesel as Fuel in a Tractor Engine. Fuel 2009, 88, 1698–1707. [Google Scholar] [CrossRef]
- EL-Seesy, A.I.; Xuan, T.; He, Z.; Hassan, H. Enhancement the Combustion Aspects of a CI Engine Working with Jatropha Biodiesel/Decanol/Propanol Ternary Combinations. Energy Convers. Manag. 2020, 226, 113524. [Google Scholar] [CrossRef]
- Campos-Fernandez, J.; Arnal, J.M.; Gomez, J.; Lacalle, N.; Dorado, M.P. Performance Tests of a Diesel Engine Fueled with Pentanol/Diesel Fuel Blends. Fuel 2013, 107, 866–872. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Balasubramanian, R. Investigation of Particulate Emission Characteristics of a Diesel Engine Fueled with Higher Alcohols/Biodiesel Blends. Appl. Energy 2016, 163, 71–80. [Google Scholar] [CrossRef]
- Rajesh Kumar, B.; Saravanan, S. Use of Higher Alcohol Biofuels in Diesel Engines: A Review. Renew. Sustain. Energy Rev. 2016, 60, 84–115. [Google Scholar] [CrossRef]
- Rakopoulos, C.D.; Dimaratos, A.M.; Giakoumis, E.G.; Rakopoulos, D.C. Study of Turbocharged Diesel Engine Operation, Pollutant Emissions and Combustion Noise Radiation during Starting with Bio-Diesel or n-Butanol Diesel Fuel Blends. Appl. Energy 2011, 88, 3905–3916. [Google Scholar] [CrossRef]
- Giakoumis, E.G.; Rakopoulos, C.D.; Dimaratos, A.M.; Rakopoulos, D.C. Exhaust Emissions with Ethanol or N-Butanol Diesel Fuel Blends during Transient Operation: A Review. Renew. Sustain. Energy Rev. 2013, 17, 170–190. [Google Scholar] [CrossRef]
- Yilmaz, N.; Vigil, F.M.; Benalil, K.; Davis, S.M.; Calva, A. Effect of Biodiesel–Butanol Fuel Blends on Emissions and Performance Characteristics of a Diesel Engine. Fuel 2014, 135, 46–50. [Google Scholar] [CrossRef]
- Atmanlı, A.; Yüksel, B.; İleri, E. Experimental Investigation of the Effect of Diesel–Cotton Oil–n-Butanol Ternary Blends on Phase Stability, Engine Performance and Exhaust Emission Parameters in a Diesel Engine. Fuel 2013, 109, 503–511. [Google Scholar] [CrossRef]
- Atmanlı, A.; Yüksel, B.; İleri, E.; Deniz Karaoglan, A. Response Surface Methodology Based Optimization of Diesel–n-Butanol –Cotton Oil Ternary Blend Ratios to Improve Engine Performance and Exhaust Emission Characteristics. Energy Convers. Manag. 2015, 90, 383–394. [Google Scholar] [CrossRef]
- Sharon, H.; Jai Shiva Ram, P.; Jenis Fernando, K.; Murali, S.; Muthusamy, R. Fueling a Stationary Direct Injection Diesel Engine with Diesel-Used Palm Oil–Butanol Blends—An Experimental Study. Energy Convers. Manag. 2013, 73, 95–105. [Google Scholar] [CrossRef]
- Atmanlı, A.; İleri, E.; Yüksel, B. Experimental Investigation of Engine Performance and Exhaust Emissions of a Diesel Engine Fueled with Diesel—n-Butanol—Vegetable Oil Blends. Energy Convers. Manag. 2014, 81, 312–321. [Google Scholar] [CrossRef]
- Atmanlı, A.; İleri, E.; Yüksel, B. Effects of Higher Ratios of N-Butanol Addition to Diesel–Vegetable Oil Blends on Performance and Exhaust Emissions of a Diesel Engine. J. Energy Inst. 2015, 88, 209–220. [Google Scholar] [CrossRef]
