Gene Expression Patterns Associated with Survival in Glioblastoma
Abstract
:1. Introduction
2. Results
2.1. GBM Patients, Tumor, and Treatment Characteristics
2.2. Differential Expression of Pathways and Individual Genes
2.3. Cox Proportional Hazards Analysis and Derivation of Glioblastoma Prognostic Index
2.4. GPI Survival Analysis for the Study Group
2.5. Validation of the GPI in the TCGA GBM Cohort
3. Discussion
4. Materials and Methods
4.1. Clinical Study Design, Patient Selection, and Clinical Data Collection
4.2. NanoString Gene Expression Data Collection and Analysis
4.3. Statistical Methods
4.4. TCGA Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Taillibert, S.; Kanner, A.A.; Kesari, S.; Steinberg, D.M.; Toms, S.A.; Taylor, L.P.; Lieberman, F.; Silvani, A.; Fink, K.L.; et al. Maintenance therapy with tumor-Treating fields plus temozolomide vs temozolomide alone for glioblastoma a randomized clinical trial. JAMA-J. Am. Med. Assoc. 2015, 314, 2535–2543. [Google Scholar] [CrossRef] [PubMed]
- Cloughesy, T.F.; Lassman, A.B. NovoTTF: Where to go from here? Neuro Oncol. 2017, 19, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Park, J.K.; Hodges, T.; Arko, L.; Shen, M.; Iacono, D.D.; McNabb, A.; Bailey, N.O.; Kreisl, T.N.; Iwamoto, F.M.; Sul, J.; et al. Scale to predict survival after surgery for recurrent glioblastoma multiforme. J. Clin. Oncol. 2010, 28, 3838–3843. [Google Scholar] [CrossRef]
- Paravati, A.J.; Heron, D.E.; Landsittel, D.; Flickinger, J.C.; Mintz, A.; Chen, Y.-F.; Huq, M.S. Radiotherapy and temozolomide for newly diagnosed glioblastoma and anaplastic astrocytoma: Validation of Radiation Therapy Oncology Group-Recursive Partitioning Analysis in the IMRT and temozolomide era. J. Neurooncol. 2011, 104, 339–349. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.; Won, M.; Shaw, E.G.; Coughlin, C.; Curran, W.J.; Mehta, M.P. Validation and simplification of the radiation therapy oncology group recursive partitioning analysis classification for glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 623–630. [Google Scholar] [CrossRef]
- Eckel-Passow, J.E.; Lachance, D.H.; Molinaro, A.M.; Walsh, K.M.; Decker, P.A.; Sicotte, H.; Pekmezci, M.; Rice, T.W.; Kosel, M.L.; Smirnov, I.V.; et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N. Engl. J. Med. 2015, 372, 2499–2508. [Google Scholar] [CrossRef]
- Hegi, M.E.; Diserens, A.-C.; Gorlia, T.; Hamou, M.-F.; De Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef]
- Geiss, G.K.; E Bumgarner, R.; Birditt, B.; Dahl, T.; Dowidar, N.; Dunaway, D.L.; Fell, H.P.; Ferree, S.; George, R.D.; Grogan, T.; et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 2008, 26, 317–325. [Google Scholar] [CrossRef]
- Reis, P.P.; Waldron, L.; Goswami, R.S.; Xu, W.; Xuan, Y.; Perez-Ordonez, B.; Gullane, P.; Irish, J.; Jurisica, I.; Kamel-Reid, S. MRNA transcript quantification in archival samples using multiplexed, color-coded probes. BMC Biotechnol. 2011, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Omolo, B.; Yang, M.; Lo, F.Y.; Schell, M.J.; Austin, S.; Howard, K.; Madan, A.; Yeatman, T.J. Adaptation of a RAS pathway activation signature from FF to FFPE tissues in colorectal cancer. BMC Med. Genom. 2016, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute National Human Genome Research Institute. The Cancer Genome Atlas. TCGA; 2013. Available online: https://www.cancer.gov/ccg/research/genome-sequencing/tcga (accessed on 13 February 2024).
- Roa, W.; Brasher, P.; Bauman, G.; Anthes, M.; Bruera, E.; Chan, A.; Fisher, B.; Fulton, D.; Gulavita, S.; Hao, C.; et al. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: A prospective randomized clinical trial. J. Clin. Oncol. 2004, 22, 1583–1588. [Google Scholar] [CrossRef]
- Perry, J.R.; Laperriere, N.; O’Callaghan, C.J.; Brandes, A.A.; Menten, J.; Phillips, C.; Fay, M.; Nishikawa, R.; Cairncross, J.G.; Roa, W.; et al. Short-Course Radiation plus Temozolomide in Elderly Patients with Glioblastoma. N. Engl. J. Med. 2017, 376, 1027–1037. [Google Scholar] [CrossRef]
- Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Jill, P.; Alexe, G.; et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Burgenske, D.M.; Yang, J.; A Decker, P.; Kollmeyer, T.M.; Kosel, M.L.; Mladek, A.C.; A Caron, A.; A Vaubel, R.; Gupta, S.K.; Kitange, G.J.; et al. Molecular profiling of long-term IDH-wildtype glioblastoma survivors. Neuro Oncol. 2019, 21, 1458–1469. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Dhurv, H.; Armstrong, B.; Salhia, B.; Legendre, C.; Kiefer, J.; Parks, J.; Virk, S.; Sloan, A.E.; Ostrom, Q.T.; et al. Integrated genomic analysis of survival outliers in glioblastoma. Neuro Oncol. 2017, 19, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Shinawi, T.; Hill, V.K.; Krex, D.; Schackert, G.; Gentle, D.; Morris, M.R.; Wei, W.; Cruickshank, G.; Maher, E.R.; Latif, F. DNA methylation profiles of long- and short-term glioblastoma survivors. Epigenetics 2013, 8, 149–156. [Google Scholar] [CrossRef]
- Yin, W.; Tang, G.; Zhou, Q.; Cao, Y.; Li, H.; Fu, X.; Wu, Z.; Jiang, X. Expression profile analysis identifies a novel five-gene signature to improve prognosis prediction of glioblastoma. Front Genet. 2019, 10, 419. [Google Scholar] [CrossRef]
- Alshehri, M.M.; Robbins, S.M.; Senger, D.L. The Role of Neurotrophin Signaling in Gliomagenesis: A Focus on the P75 Neurotrophin Receptor (P75NTR/CD271), 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 104. [Google Scholar] [CrossRef]
- Osada, H.; Tatematsu, Y.; Yatabe, Y.; Horio, Y.; Takahashi, T. Nerve Growth Factor Stimulates Clonal Growth of Human Lung Cancer Cell Lines and a Human Glioblastoma Cell Line Expressing High-Affinity Nerve Growth Factor Binding Sites Involving Tyrosine Kinase Signaling. Cancer Res. 1995, 55, 2212–2219. [Google Scholar] [CrossRef]
- Singer, H.S.; Hansen, B.; Martinie, D.; Karp, C.L. Mitogenesis in glioblastoma multiforme cell lines: A role for NGF and its TrkA receptors. J. Neurooncol. 1999, 45, 1–8. [Google Scholar] [CrossRef]
- Zhou, X.; Hao, Q.; Liao, P.; Luo, S.; Zhang, M.; Hu, G.; Liu, H.; Zhang, Y.; Cao, B.; Baddoo, M.; et al. Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator. Elife 2016, 5, e15099. [Google Scholar] [CrossRef]
- Johnston, A.L.M.; Lun, X.; Rahn, J.J.; Liacini, A.; Wang, L.; Hamilton, M.G.; Parney, I.F.; Hempstead, B.L.; Robbins, S.M.; A Forsyth, P.; et al. The p75 neurotrophin receptor is a central regulator of glioma invasion. PLoS Biol. 2007, 5, e212. [Google Scholar] [CrossRef]
- Ahn, B.Y.; Saldanha-Gama, R.F.G.; Rahn, J.J.; Hao, X.; Zhang, J.; Dang, N.-H.; Alshehri, M.; Robbins, S.M.; Senger, D.L. Glioma invasion mediated by the p75 neurotrophin receptor (p75 NTR/CD271) requires regulated interaction with PDLIM1. Oncogene 2016, 35, 1411–1422. [Google Scholar] [CrossRef]