- Tüccar, G.; Özgür, T.; Aydın, K. Effect of Diesel–Microalgae Biodiesel–Butanol Blends on Performance and Emissions of Diesel Engine. Fuel 2014, 132, 47–52. [Google Scholar] [CrossRef]
- Imtenan, S.; Masjuki, H.H.; Varman, M.; Rizwanul Fattah, I.M.; Sajjad, H.; Arbab, M.I. Effect of N-Butanol and Diethyl Ether as Oxygenated Additives on Combustion–Emission-Performance Characteristics of a Multiple Cylinder Diesel Engine Fuelled with Diesel–Jatropha Biodiesel Blend. Energy Convers. Manag. 2015, 94, 84–94. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Wang, Z.; Liu, H. Combustion and Emissions of Compression Ignition in a Direct Injection Diesel Engine Fueled with Pentanol. Energy 2015, 80, 575–581. [Google Scholar] [CrossRef]
- Campos-Fernández, J.; Arnal, J.M.; Gómez, J.; Dorado, M.P. A Comparison of Performance of Higher Alcohols/Diesel Fuel Blends in a Diesel Engine. Appl. Energy 2012, 95, 267–275. [Google Scholar] [CrossRef]
- Wei, L.; Cheung, C.S.; Huang, Z. Effect of N-Pentanol Addition on the Combustion, Performance and Emission Characteristics of a Direct-Injection Diesel Engine. Energy 2014, 70, 172–180. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Wang, Z.; Xiao, J. Combustion and Emission Characteristics of Diesel Engine Fueled with Diesel/Biodiesel/Pentanol Fuel Blends. Fuel 2015, 156, 211–218. [Google Scholar] [CrossRef]
- Huang, X.; Wang, J.; Wang, Y.; Qiao, X.; Ju, D.; Sun, C.; Zhang, Q. Experimental Study on Evaporation and Micro-Explosion Characteristics of Biodiesel/n-Propanol Blended Droplet. Energy 2020, 205, 118031. [Google Scholar] [CrossRef]
- Bencheikh, K.; Atabani, A.E.; Shobana, S.; Mohammed, M.N.; Uğuz, G.; Arpa, O.; Kumar, G.; Ayanoğlu, A.; Bokhari, A. Fuels Properties, Characterizations and Engine and Emission Performance Analyses of Ternary Waste Cooking Oil Biodiesel–Diesel–Propanol Blends. Sustain. Energy Technol. Assess. 2019, 35, 321–334. [Google Scholar] [CrossRef]
- Saied, M.A.; Mansour, S.H.; El Sabee, M.Z.; Saad, A.L.G.; Abdel-Nour, K.N. Some Electrical and Physical Properties of Castor Oil Adducts Dissolved in 1-Propanol. J. Mol. Liq. 2012, 172, 1–7. [Google Scholar] [CrossRef]
- Golikova, A.; Tsvetov, N.; Anufrikov, Y.; Toikka, M.; Zvereva, I.; Toikka, A. Excess Enthalpies of the Reactive System Ethanol + Acetic Acid + Ethyl Acetate + Water for Chemically Equilibrium States at 313.15 K. J. Therm. Anal. Calorim. 2018, 134, 835–841. [Google Scholar] [CrossRef]
- Toikka, M.; Samarov, A.; Toikka, A. Solubility, Liquid–Liquid Equilibrium and Critical States for the System Acetic Acid+n-Propanol+n-Propyl Acetate+water at 293.15K and 303.15K. Fluid Phase Equilibria 2014, 375, 66–72. [Google Scholar] [CrossRef]
- Golikova, A.; Shasherina, A.; Anufrikov, Y.; Misikov, G.; Toikka, M.; Zvereva, I.; Toikka, A. Excess Enthalpies for Binary Mixtures of the Reactive System Acetic Acid + N-Butanol + n-Butyl Acetate + Water: Brief Data Review and Results at 313.15 K and Atmospheric Pressure. IJMS 2023, 24, 5137. [Google Scholar] [CrossRef]