- Baxter, R.C. IGF binding proteins in cancer: Mechanistic and clinical insights. Nat. Rev. Cancer 2014, 14, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-Y.; Lin, Y.-Y.; Feng, L.-Y.; Chen, S.-H.; Chen, C.-Y.; Huang, Y.-C.; Huang, C.-Y.; Jung, S.-M.; Chen, L.Y.; Wei, K.-C. Suppression of tumor growth via IGFBP3 depletion as a potential treatment in glioma. J. Neurosurg. 2020, 132, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Santosh, V.; Arivazhagan, A.; Sreekanthreddy, P.; Srinivasan, H.; Thota, B.; Srividya, M.R.; Vrinda, M.; Sridevi, S.; Shailaja, B.C.; Samuel, C.; et al. Grade-specific expression of insulin-like growth factor-binding proteins-2, -3, and -5 in astrocytomas: IGFBP-3 emerges as a strong predictor of survival in patients with newly diagnosed glioblastoma. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Suwala, A.K.; Hanaford, A.; Kahlert, U.D.; MacIaczyk, J. Clipping the wings of glioblastoma: Modulation of WNT as novel therapeutic strategy. J. Neuropathol. Exp. Neurol. 2016, 75, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, J.K.; Ahn, S.H.; Lee, J.; Nam, D.H. WNT signaling in glioblastoma and therapeutic opportunities. Lab Investig. 2016, 96, 137–150. [Google Scholar] [CrossRef]
- Zuccarini, M.; Giuliani, P.; Ziberi, S.; Carluccio, M.; Di Iorio, P.; Caciagli, F.; Ciccarelli, R. The role of wnt signal in glioblastoma development and progression: A possible new pharmacological target for the therapy of this tumor. Genes 2018, 9, 105. [Google Scholar] [CrossRef] [PubMed]
- McCord, M.; Mukouyama, Y.; Gilbert, M.R.; Jackson, S. Targeting WNT Signaling for Multifaceted Glioblastoma Therapy. Front. Cell Neurosci. 2017, 11, 318. [Google Scholar] [CrossRef]
- Zheng, H.; Ying, H.; Wiedemeyer, R.; Yan, H.; Quayle, S.N.; Ivanova, E.V.; Paik, J.-H.; Zhang, H.; Xiao, Y.; Perry, S.R.; et al. PLAGL2 Regulates Wnt Signaling to Impede Differentiation in Neural Stem Cells and Gliomas. Cancer Cell 2010, 17, 497–509. [Google Scholar] [CrossRef]
- Asslaber, M.; Schauer, S.; Gogg-Kamerer, M.; Bernhart, E.; Quehenberger, F.; Haybaeck, J. Native oligodendrocytes in astrocytomas might inhibit tumor proliferation by wif1 expression. J. Neuropathol. Exp. Neurol. 2017, 76, 16–26. [Google Scholar] [CrossRef]
- Wu, J.; Fang, J.; Yang, Z.; Chen, F.; Liu, J.; Wang, Y. Wnt inhibitory factor-1 regulates glioblastoma cell cycle and proliferation. J. Clin. Neurosci. 2012, 19, 1428–1432. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Jeon, H.-Y.; Joo, K.M.; Kim, J.-K.; Jin, J.; Kim, S.H.; Kang, B.G.; Beck, S.; Lee, S.J.; Kim, J.K.; et al. Frizzled 4 regulates stemness and invasiveness of migrating glioma cells established by serial intracranial transplantation. Cancer Res. 2011, 71, 3066–3075. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, K.H.; Lee, J.; Lee, Y.-A.; Kim, M.; Lee, S.J.; Park, K.; Yang, H.; Jin, J.; Joo, K.M.; et al. Wnt activation is implicated in glioblastoma radioresistance. Lab. Investig. 2012, 92, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Auger, N. Genetic alterations associated with acquired temozolomide resistance in SNB-19, a human glioma cell line. Mol. Cancer Ther. 2006, 5, 2182–2192. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; Fang, J.; Chen, F.; Liu, J.; Wu, J.; Wang, Y. Expression and aberrant promoter methylation of Wnt inhibitory factor-1 in human astrocytomas. J. Exp. Clin. Cancer Res. 2010, 29, 26. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Kwak, J.; Nam, H.Y.; Chun, S.M.; Lee, B.W.; Lee, H.J.; Khang, S.K.; Kim, S.W. Promoter methylation of WNT inhibitory factor-1 and expression pattern of WNT/β-catenin pathway in human astrocytoma: Pathologic and prognostic correlations. Mod. Pathol. 2013, 26, 626–639. [Google Scholar] [CrossRef] [PubMed]
- Lambiv, W.L.; Vassallo, I.; Delorenzi, M.; Shay, T.; Diserens, A.-C.; Misra, A.; Feuerstein, B.; Murat, A.; Migliavacca, E.; Hamou, M.-F.; et al. The Wnt inhibitory factor 1 (WIF1) is targeted in glioblastoma and has a tumor suppressing function potentially by induction of senescence. Neuro Oncol. 2011, 13, 736–747. [Google Scholar] [CrossRef]
- Zhou, Q.; Yan, X.; Zhu, H.; Xin, Z.; Zhao, J.; Shen, W.; Yin, W.; Guo, Y.; Xu, H.; Zhao, M.; et al. Identification of three tumor antigens and immune subtypes for mRNA vaccine development in diffuse glioma. Theranostics 2021, 11, 9775–9790. [Google Scholar] [CrossRef]
- Fiala, M.; Avagyan, H.; Merino, J.J.; Bernas, M.; Valdivia, J.; Espinosa-Jeffrey, A.; Witte, M.; Weinand, M. Chemotactic and mitogenic stimuli of neuronal apoptosis in patients with medically intractable temporal lobe epilepsy. Pathophysiology 2013, 20, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, RESEARCH0034.1. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Horbinski, C.; Wu, H.; Liu, Y.; Sheng, S.; Liu, J.; Weiss, H.; Stromberg, A.J.; Wang, C. NanoStringDiff: A novel statistical method for differential expression analysis based on NanoString nCounter data. Nucleic Acids Res. 2016, 44, e151. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001, 29, 1165–1188. [Google Scholar] [CrossRef]
- Tomfohr, J.; Lu, J.; Kepler, T.B. Pathway level analysis of gene expression using singular value decomposition. BMC Bioinform. 2005, 6, 225. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. 2018. Available online: https://www.r-project.org/ (accessed on 20 April 2022).
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.E.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio Cancer Genomics Portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 32, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.; Craft, B.; Kamath, A.; Brooks, A.; Zhu, J.; Haussler, D. The UCSC Xena Platform for cancer genomics data visualization and interpretation. bioRxiv 2018, 326470. [Google Scholar] [CrossRef]
- Hothorn, T.; Lausen, B. On the exact distribution of maximally selected rank statistics. Comput. Stat. Data Anal. 2003, 43, 121–137. [Google Scholar] [CrossRef]
A | |||
Short OS ≤ Median | Long OS > Median | Comparison p-Value | |
Number of Patients (pts) | 12 | 11 | |
Males/Females (numberof pts) | 9/3 | 8/3 | 1 |
Median Age at Dx (Range) | 70.5 (41–80) | 63 (43–77) | 0.19 |
Median KPS (Range) | 85 (60–90) | 80 (50–90) | 0.47 |
Avg Tumor Size in cm2 (Range) | 20.8 (5.4–36.2) | 20.5 (1.9–41.2) | 0.94 |
MGMT Promotor Methylation (number of pts) | 2 | 3 | 0.64 |
Extent of Surgery (number of GTR/ STR) | 2/10 | 5/6 | 0.19 |
Completion of concurrent TMZ (% of pts) | 91.7 | 100 | 1 |
Range of RT Dose (Gy) | 60–74 | 60–75 | |
B | |||
NanoString Cohort | TCGA Cohort | ||
Number of Patients | 23 | 188 | |
Males/Females | 17/6 | 109/79 | |
Median Age at Dx (Range) | 64 (41–80) | 63.5 (23–88) | |
Median KPS (Range) | 80 (50–90) | 80 (20–100) * | |
Avg Tumor Size in cm2 (Range) | 20.7 (1.9–41.2) | Unknown | |
Median OS (Months) | 11.4 | 8 | |
MGMT Promotor Methylation Status (number/%) | |||
Unmethylated | 18/78.3% | 104/55.3% | |