- Misikov, G.; Toikka, M.; Samarov, A.; Toikka, A. Phase Equilibria Liquid-Liquid for Ternary Systems n-Amyl Alcohol–Water–(Acetic Acid, n-Amyl Acetate), n-Amyl Acetat–Water–Acetic Acid at 293.15 K, 303.15 K, 313.15 K and 323.15 K. Fluid Phase Equilibria 2022, 552, 113265. [Google Scholar] [CrossRef]
- Renon, H.; Prausnitz, J.M. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. AIChE J. 1968, 14, 135–144. [Google Scholar] [CrossRef]
- Abbas, R.; Gmehling, J. Vapour–Liquid Equilibria, Azeotropic Data, Excess Enthalpies, Activity Coefficients at Infinite Dilution and Solid–Liquid Equilibria for Binary Alcohol–Ketone Systems. Fluid Phase Equilibria 2008, 267, 119–126. [Google Scholar] [CrossRef]
- Domańska, U.; Zawadzki, M.; Królikowski, M.; González, J.A. Phase Equilibria and Excess Molar Enthalpies Study of the Binary Systems (Pyrrole + hydrocarbon, or an Alcohol) and Modeling. Fluid Phase Equilibria 2014, 361, 116–129. [Google Scholar] [CrossRef]
- González, C.; Resa, J.M.; Concha, R.G.; Goenaga, J.M. Enthalpies of Mixing and Heat Capacities of Mixtures Containing Alcohols and n-alkanes with Corn Oil at 298.15 K. J. Am. Oil Fat Ind. 2004, 81, 817–822. [Google Scholar] [CrossRef]
- Resa, J.M.; González, C.; Fanega, M.A.; Ortiz De Landaluce, S.; Lanz, J. Enthalpies of Mixing, Heat Capacities, and Viscosities of Alcohol (C1–C4)+olive Oil Mixtures at 298.15 K. J. Food Eng. 2002, 51, 113–118. [Google Scholar] [CrossRef]
- Belting, P.C.; Gmehling, J.; Bölts, R.; Rarey, J.; Ceriani, R.; Chiavone-Filho, O.; Meirelles, A.J.A. Excess Enthalpies for Pseudobinary Mixtures Containing Vegetable Oils at the Temperatures 298.15K, 353.15K and 383.15K. Fluid Phase Equilibria 2014, 375, 124–133. [Google Scholar] [CrossRef]
- Toikka, M.A.; Gorovits, B.I.; Toikka, A.M. Solubility in the System Constituted by Acetic Acid, n-Propanol, Water, and n-Propyl Acetate. Russ. J. Appl. Chem. 2008, 81, 223–230. [Google Scholar] [CrossRef]
- Keating, A.R.; Wesdemiotis, C. Rapid and Simple Determination of Average Molecular Weight and Composition of Synthetic Polymers via Electrospray Ionization-mass Spectrometry and a Bayesian Universal Charge Deconvolution. Rapid Commun. Mass Spectrom. 2023, 37, e9478. [Google Scholar] [CrossRef] [PubMed]
- Letyanina, I.; Tsvetov, N.; Zvereva, I.; Samarov, A.; Toikka, A. Excess Molar Enthalpies for Binary Mixtures of N-Propanol, Acetic Acid, and n-Propyl Acetate at 313.15K and Atmospheric Pressure. Fluid Phase Equilibria 2014, 381, 77–82. [Google Scholar] [CrossRef]
- Ott, J.B.; Sipowska, J.T. Applications of Calorimetry to Nonelectrolyte Solutions. J. Chem. Eng. Data 1996, 41, 987–1004. [Google Scholar] [CrossRef]
- Redlich, O.; Kister, A.T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345–348. [Google Scholar] [CrossRef]