Methylated | 5/21.7% | 84/44.7% & | |
Extent of Surgery (number/%) | |||
GTR | 7/30.4% | unknown | |
STR | 16/69.6% | ||
Completion of concurrent TMZ (% of pts) | 95.7 | ||
Range of RT Dose (Gy) | 60–75 |
Gene | Log2 Fold Change: Non-Neoplastic vs. GBM | p Value | Log2 Fold Change: GBM Long vs. Short Survival | p Value | Pathway |
---|---|---|---|---|---|
HIST1H3G | 8.3 | 7.64 × 10−18 | 1.29 | 0.00537 | Transcriptional Misregulation |
MMP9 | 8.29 | 7.61 × 10−14 | −1.74 | 0.0268 | Transcriptional Misregulation |
IBSP | 7.91 | 5.14 × 10−13 | 1.74 | 0.0212 | PI3K |
COL1A2 | 7.07 | 7.97 × 10−13 | 2.55 | 0.00266 | PI3K |
IGFBP3 | 3.88 | 1.67 × 10−11 | 1.67 | 0.00119 | Transcriptional Misregulation |
NGFR | 3.84 | 3.39 × 10−8 | 1.9 | 0.00656 | PI3K, Ras, Transcriptional Misregulation |
COL4A6 | 2.85 | 1.95 × 10−7 | −1.36 | 0.0473 | PI3K |
PTTG2 | 1.93 | 3.10 × 10−6 | 1.02 | 0.0319 | Cell Cycle—Apoptosis |
MMP7 | 1.82 | 0.000651 | 1.68 | 0.00867 | Wnt |
BMP2 | 1.29 | 4.94 × 10−5 | −1.04 | 0.00337 | Hedgehog, TGF-beta |
WNT7B | −1.44 | 0.00306 | −2.77 | 0.00165 | Hedgehog, Wnt |
WIF1 | −4.3 | 2.22 × 10−8 | −1.7 | 0.0398 | Wnt |
Directed Global Significance Scores | ||
---|---|---|
Pathways | Non-Neoplastic vs. GBM | GBM Long vs. Short Survival |
Notch | 6.507 | −1.159 |
Transcriptional Misregulation | 6.265 | 0.494 |
Cell Cycle—Apoptosis | 5.407 | −0.713 |
DNA Damage—Repair | 5.324 | 0.491 |
Driver Gene | 4.73 | −0.862 |
PI3K | 4.585 | −0.753 |
JAK-STAT | 4.34 | −0.939 |
Hedgehog | 2.36 | −0.919 |
TGF-beta | 1.488 | −1.184 |
Ras | −2.103 | −0.899 |
MAPK | −2.382 | −0.859 |
Chromatin Modification | −2.889 | −1.09 |
Wnt | −2.99 | −0.893 |
Univariate CPH Model | Multivariate Regression Coefficients | ||
---|---|---|---|
Clinical Factors | HR | p Value | |
Age | 1.06 | 0.061 | 0.074 |
KPS Group (<70 vs. ≥70) | 0.81 | 0.792 | |
Tumor Size (cm2) | 1.02 | 0.423 | |
Extent of Resection (STR vs. GTR) | 3.65 | 0.047 | 1.430 |
MGMT Promotor Status (Methylated vs. Unmethylated) | 0.53 | 0.313 | −0.876 |
Gene Expression | |||
MMP9 | 0.98 | 0.858 | |
IBSP | 1.23 | 0.173 | |
COL1A2 | 1.38 | 0.034 | 0.243 |
IGFBP3 | 1.65 | 0.010 | 0.090 |
NGFR | 1.37 | 0.043 | 0.448 |
WIF1 | 0.80 | 0.095 | −0.101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morrison, C.; Weterings, E.; Gravbrot, N.; Hammer, M.; Weinand, M.; Sanan, A.; Pandey, R.; Mahadevan, D.; Stea, B. Gene Expression Patterns Associated with Survival in Glioblastoma. Int. J. Mol. Sci. 2024, 25, 3668. https://doi.org/10.3390/ijms25073668
Morrison C, Weterings E, Gravbrot N, Hammer M, Weinand M, Sanan A, Pandey R, Mahadevan D, Stea B. Gene Expression Patterns Associated with Survival in Glioblastoma. International Journal of Molecular Sciences. 2024; 25(7):3668. https://doi.org/10.3390/ijms25073668
Chicago/Turabian StyleMorrison, Christopher, Eric Weterings, Nicholas Gravbrot, Michael Hammer, Martin Weinand, Abhay Sanan, Ritu Pandey, Daruka Mahadevan, and Baldassarre Stea. 2024. "Gene Expression Patterns Associated with Survival in Glioblastoma" International Journal of Molecular Sciences 25, no. 7: 3668. https://doi.org/10.3390/ijms25073668
APA StyleMorrison, C., Weterings, E., Gravbrot, N., Hammer, M., Weinand, M., Sanan, A., Pandey, R., Mahadevan, D., & Stea, B. (2024). Gene Expression Patterns Associated with Survival in Glioblastoma. International Journal of Molecular Sciences, 25(7), 3668. https://doi.org/10.3390/ijms25073668