x (Oil) | /J mol−1 | x (Oil) | /J mol−1 |
---|---|---|---|
0.0811 | 1444.5 | 0.4971 | 3098.1 |
0.1609 | 2320.9 | 0.5408 | 2962.9 |
0.2484 | 2899.7 | 0.6377 | 2677.5 |
0.3375 | 3109.0 | 0.7559 | 2000.1 |
0.3396 | 3124.3 | 0.8740 | 1162.9 |
0.4337 | 3255.2 |
x (Oil) | /J mol−1 | x (Oil) | /J mol−1 |
---|---|---|---|
0.0785 | 1401.7 | 0.6427 | 2809.3 |
0.1592 | 2236.5 | 0.7554 | 2149.3 |
0.2489 | 2846.0 | 0.8745 | 1193.1 |
0.3394 | 3202.5 | ||
0.4340 | 3297.4 | ||
0.5483 | 3232.7 |
x (Oil) | /J mol−1 | x (Oil) | /J mol−1 |
---|---|---|---|
0.0790 | 1437.1 | 0.4367 | 3150.1 |
0.1614 | 2186.8 | 0.5379 | 2991.0 |
0.1620 | 2278.4 | 0.6426 | 2741.5 |
0.2446 | 2749.7 | 0.7560 | 2112.4 |
0.2488 | 2753.0 | 0.8742 | 1142.8 |
0.3377 | 3089.6 |
Substance | Symbolic Name | Source | Purity, Mole Fraction | Purification Method | Analysis Technique | |
---|---|---|---|---|---|---|
71-23-8 | n-Propanol | PrOH | Vekton (Russia) | 0.998 b | Drying | GC a |
71-36-3 | n-Butanol | BuOH | Vekton (Russia) | 0.995 b | Drying | GC a |
71-41-0 | n-Pentanol | AmOH | Vekton (Russia) | 0.997 b | Drying | GC a |
8001-21-6 | Sunflower seed oil | - | Local commercial supplier | - | - | - |
Oil + n-Propanol | Oil + n-Butanol | Oil + n-Pentanol | |
---|---|---|---|
a0 | 22,278.57 | 24,733 | 25,455.93 |
a1 | −89.89 | −97.49 | −90.94 |
b0 | 10,854.76 | 13,109.95 | 12,252.04 |
b1 | −995.00 | −2888.47 | −1972.92 |
γ | 4.01 | 11.22 | 8.09 |
ARD (%) | 0.8 | 0.5 | 1.4 |
σ, J mol−1 | 34 | 26 | 42 |
Oil(1) + n-Propanol(2) | Oil(1) + n-Butanol(2) | Oil(1) + n-Pentanol(2) | |
---|---|---|---|
∆g12 | 6002.02 | 7250.13 | 48,841.79 |
∆g21 | −7979.14 | −7862.53 | 28,104.44 |
αij | −0.14 | −0.11 | 0.06 |
ARD (%) | 3 | 3 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golikova, A.; Shasherina, A.; Anufrikov, Y.; Misikov, G.; Kuzmenko, P.; Smirnov, A.; Toikka, M.; Toikka, A. Excess Enthalpies Analysis of Biofuel Components: Sunflower Oil–Alcohols Systems. Int. J. Mol. Sci. 2024, 25, 3244. https://doi.org/10.3390/ijms25063244
Golikova A, Shasherina A, Anufrikov Y, Misikov G, Kuzmenko P, Smirnov A, Toikka M, Toikka A. Excess Enthalpies Analysis of Biofuel Components: Sunflower Oil–Alcohols Systems. International Journal of Molecular Sciences. 2024; 25(6):3244. https://doi.org/10.3390/ijms25063244
Chicago/Turabian StyleGolikova, Alexandra, Anna Shasherina, Yuri Anufrikov, Georgii Misikov, Petr Kuzmenko, Alexander Smirnov, Maria Toikka, and Alexander Toikka. 2024. "Excess Enthalpies Analysis of Biofuel Components: Sunflower Oil–Alcohols Systems" International Journal of Molecular Sciences 25, no. 6: 3244. https://doi.org/10.3390/ijms25063244
APA StyleGolikova, A., Shasherina, A., Anufrikov, Y., Misikov, G., Kuzmenko, P., Smirnov, A., Toikka, M., & Toikka, A. (2024). Excess Enthalpies Analysis of Biofuel Components: Sunflower Oil–Alcohols Systems. International Journal of Molecular Sciences, 25(6), 3244. https://doi.org/10.3390/ijms25063244